Supplementary material

Human primary endothelial cells are impaired in nucleotide excision repair and sensitive to benzo[a]pyrene compared with pericytes and smooth muscle cells

Joana M. Kress¹, Lorella Di Dio¹, Larissa Heck¹, Alberto Izzotti², Alessandra Pulliero², Kathrin Laarmann³, Gerhard Fritz³ and Bernd Kaina¹

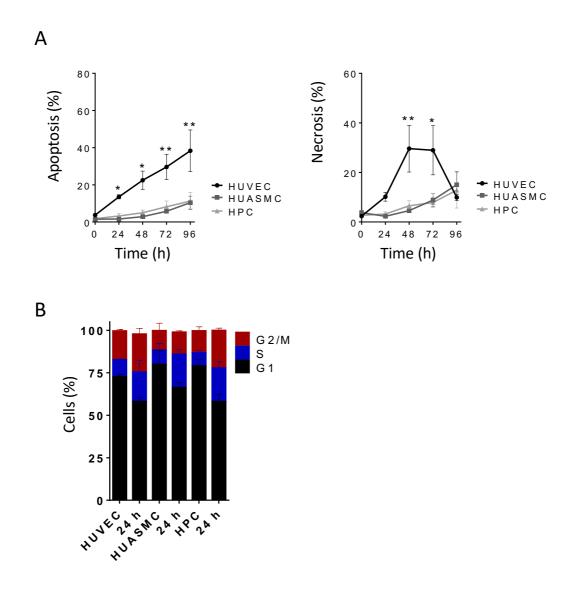



Figure S1: Apoptosis and necrosis and cell cycle distribution upon exposure to BPDE in human vascular cells (HUVEC, HUASMC and HPC).

A, Time-dependend apoptosis and necrosis following 0.75 μ M BPDE treatment was determined by annexin V/PI double staining and flow cytometry.

B, Cell cycle distribution of non-treated cells and treated cells (0.75 μ M BPDE for 24 h) was measured by propidium iodide staining and flow cytometry. Data shown are the mean \pm SEM from three independent experiments.

Figure S2: Time-dependend BPDE-adduct levels. BPDE-adducts per 10^8 nucleotides were determined 1, 2, 4, 8 and 24 h after exposure to 0.5 μ M BPDE. Representative plots are shown.

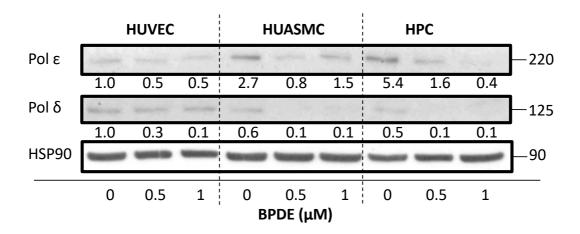


Figure S3: Expression of NER-polymerases in HUVEC, HUASMC and HPC. Exponentially growing cells were not treated or treated with BPDE with doses of 0.5 and 1 μ M and cells were harvested 24 h later. HSP90 served as loading control.

Supplementary Table 1: Primer sequences for qPCR.

Gene	Forward (5`-3`)	Reverse (3`-5`)
DDB2	TGTAGCCTGGATGTGTTCT	GCATTCTGAGATTCCAAAGC
XPC	ACACCTACTACCTCTCAA	TAAATAGCAAATCTCCTTTCC
p21	TACATCTTCTGCCTTAGT	TCTTAGGAACCTCTCATT
Gapdh	CATGAGAAGTATGACAACAG	ATGAGTCCTTCCACGATA
Actb	TGGCATCCACGAAACTACC	GTGTTGGCGTACAGGTCTT