

### **Supplemental Figure S1:**

Multidimensional scaling plot of Jinata samples. Each point represents the recovered microbial community from a given sample, with sites identified by color and sample type by shape. Samples plotting close to each other are relatively more similar in community composition. Abundance data are transformed by the 4<sup>th</sup> root to down-weight the effect of abundant taxa. Stress value is 0.0658.

### **Supplemental Figure S2:**

Microscopy images of sediment (Source Pool and Pool 1) or mat (Pool 2, Pool 3, and Out Flow). Left are light microscopy images. Center and right are fluorescence images. At center, blue signal is DAPI-stained (Excitation: 365nm, Emission: BP445~50nm). At right, red is autofluorescence signal of Cyanobacteria (BP395~440nm, LP470nm). Scale bars 50 µm.

**Supplemental Table S1:** Geochemistry and brief description at sampling sites along the flow path of Jinata Onsen as discussed in the text.

|        | pН  | T (°C) | Fe(II) | DO       | DIC (mM)     | DOC (mM)     | Descriptions |
|--------|-----|--------|--------|----------|--------------|--------------|--------------|
|        |     |        | (µM)   | (µM)     |              |              |              |
| Source | 5.4 | 60-63  | 260    | 4.7      | Not measured | Not measured | Fluffy red   |
| Pool   |     |        |        | (source) |              |              | iron oxide   |
|        |     |        |        | 39       |              |              | precipitate  |

|         |     |         |     | (surface) |              |              |                                                                                                                                                       |
|---------|-----|---------|-----|-----------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pool 1  | 5.8 | 59-59.5 | 265 | 58        | 5.51 ± 0.28  | 1.31 ± 0.18  | Reddish<br>precipitate<br>and streamers<br>in shallower<br>regions, more<br>yellowish<br>deeper                                                       |
| Pool 2  | 6.5 | 44.5-54 | 151 | 134       | 2.09 ± 0.11  | 0.76 ± 0.10  | Iron<br>oxide-coated<br>microbial<br>mats. Orange<br>to<br>orange-green.                                                                              |
| Pool 3  | 6.7 | 37.3-46 | 100 | 175       | 1.79 ± 0.09  | 0.70 ± 0.10  | Green or<br>mottled<br>orange-green<br>microbial<br>mats,<br>commonly<br>with 1-5cm<br>finger-like<br>morphology.                                     |
| Outflow | 6.5 | 27-32   | 45  | 234       | Not measured | Not measured | Ocean water<br>within mixing<br>zone at high<br>tide, with<br>constant flow<br>of spring<br>water from<br>Pool 2. Thin<br>green<br>microbial<br>mats. |

**Supplemental Table S2:** Gas composition of bubbles collected from the Source Pool at Jinata Onsen.

|                                       | Average of gas compositions (percent composition) |                |    |                |    |                 |    |                 |    |
|---------------------------------------|---------------------------------------------------|----------------|----|----------------|----|-----------------|----|-----------------|----|
| Sampling<br>dates<br>(mm/dd/yyyy<br>) | Measureme<br>nt number                            | N <sub>2</sub> | SE | O <sub>2</sub> | SE | CH <sub>4</sub> | SE | CO <sub>2</sub> | SE |

| 10/03/2017 | 2 | 30.5 | 4.6 | 0.10 | 0.01 | 0.04 | 0.01 | 69.3 | 4.6 |
|------------|---|------|-----|------|------|------|------|------|-----|
| 04/13/2018 | 4 | 55.5 | 5.5 | 0.07 | 0.04 | 0.05 | 0.01 | 44.4 | 5.0 |

## **Supplemental Table S3:**

Diversity metrics of Jinata sequencing. Diversity metrics calculated for both 99% and 97% sequence identity cutoffs for assigning OTUs.

| Sample:  | Reads: | OTUs<br>(99%): | Good's<br>Coverage<br>(99%): | Shannon<br>Index<br>(99%): | Inverse<br>Simpson<br>(99%): | OTUs<br>(97%): | Good's<br>Coverage<br>(97%): | Shannon<br>Index<br>(97%): | Inverse<br>Simpson<br>(97%): |
|----------|--------|----------------|------------------------------|----------------------------|------------------------------|----------------|------------------------------|----------------------------|------------------------------|
| Source   |        | 1883           |                              |                            |                              |                |                              |                            |                              |
| Pool A   | 48680  | 2              | 0.665                        | 10.443                     | 35.146                       | 6951           | 0.907                        | 7.996                      | 17.361                       |
| Source   |        |                |                              |                            |                              |                |                              |                            |                              |
| Pool B   | 18235  | 7772           | 0.646                        | 10.388                     | 68.018                       | 4139           | 0.844                        | 8.651                      | 31.822                       |
|          |        | 2530           |                              |                            |                              |                |                              |                            |                              |
| Pool 1 A | 96268  | 5              | 0.788                        | 10.172                     | 53.546                       | 11734          | 0.920                        | 8.403                      | 28.691                       |
|          |        | 1383           |                              |                            |                              |                |                              |                            |                              |
| Pool 1 B | 56672  | 5              | 0.797                        | 8.813                      | 26.975                       | 5598           | 0.933                        | 6.818                      | 13.827                       |
|          |        | 1248           |                              |                            |                              |                |                              |                            |                              |
| Pool 2 A | 35690  | 9              | 0.713                        | 9.625                      | 22.248                       | 7352           | 0.855                        | 8.271                      | 16.600                       |
| Pool 2 B | 4454   | 2274           | 0.560                        | 9.066                      | 49.599                       | 1729           | 0.689                        | 8.104                      | 27.390                       |
|          |        | 1133           |                              |                            |                              |                |                              |                            |                              |
| Pool 3 A | 28273  | 4              | 0.665                        | 10.046                     | 35.705                       | 6766           | 0.824                        | 8.403                      | 20.034                       |
| Pool 3 B | 2076   | 1166           | 0.522                        | 8.832                      | 75.900                       | 786            | 0.699                        | 7.489                      | 35.312                       |
| Outflow  |        | 1848           |                              |                            |                              |                |                              |                            |                              |
| Α        | 31980  | 6              | 0.497                        | 11.989                     | 64.318                       | 11994          | 0.712                        | 10.538                     | 34.881                       |
| Outflow  |        | 1089           |                              |                            |                              |                |                              |                            |                              |
| В        | 32465  | 6              | 0.713                        | 9.281                      | 25.691                       | 5918           | 0.857                        | 7.133                      | 11.585                       |

### **Supplemental Table S4:**

16S rRNA gene amplicon data as OTU table with sequences.

# **Supplemental Table S5:**

16S rRNA gene amplicon data as relative abundance binned at the class level.

# **Supplemental Table S6:**

1. High- and medium-quality metagenome-assembled genomes (MAGs) (>50% completeness and <10% contamination) recovered from Jinata Onsen. Predicted taxonomy based on placement in reference phylogeny as presented in Figure 4 and by GTDB-Tk (87). Optimal growth temperatures predicted following methods from (Li, G., Rabe, K.S., Nielsen, J. and Engqvist, M.K., 2019. Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima. *BioRxiv*, p.522342).

# **Supplemental Table S7:**

Presence of genes involved in aerobic respiration, hydrogen- and iron-oxidation, and carbon fixation in MAGs discussed in the text, with NCBI accession numbers provided.