Supplementary Fig 1: Schematic representation of the experimental design for iTRAQ labeling

(A) Two replicates from Sm25%-Ca75% protein mix of the single-species biofilm and six replicates of the proteins from the mixed-species biofilm were labeled with iTRAQ labeling reagents 113, 114 and 115, 116, 117, 118, 119, 121 respectively. (B) Protein expression of each species in mixed-species biofilm compared with respective single-species biofilms was determined by taking the average of all cross comparisons between each replicate of the mixedspecies biofilm vs single-species biofilm protein mix.

Supplementary Fig 2. Flow chart illustrating the different filtering methodology used to analyze the abundance changed proteins in *S. mutans* **mixed-species biofilms and single-species biofilms**

Supplementary Fig 3. Flow chart illustrating the different filtering methodology used to analyze the abundance changed proteins in *C. albicans* **mixed-species biofilms and singlespecies biofilms**

Supplementary Fig 4: Normalization of proteins in the mixed-species and single-species biofilms

Sm-Streptococcus mutans Ca-Candida albicans

The mixed-species biofilm had different amount of proteins derived from *S. mutans* and *C. albicans* counterparts. We compared the amount of proteins from each organism in the mixed-species biofilm (Sm-Ca Mix 1,2,3,4) against the protein amounts derived from *S. mutans* and *C. albicans* singlespecies biofilms, mixed according to specific ratios (Sm100%-Ca0%; Sm0%-Ca100%; Sm25%- Ca75%; Sm50%-Ca50%; Sm75%-Ca25%). We identified that a protein mixture of 25% of *S. mutans* proteins and 75% of *C. albicans* proteins single-species biofilms mixed together corresponds to the amount of *S. mutans* and *C. albicans* proteins detected in the mixed-species biofilm.

Supplementary Fig 5. Percentage variation in iTRAQ ratios of the same proteins found in various replicates. The primary vertical axis represents the corresponding number of proteins (bars) having different % co-efficient of variation (%CV) that was plotted in the horizontal axis. The secondary vertical axis represents the cumulative % of the counted proteins (lines). Variation against 88% coverage was taken into account for determining the fold cut-off, considering the population outside 88% as significantly altered.

I. C. albicans **-** 37% variation corresponding to >1.37 for increased abundance and $\langle 0.729927 \, (1/1.37)$ for decreased abundance

II. S. mutans - 31% variation corresponding to >1.312 for increased abundance and <0.762195 (1/1.312) for decreased abundance

Supplementary table 1: Some important *Candida albicans* **genes affected in Sm-Ca mixed-species biofilms**

1. Genes involved in hyphal formation

I. Genes directly involved in hyphal formation

II. Genes involved in transcriptional regulation related to the filamentous growth of the fungi

III. Other genes indirectly involved in hyphal growth

2. Genes associated with fungal vacuolar development genes were upregulated

3. **Genes associated with biofilm dispersal was upregulated in** *Candida albicans*

4. *Candida albicans* **genes in cation uptake and transport were upregulated**

5. Genes associated with heat shock proteins were upregulated

6. *Streptococcus mutans* **enhances** *Candida albicans* **genes associated with drug transport**

7. *Streptococcus mutans* **enhances** *Candida albicans* **carbohydrate metabolism**

8. *Streptococcus mutans* **enhances peroxisomal assembly and fatty acid oxidation in** *Candida albicans*

9. *Streptococcus mutans* **alters** *Candida albicans* **cell wall and cell membrane properties**

I. Mannan production

II. Glucan synthesis

III. *Ergosterol synthesis*

10. *Streptococcus mutans* **enhances** *Candida albicans* **cellular stress related gene responses**

11. *Streptococcus mutans* **stimulated** *Candida albicans* **cellular reproduction**

I. Mitotic cell division

II. Meiotic cell division

12. Several *Candida albicans* **genes downregulated in the presence of** *Streptococcus mutans*

I. Genes associated with cell membrane structure and function

II. Mitochondrial membrane associated genes

III. Vacuolar membrane proteins

* Information from UniprotKB for *Candida albicans* database

1. Martin, R., Walther, A., and Wendland, J. (2005) Ras1-induced hyphal development in Candida albicans requires the formin Bni1. *Eukaryotic cell* 4, 1712-1724.

2. Zaragoza, O., Blazquez, M. A., and Gancedo, C. (1998) Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. *Journal of bacteriology* 180, 3809-3815.

3. Greig, J. A., Sudbery, I. M., Richardson, J. P., Naglik, J. R., Wang, Y., and Sudbery, P. E. (2015) Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis. *PLoS pathogens* 11, e1004630.

4. Kitanovic, A., Nguyen, M., Vogl, G., Hartmann, A., Gunther, J., Wurzner, R., Kunkel, W., Wolfl, S., and Eck, R. (2005) Phosphatidylinositol 3-kinase VPS34 of Candida albicans is involved in filamentous growth, secretion of aspartic proteases, and intracellular detoxification. *FEMS yeast research* 5, 431-439.

5. Woo, M., Lee, K., and Song, K. (2003) MYO2 is not essential for viability, but is required for polarized growth and dimorphic switches in Candida albicans. *FEMS microbiology letters* 218, 195-202.

6. Pérez-Martín, J., Uría, J. A., and Johnson, A. D. (1999) Phenotypic switching in Candida albicans is controlled by a SIR2 gene. *The EMBO Journal* 18, 2580-2592.

7. Zacchi, L. F., Gomez-Raja, J., and Davis, D. A. (2010) Mds3 regulates morphogenesis in Candida albicans through the TOR pathway. *Molecular and cellular biology* 30, 3695-3710.

8. Ding, X., Yu, Q., Xu, N., Wang, Y., Cheng, X., Qian, K., Zhao, Q., Zhang, B., Xing, L., and Li, M. (2013) Ecm7, a regulator of HACS, functions in calcium homeostasis maintenance, oxidative stress response and hyphal development in Candida albicans. *Fungal genetics and biology : FG & B* 57, 23-32.

9. Hayek, P., Dib, L., Yazbeck, P., Beyrouthy, B., and Khalaf, R. A. (2010) Characterization of Hwp2, a Candida albicans putative GPI-anchored cell wall protein necessary for invasive growth. *Microbiological research* 165, 250-258.

10. Nobile, C. J., Fox, E. P., Hartooni, N., Mitchell, K. F., Hnisz, D., Andes, D. R., Kuchler, K., and Johnson, A. D. (2014) A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. *mBio* 5, e01201-01214.

11. Ramanan, N., and Wang, Y. (2000) A high-affinity iron permease essential for Candida albicans virulence. *Science (New York, N.Y.)* 288, 1062-1064.

12. Chen, Y.-L., Kauffman, S., and Reynolds, T. B. (2008) Candida albicans Uses Multiple Mechanisms To Acquire the Essential Metabolite Inositol during Infection. *Infection and immunity* 76, 2793-2801.

13. Piekarska, K., Mol, E., van den Berg, M., Hardy, G., van den Burg, J., van Roermund, C., MacCallum, D., Odds, F., and Distel, B. (2006) Peroxisomal Fatty Acid β-Oxidation Is Not Essential for Virulence of Candida albicans. *Eukaryotic cell* 5, 1847-1856.

14. Ramirez-Zavala, B., Mottola, A., Haubenreisser, J., Schneider, S., Allert, S., Brunke, S., Ohlsen, K., Hube, B., and Morschhauser, J. (2017) The Snf1-activating kinase Sak1 is a key regulator of metabolic adaptation and in vivo fitness of Candida albicans. *Molecular microbiology* 104, 989-1007.

15. Bates, S., de la Rosa, J. M., MacCallum, D. M., Brown, A. J. P., Gow, N. A. R., and Odds, F. C. (2007) Candida albicans Iff11, a Secreted Protein Required for Cell Wall Structure and Virulence. *Infection and immunity* 75, 2922-2928.

16. Hoyer, L. L. (2001) The ALS gene family of Candida albicans. *Trends Microbiol* 9, 176-180.

17. Tanaka, T., Izawa, S., and Inoue, Y. (2005) GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. *The Journal of biological chemistry* 280, 42078-42087.

18. Xiao, Z., McGrew, J. T., Schroeder, A. J., and Fitzgerald-Hayes, M. (1993) CSE1 and CSE2, two new genes required for accurate mitotic chromosome segregation in Saccharomyces cerevisiae. *Molecular and cellular biology* 13, 4691-4702.