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1 Supplementary Analysis of Background Relatedness in the Study Sample 

Additional analyses were undertaken to ensure that the results are stable to the presence of closely 
related individuals in the sample – i.e., although mixed linear modeling adequately represented 
sample structure, including both admixture and relatedness, analyses of sROH associations were 
carried out using principal component regression, and analyses of ROH and CNV burdens’ 
contribution to cognitive ability were modeled using quantile regression. Correspondingly, we 
evaluated sample relatedness using a combination of techniques. 

Post-QC sample genotypes were phased using BEAGLE v. 3 (Browning and Browning, 2009) with 
default settings. Genetic locations for SNP markers in cM were acquired from the Rutgers Combined 
Linkage-Physical Map v.3 (http://compgen.rutgers.edu/rutgers_maps.shtml) (Matise et al., 2007).  

Relatedness was evaluated using two complimentary approaches. Phased genomes were subjected to 
Identity by Descent (IBD) estimation using FISHR2 (Bjelland et al., 2017), a recently developed 
algorithm for detection of IBD segments between individuals from genome-wide SNP data that 
utilizes a modified version of GERMLINE (Gusev et al., 2009) as an initial screen for candidate IBD 
segments and then stitches together contiguous segments separated artificially due to SNP or phase 
errors while differentiating between locations possibly inconsistent with IBD inheritance due noise in 
the data as opposed to lack of truly IBD signal.  

Analyses began with the identification of long (> 2.0 cM) segments with a minimum of 25 SNPs 
detected with a window of 50 and a gap parameter of 5 markers and FISHR2 manual-recommended 
threshold parameters for error values. FISHR2 identified 158,973 IBD segments in the data, ranging 
from 2 to 40.96 cM in length, with the vast majority encompassing less than 5 cM (Mean = 2.56, SD 
= 0.85).  

We then estimated pairwise relatedness using IBD2 segment data obtained via FISHR2 using ERSA 
2.1 (Huff et al., 2011). ERSA is a maximum-likelihood method for estimation of recent shared 
ancestry and can accurately infer relatedness between pairs of individuals with power of nearly 100% 
for close relatives (1st through 5th-degree) and substantial power to detect even more distant 
relationships. Analyses were performed using default ERSA settings.  

ERSA identified 41 unique pairs of relationships between 34 individuals total: 11 third-degree, 1 
fourth-degree, 7 fifth-degree, 10 sixth-degree, and 12 seventh-degree relatives. Given the limited 
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resolution of the array and lack of genetic material sharing between very distant relatives, individuals 
identified as having 8-th and 9-th degree relatives were considered unrelated. Figure S6 and S7 
shows the distributions of IBD segment sharing in unrelated vs related individuals in the sample. 

Sensitivity analyses revealed that:  

1) relatedness did not affect latent class analysis results, and no class was overrepresented 
among related individuals in the sample (among related individuals, n=1 belong to Class 1, n=4 to 
Class 2, n=11 to Class 3, n=6 to Class 4, and n=8 to Class 5);  

2) there were no related individuals among carriers of sROHs reported in the main section of 
the manuscript as being associated with cognitive ability;  

3) removing related individuals reduced the statistical significance of the fROH(C) effect for 
Classes 1 and 2 to a marginal value of p=0.0715;  

4) removing related individuals did not affect the pattern of the quantile regression solutions 
for Class 3 as well as for the combined Class 4 and 5.
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2 Supplementary Analysis of Copy Number Variation Association with Cognitive Ability in 
the Study Sample 

Association analysis was performed using the approach parallel to that of ROH analyses reported in 
the main text of the article – i.e., sepately for gain and loss events, we computed a set of disjoint 
surrogate CNV fragments (sLOSS and sGAIN for loss and gain events, respectively) that accounted 
for partial overlaps between called segments in the sample.  

We specifically focused on CNVs that overlapped with known protein-coding genes (242 sGAIN 
segments, 842 sLOSS segments). Association with covariate and PC-adjusted phenotypes was 
performed using linear regression, and P-values were corrected for number of comparisons using the 
Benjamini-Hochberg’s correction. 

 No surrogate CNV regions survived corrections for multiple testing (Manhattan plots and QQ plots 
are presented in Figures X and Y). After further reducing the number of multiple comparisons by 
excluding rare sCNVs present in less than 1% of the samples, no sCNVs (out of 100 sLOSS and 50 
sGAIN segments) survived corrections for multiple testing.  

Table S5 presents nominally significant sLOSS and sGAIN associations at uncorrected p < 0.05. 
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3 Supplementary Analysis of Ancestry in Children from Saudi Arabia 

The analyses reported in the main text either adjusted phenotypes for five top genetic components 
estimated from the genetic data, or directly accounted for admixture by modeling pairwise kinship. 
Nonetheless, we performed an additional set of analyses aimed at providing more comprehensive 
information about the ancestral composition of the sample. 

This analyses relied on the availability of two additional datasets: (1) a subset of n=176 individuals 
of Middle-Eastern ancestry (Bedouin, Druze, Mozabite, and Palestinian) from the Human Genome 
Diversity Project(Cann et al., 2002) (HGDP; data publicly available at 
http://www.hagsc.org/hgdp/files.html) that provides data on n=1,043 individuals of varying ancestry 
genotyped using Illumina’s 650Y microarray panel; (2) a subset of the Qatar genome project dataset 
(Rodriguez-Flores et al., 2016) (DGMQ) that is comprised of whole genome-sequencing (WGS) data 
on n=108 unrelated natives of Arabian Peninsula, including n=56 of indigenous Arab ancestry (the 
data were graciously provided by Dr. Rodriguez-Flores from Cornell University).  

For the HGDP dataset, we performed an additional QC of SNP markers following standard QC 
procedures using GoldenHelix SNP & Variation Suite. For the DGMQ dataset, VCF genotype calls 
were imported into SNP & Variation Suite and annotated against known dbSNP polymorphisms 
prior to further analyses. Ancestry evaluation was based on the set of k=147,057 SNP markers 
common to the two genotyping platforms that were also called in the DGMQ dataset and passed the 
QC in all three samples. Prior to the analyses, genotypes from the three different platforms were 
harmonized to the common marker map (we used the HumanCoreExome as the baseline map) to 
avoid strand alignment and genotype conversion ambiguity using Genotype Harmonizer (Deelen et 
al., 2014). Missing genotypes were imputed using the weighted k nearest neighbor approach 
(Schwender and Ickstadt, 2008) as implemented in the scrime package for R. 

Ancestry evaluation was performed using two complimentary approaches. First, we applied the 
community-oriented network estimation (CONE) (Kuismin et al., 2017) method to the data. CONE 
is a recently developed method for ancestry and admixture evaluation that utilizes generalized linear 
model with LASSO regularization to infer relationships between individuals and populations from 
SNP-level data, and is a network-theory based method of population structure inference that does not 
rely on model parameters such as the prior number of subpopulations. Second, we used a maximum-
likelihood (i.e., model-based) method for admixture analysis as implemented in ADMIXTURE 
(Alexander et al., 2009) software. 

The neighborhood selection in CONE depends on the tuning/penalty parameter λ. Following 
Kuismin et al. (Kuismin et al., 2017) and Liu et al.(Liu et al., 2010), we chose to rely on the stability 
approach to regularization selection (StARS) to choose the most stable graph solution. StARS uses 
subsampling to measure uncertainty regarding the presence of edges between the nodes for each 
fixed value of λ.  CONE performance was evaluated based on the examination of 100 different 
tuning parameter values in the range from 0.01 to 0.50 based on M=50 subsamples.  λ value of 
0.06210204 was chosen after the examination of the tuning parameter performance (Supplementary 
Figure S3), and Fruchterman-Reingold algorithm was used to detect different communities among 
the nodes.  The results of CONE analyses (Supplementary Figure S4) suggested the presence of 
substantial genetic flow between the studied population of children from Saudi Arabia, and the 
majority of examined populations of Middle Eastern ancestry with the exception of Mozabite 
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(HGDP). The majority of the samples clustered with the Bedoin and Qatari samples, and substantial 
flow was also established for groups of samples that were related to the Druze and Palestinian 
populations. 

We also analyzed the data using ADMIXTURE with 5-fold cross-validation for the range of k 
admixture components (ancestral populations) ranging from 2 to 10 using the block relaxation 
algorithm with Quasi-Newton convergence acceleration. Cross-validation (CV) values were used to 
guide model selection, and additional analyses were performed using StructureSelector(Li and Liu, 
2018). CV values were estimated at 0.5949 for k=2, 0.59301 for k=3, 0.59266 for k=4, 0.59260 for 
k=5 (lowest), 0.59262 for k=6, 0.59307 for k=7, 0.59619 for k=8, 0.59714 for k=9, and 0.59758 for 
k=10. Population structure plots were obtained using StructureSelector’s implementation of 
CLUMPAK(Kopelman et al., 2015) (see Supplementary Figure S5). The results of this analysis are 
consistent with the CONE-based results and suggest significant admixture in the presence of 5 
ancestral populations, with the highest similarity observed between the study sample from Saudi 
Arabia and the sample of Qatar Genome Project (DGMQ)
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4 Supplementary Enrichment Analysis of GO Terms and Pathways for Genes Associated 
with Cognitive Ability in the Study Sample 

Enrichment analysis was performed for 2,542 genes identified in gene-based association analyses 
and 1,266 genes located within the sROHs that showed nominally significant (p < 0.05) evidence for 
association with any of Aurora ability scores using PantherDB (http://www.pantherdb.org).  
Statistical overrepresentation tests using Fisher’s exact p-value estimation with FDR correction were 
computed for Panther pathways, GO molecular function and GO biological process terms.  

1. sROH-based associations (p < 0.05) 
1.1. Pathway analysis identified two over-represented pathways in sROH associations:  

1.1.1. cadherin signaling pathway (3.60 fold enrichment, P = 1.57x10-9, PFDR = 
2.56x10-7) and  

1.1.2. Wnt-signaling pathway (1.98 fold enrichment, P = 1.89x10-4, PFDR = 
1.54x10-2) 

1.2. GO molecular function terms over-represented in the sROH gene list set 
1.2.1. calcium ion binding (1.84 fold enrichment, P = 8.68x10-7, PFDR = 4.05x10-

3) and  
1.2.2. protein binding (1.12 fold enrichment, P = 3.82x10-6, PFDR = 5.94x10-3).  

1.3. GO biological process analyses also revealed a significant over-representation of 
genes involved in  

1.3.1. hemophilic cell adhesion via plasma membrane adhesion molecules (3.52 
fold enrichment, P = 4.40x10-9, PFDR = 6.86x10-5), and 

1.3.2. nervous system development (1.40 fold enrichment, P = 3.93x10-6, PFDR = 
2.04x10-2) 

 

2. Gene-based associations (p < 0.05). 
2.1. Pathway analysis identified two over-represented pathways in gene-based 

associations:  
2.1.1. N/A 

2.2. GO molecular function terms under- and over-represented in the gene-based gene 
list set 

2.2.1. antigen binding (0.18 fold enrichment, P = 1.03x10-6, PFDR = 9.58x10-4) 
and  

2.2.2. protein binding (1.11 fold enrichment, P = 7.07x10-10, PFDR = 8.24x10-7).  
2.3. GO biological process analyses also revealed a significant over-representation of 

genes involved in  
2.3.1. anatomical structure development (1.15 fold enrichment, P = 2.63x10-5, 

PFDR = 3.73x10-2) 
2.3.1.1.1. developmental process (1.15 fold enrichment, P = 3.18x10-5, PFDR = 

3.81x10-2) 
2.3.2. multicellular organismal process (1.13 fold enrichment, P = 2.57x10-5, 

PFDR = 4.00x10-2) 
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2.3.3. regulation of cellular process (1.15 fold enrichment, P = 4.62x10-6, PFDR = 
1.02x10-2) 

2.3.4. cellular process (1.09 fold enrichment, P = 2.11x10-12, PFDR = 1.10x10-8) 
2.3.5. response to stimulus(1.15 fold enrichment, P = 5.22x10-6, PFDR = 1.16x10-2) 
2.3.6. adaptive immune response (0.49 fold enrichment, P = 2.90x10-5, PFDR = 

3.77x10-2) 
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5 Supplementary Tables 

Supplementary Table S1. Summary of study sample demographics and sampled geographic 
locations 
 Age      Region (n) 
 Min Max Med Mean SD n Abha Khamis-

Mushyat 
Tabuk Al-

Jubail 
Jeddah Al-

Hassa 
Boys 8.23 13.93 11.63 11.63 1.31 273 40 22 34 52 69 56 
Girls 8.31 13.70 10.70 10.88 1.43 81 0 0 23 0 35 23 
Total 8.23 13.93 11.42 11.33 1.36 354 40 22 57 52 104 70 
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Supplementary Table S2. Psychometric properties of Aurora-g subtests  
 
Subtest rxx % variance K items -LL  
VA 0.66 15.3 17 -78253  
VC 0.69 13.2 18 -78888  
VS 0.60 12.2 19 -84954  
NA 0.69 18.3 17 -67368  
NC 0.69 6.6 18 -73545  
NS 0.55 11.4 16 -58759  
FA 0.57 18.7 9 -37227  
FC 0.67 25.9 10 -37458  
FS 0.51 18.6 8 -32789  

Note. VA: Verbal Analogies. VC: Verbal Classification, VS: Verbal Series, NA: Numerical 
Analogies, NC: Numerical Classification, NS: Numerical Series, FA: Figural Analogies, FC: Figural 
Classification, FS: Figural Series. rxx: empirical estimate of subtest reliability (EAP factor scores), % 
variance: proportion of variance in item-level data explained by the 2PL model, K items: number of 
items retained for the subtest after local misfit analysis, -LL: log-likelihood function.  
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Supplementary Table S3. Summary of fit of alternative latent variable / confirmatory factor analysis (CFA) models fit to Aurora 
data 
 
Model Corr Y-B X2 df p CFI RMSEA (95% CI) 
Domain Yes 157.257 24 <0.00001 0.976 0.029 (0.025 – 0.033) 
Type Yes 335.294 24 <0.00001 0.939 0.045 (0.042 – 0.050) 
Domain+Type No 929.061 18 <0.00001 0.677 0.123 (0.118 – 0.127) 
Domain+Type Yes 36.392 15   0.00155 0.996 0.014 (0.009 – 0.020) 
2nd-order g No 157.257 24 <0.00001 0.976 0.029 (0.025 – 0.033) 
Bifactor* No 126.415 18 <0.00001 0.979 0.031 (0.026 – 0.036) 
Reduced bifactor No 157.529 21 <0.00001 0.975 0.032 (0.027 – 0.036) 

Note. Corr: inclusion of estimated factor covariances. Y-B X2: Yuan and Bentler’s residual-based test statistic. CFI: Comparative Fit Index, 
RMSEA: Root Mean Square Error of Approximation. *: final model selected for the estimation of factor scores.
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Supplementary Table S4. Description of ROH and CNV calls in the study sample 
 

  Segments (per person) Cumulative length (per person) 

  Min Max 
Media
n Min Max Mean Median SD 

ROHs A 19 103 55 9,401,361 70,610,088 34,837,392 34,709,328 11,761,327 
Prior to B 0 41 8 0 91,889,339 21,693,414 18,251,557 16,318,024 
CNV C 0 33 2 0 533,575,331 61,849,913 18,030,970 84,960,332 

exclusion A+B+C 19 141 71 9,640,918 643,487,310 118,380,719 7,741,540 98,738,348 
ROHs A 14 84 41 6,747,526 53,417,618 25,478,418 25,128,933 8,726,857 

Post B 0 21 4 0 42,254,342 9,595,242 7,813,738 7,766,295 
CNV C 0 4 0 0 42,725,385 3,141,082 0 6,145,696 

exclusion A+B+C 14 95 46 6,747,526 90,624,411 38,214,742 35,890,473 16,736,061 
CNVs Gains 0 38 1 0 19,331,378 337,885 144,480 1,081,031 
 Losses 0 62 1 0 11,366,652 468,561 119,794 1,070,476 
 Gain+Losses 0 63 2 0 19,384,334 806,446 360,001 1,505,694 
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Supplementary Table S5. Nominally significant (P < 0.05) genic sCNV associations with Aurora 
 

sCNV B SE T P Chr Start End Length FREQ Gene Phenotype 

sLOSS_79 
-

16.28 6.12 
-

2.66 0.008405509 chr10 47,543,322 47,646,751 103,430 0.0170 PTPN20, GLUD1P2 Aurora-G 

sGAIN_152 
-

19.47 7.47 
-

2.61 0.009748708 chr7 157,791,030 157,803,711 12,682 0.0113 PTPRN2 Aurora-G 
sGAIN_36 10.66 4.23 2.52 0.012433463 chr16 818,802 820,215 1,414 0.0368 MSLN, MIR662 Aurora-N 
sGAIN_35 11.37 4.58 2.48 0.013800989 chr16 802,234 818,801 16,568 0.0312 MSLN Aurora-N 
sGAIN_39 12.34 5.05 2.45 0.015191494 chr16 831,497 840,769 9,273 0.0255 RPUSD1, CHTF18 Aurora-N 
sLOSS_79 14.46 6.14 2.35 0.019430603 chr10 47,543,322 47,646,751 103,430 0.0170 PTPN20, GLUD1P2 Aurora-F 

sGAIN_48 
-

14.28 6.15 
-

2.32 0.021019379 chr10 15,045,635 15,057,374 11,740 0.0170 ACBD7, DCLRE1C Aurora-F 
sLOSS_15 16.98 7.50 2.26 0.024459566 chr21 47,821,589 47,848,458 26,870 0.0113 PCNT Aurora-N 
sLOSS_747 16.97 7.50 2.26 0.024557634 chr6 135,842,804 135,983,115 140,312 0.0113 LINC00271 Aurora-F 
sGAIN_34 10.76 4.81 2.24 0.026104405 chr16 778,597 802,233 23,637 0.0283 NARFL, HAGHL Aurora-N 

sGAIN_46 
-

12.72 5.71 
-

2.23 0.026772963 chr10 14,996,416 15,027,213 30,798 0.0198 DCLRE1C, MEIG1 Aurora-N 
sGAIN_52 9.78 4.41 2.22 0.027488757 chr10 135,284,115 135,343,737 59,623 0.0340 CYP2E1, SCART1 Aurora-F 
sGAIN_33 11.13 5.06 2.20 0.028768331 chr16 772,842 778,596 5,755 0.0255 CCDC78, HAGHL Aurora-N 

sLOSS_279 16.17 7.51 2.15 0.032250953 chr8 144,886,809 144,940,778 53,970 0.0113 
MIR937, PUF60, SCRIB, NRBP2, 
EPPK1 Aurora-N 

sLOSS_210 13.07 6.16 2.12 0.034882803 chr14 105,163,532 105,189,504 25,973 0.0170 INF2 Aurora-N 
sLOSS_429 12.93 6.16 2.10 0.036886455 chr10 27,624,562 27,703,017 78,456 0.0170 PTCHD3 Aurora-N 

sGAIN_111 
-

13.98 6.73 
-

2.08 0.038905817 chr7 157,734,314 157,791,029 56,716 0.0142 PTPRN2 Aurora-G 
sLOSS_747 15.50 7.51 2.06 0.04016544 chr6 135,842,804 135,983,115 140,312 0.0113 LINC00271 Aurora-V 

sGAIN_39 
-

10.32 5.06 
-

2.04 0.042757981 chr16 831,497 840,769 9,273 0.0255 RPUSD1,CHTF18 Aurora-G 
sGAIN_40 10.91 5.36 2.04 0.042869387 chr16 840,770 855,732 14,963 0.0227 PRR25,GNG13,CHTF18 Aurora-N 
sGAIN_152 15.07 7.52 2.00 0.046146435 chr7 157,791,030 157,803,711 12,682 0.0113 PTPRN2 Aurora-N 
sLOSS_16 13.40 6.74 1.99 0.047821795 chr21 47,848,459 47,856,909 8,451 0.0142 PCNT Aurora-N 
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Supplementary Table S6. Linear regression parameter estimates for Class 1 (with permutation P-
values) 
 
Parameter B P 

PC1 11.91 0.8431 
PC2 -30.48 0.6667 
PC3 49.67 0.9020 
PC4 -34.91 0.8627 
PC5 14.32 0.7451 

fROH(A) 3.77 0.7647 
fROH(B) 7.23 0.1600 
fROH(C) -2.21 0.0185 

CNV burden -49.57 0.0018 
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Supplementary Table S7. Quantile regression parameter estimates for latent class 3 (Aurora-G is 
the dependent variable) 
 

Quantile Coefficient B SE T P 
25 Intercept 103.06 9.64 10.69 0 

 PC1 91.16 70.84 1.29 0.200230159 
 PC2 -33.70 75.81 -0.44 0.657374663 
 PC3 30.25 338.94 0.09 0.929007806 
 PC4 -12.13 47.10 -0.26 0.797131533 
 PC5 -31.86 102.00 -0.31 0.755217515 
 fROH(A) -4.46 8.73 -0.51 0.610214211 
 fROH(B) -3.29 9.51 -0.35 0.730229045 
 fROH© -5.98 12.05 -0.50 0.620272590 
 CNV burden 139.26 138.09 1.01 0.314930608 

50 Intercept 110.20 7.82 14.10 0 
 PC1 81.22 65.86 1.23 0.219524329 
 PC2 -72.16 64.83 -1.11 0.267569514 
 PC3 114.77 301.40 0.38 0.703920201 
 PC4 34.86 38.98 0.89 0.372778165 
 PC5 -2.30 89.14 -0.03 0.979433912 
 fROH(A) 5.31 7.93 0.67 0.503766932 
 fROH(B) -15.94 9.27 -1.72 0.087888655 
 fROH© -1.93 10.87 -0.18 0.859205711 
 CNV burden 17.97 118.61 0.15 0.879788332 

75 Intercept 115.02 8.50 13.53 0 
 PC1 -6.53 61.27 -0.11 0.915232854 
 PC2 -66.23 46.82 -1.41 0.159351919 
 PC3 205.05 257.82 0.80 0.427756194 
 PC4 83.50 37.01 2.26 0.025606803 
 PC5 64.17 92.88 0.69 0.490770728 
 fROH(A) 4.51 7.91 0.57 0.569429334 
 fROH(B) -7.37 9.30 -0.79 0.429569802 
 fROH© 0.62 11.88 0.05 0.958679955 
 CNV burden 82.71 125.97 0.66 0.512532206 
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Supplementary Table S8. Quantile regression parameter estimates for latent Classes 4 and 5 
(Aurora-G is the dependent variable). 
 

Quantile Coefficient B SE T P 
25 Intercept 110.21 11.07 9.95 0 

 PC1 59.60 78.35 0.76 0.448251967 
 PC2 -16.53 56.46 -0.29 0.770158305 
 PC3 48.12 26.06 1.85 0.067203327 
 PC4 16.54 19.63 0.84 0.401085854 
 PC5 -9.35 31.44 -0.30 0.766733170 
 fROH(A) -5.87 7.66 -0.77 0.445157693 
 fROH(B) 5.69 3.81 1.49 0.138058727 
 fROH© -1.28 0.60 -2.11 0.036638475 

 
CNV 

burden -63.37 114.88 -0.55 0.582200088 
50 Intercept 106.11 6.43 16.51 0 

 PC1 -33.96 49.83 -0.68 0.496744476 
 PC2 13.66 37.38 0.37 0.715399248 
 PC3 69.03 50.87 1.36 0.177141915 
 PC4 2.85 18.62 0.15 0.878651807 
 PC5 -16.30 26.18 -0.62 0.534598745 
 fROH(A) 3.18 4.59 0.69 0.490139916 
 fROH(B) 3.70 2.59 1.43 0.155695074 
 fROH© -0.14 0.42 -0.32 0.749585604 

 
CNV 

burden -107.91 75.10 -1.44 0.153217076 
75 Intercept 125.16 5.97 20.95 0 

 PC1 21.88 52.76 0.41 0.679094491 
 PC2 -6.61 46.38 -0.14 0.886908100 
 PC3 1.47 29.51 0.05 0.960343589 
 PC4 16.87 21.05 0.80 0.424322840 
 PC5 -20.54 33.17 -0.62 0.536781722 
 fROH(A) -2.40 3.81 -0.63 0.529722948 
 fROH(B) 1.44 2.63 0.55 0.584233969 
 fROH© -0.23 0.50 -0.45 0.653609625 

 
CNV 

burden -214.63 74.96 -2.86 0.004906770 
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6 Supplementary Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S1. Distribution of latent general cognitive ability scores in the study sample and the general population of 
children in Saudi Arabia 
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Supplementary Figure S2. Sample distributions of latent general cognitive ability estimates 
from Aurora. Aurora-V – verbal cognitive ability, Aurora-F: numerical cognitive ability, Aurora-S: 
spatial cognitive ability; Aurora-G: general cognitive ability. 
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Supplementary Figure S3. Stability approach to regularization selection (StARS) tuning parameter 
values for CONE-based evaluation of ancestry. Red dotted line represents the default threshold 
parameter β. 
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Supplementary Figure S4. Dependency graph estimated for the study sample data as well as the 
Middle Eastern population from HGDP and DGMQ datasets. A – StARS-based graph; B – 
customized neighborhood selection graph; C – combined graph. 
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Supplementary Figure S5. Population structure graph based on ADMIXTURE analysis (for k=5 ancestral populations). Pop_1 – study 
sample (Saudi Arabia), pop_2 – DGMQ (Qatar) sample, pop_3 – Bedouin (HGDP), pop_4 – Druze (HGDP),  pop_5 – Mozabite (HGDP), 
pop_6 – Palestinian (HGDP). 
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Supplementary Figure S6. IBD segment length distributions in the total sample (top panel) vs 
related individuals (bottom panel; up to 7th degree). 
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Supplementary Figure S7. Boxplots of cumulative IBD sharing among pairs of individuals of 
different degrees of relatedness as estimated by ERSA and FISHR2. 
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Supplementary Figure S8. CNV segment length distributions in the study sample (n=353)
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Supplementary Figure S9. Scatterplots of sROH and sCNV (sLOSS+sGAIN) allele frequencies vs. 
sROH and sCNV segment length 
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Supplementary Figure S10. Q-Q plots for sCNV-based association analysis of Aurora-g  
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Supplementary Figure S11. Manhattan plots for sROH-based association analysis of Aurora 
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Supplementary Figure S12. Manhattan plots for sCNV-based association analysis of Aurora 
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Supplementary Figure S13. Q-Q plots for SNP-based association analysis of Aurora
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Supplementary Figure S14. Q-Q plots for sROH-based association analysis of Aurora 
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Supplementary Figure S15. Boxplots of chip heritability (PVE) estimates from GEMMA for 
Aurora phenotypes.  
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Supplementary Figure S16. Bayesian Information Criterion (BIC) values for the range of latent 
class models estimated using mclust 



  Supplementary Material 

 34 

 

 
 
Supplementary Figure S17. Classification plot for the results of latent class analysis of 
homozygosity and CNV burden in the study sample. Colors represent class membership. A: 
fROH(A), B: fROH(B), C: fROH(C), LG: CNV burden (loss+gain). 
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Supplementary Figure S18. Distributions of key ROH- and CNV-associated variables among five 
latent classes of individuals 
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Supplementary Figure S19. Distributions of latent general cognitive ability estimates in five latent 
clusters of individuals 
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