| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~       | ~ ~ _ ~ ~ _ ~                                  |                               |  |  |
|----------------------------------------------|------------------------------------------------|-------------------------------|--|--|
| Primer                                       | Primer Sequence (5' to 3')                     |                               |  |  |
| qAtUBQ10_F                                   | CTTCGTCAAGACTTTGACCG                           | Q-PCR                         |  |  |
| qAtUBQ10_R                                   | CTTCTTAAGCATAACAGAGACGAG                       |                               |  |  |
| qAtAMT13_F                                   | GAAGGCCATATGGACTATTTATGGG                      | Q-PCR                         |  |  |
| qAtAMT13_R                                   | CGAGGAGGAGTAGCTGATCGAGG                        |                               |  |  |
| qAtEIF4a_F                                   | TCATAGATCTGGTCCTTGAAACC                        | Q-PCR                         |  |  |
| qAtEIF4a_R                                   | GGCAGTCTCTTCGTGCTGAC                           |                               |  |  |
| p426-AtAMT13-EcoR I_F                        | CGGAATTCATGTCAGGAGCAATAACAT                    | AtAMT1;3 cloning              |  |  |
| p426-AtAMT13-EcoR I_R                        | CGGAATTCTTAAACGCGAGGAGGAGTAG                   |                               |  |  |
| p426-T464A_F                                 | GATGGATATGGCACGTCACGG                          |                               |  |  |
| p426-T464A_R                                 | CCTTGCATTTCATGCTGC                             | AtAM11;3 1464As               |  |  |
| p426-S480A_F                                 | TGATGATGAGGCTCATAGAGTG                         | AtAMT1;3 S480As               |  |  |
| p426-S480A_R                                 | TTATCATGGTAGATATAAGCAAAG                       |                               |  |  |
| p426-S480D_F                                 | TGATGATGAGGATCATAGAGTGGATC                     | AtAMT1;3 S480D                |  |  |
| p426-S480D_R                                 | TTATCATGGTAGATATAAGCAAAG                       |                               |  |  |
| p426-S487A_F                                 | GGATCCTGGAGCTCCTTTCCC                          | AtAMT1;3 S487As               |  |  |
| p426-S487A_R                                 | ACTCTATGAGACTCATCATCATTATC                     |                               |  |  |
| p426-S487D_F                                 | GGATCCTGGAGATCCTTTCCCTC                        |                               |  |  |
| p426-S487D_R                                 | ACTCTATGAGACTCATCATC                           | AtAMT1;3 S487D                |  |  |
| p426-T494A/T464AT494A_F TCGATCAGCTGCTCCTCCTC |                                                | AtAMT1;3 T494A/T464A          |  |  |
| p426-T494A/T464AT494A_R                      | GGGAAAGGAGATCCAGGATC                           | T494A                         |  |  |
| p426-T494D/T464AT494D_F                      | TCGATCAGCTGATCCTCCTCGC                         | AtAMT1;3 T494D/T464A          |  |  |
| p426-T494D/T464AT494D_R                      | GGGAAAGGAGATCCAGGA                             | T494D                         |  |  |
| p426-T464D_F                                 | GATGGATATGGATCGTCACGGTGG                       | AtAMT1;3 T464D/T464D          |  |  |
| p426-T464D_R                                 | CCTTGCATTTCATGCTGC                             | T494A/T464D T494D             |  |  |
|                                              | TTATATCTACTAAGATAATGATGATGAGTCTC               | AtAMT1;3 H474stop             |  |  |
| p426-H474stop_F                              | ATAGAGTGG                                      |                               |  |  |
| p426-H474stop_R                              | GCAAAGCCACCGTGACGT                             |                               |  |  |
|                                              | GCTCTAGAGTTGCAAGAATATTAATAGAAAT                |                               |  |  |
| AtAMT1;3pro-Xba I                            | AC                                             |                               |  |  |
|                                              | GCGGGCCCGTTTGAGAGAGCTGAGAGAGA                  | AtAMT1;3 promoter cloning     |  |  |
| AtAMT1;3pro-Apa I                            | GAAAGA                                         |                               |  |  |
| pT-AtAMT1;3pro-AtAMT1;3_F                    | GCGGGCCCATGTCAGGAGCAATAACATGC                  |                               |  |  |
| pT-AtAMT1;3pro-                              |                                                | AtAMT1;3/T464A/T494A/T464     |  |  |
| AtAMT1;3/T464A/T494A/T464A                   | GCGGGCCCTTAAACGCGAGGAGGAG                      | A T494A                       |  |  |
| T494A_R                                      |                                                |                               |  |  |
| pT-AtAMT1;3pro-AtAMT1;3_F                    | GCGGGCCCATGTCAGGAGCAATAACATGC                  |                               |  |  |
| pT-AtAMT1;3pro-AtAMT1;3                      |                                                | AtAMT1;3 T494D/T464A<br>T494D |  |  |
| T494D/T464AT494D_R                           | GCGGGCCCTTAAACGCGAGGAGGAT                      |                               |  |  |
| poo2-AtAMT1;3_F                              | poo2-AtAMT1;3_F GGACTAGTATGTCAGGAGCAATAACATG   |                               |  |  |
| poo2-AtAMT1;3/T494A_R                        | CGGAATTCTTAAACGCGAGGAGGAG A/T494D              |                               |  |  |
| poo2-AtAMT1;3_F                              | 002-AtAMT1;3_F GGACTAGTATGTCAGGAGCAATAACATGC   |                               |  |  |
| poo2-AtAMT1;3 T494D R                        | 002-AtAMT1;3 T494D_R CGGAATTCTTAAACGCGAGGAGGAT |                               |  |  |

## Supplemental Table S1: Primers used in this study.

| Gene                                                 | Phosphorylation Site               | Treatment                          | Background       | Tissue                       | Detection                    | Refereences               |
|------------------------------------------------------|------------------------------------|------------------------------------|------------------|------------------------------|------------------------------|---------------------------|
| AtAMT1;1                                             | T460                               | flg22                              | col-0            | suspension cells             | LC-MS/MS (IMAC)              | N ühse et al., 2004       |
|                                                      | T460, S475, S488, S492, T496       | flg22                              | col-0            | suspension cells             | HPLC-MS/MS (15N)             | Benschop et al., 2007     |
|                                                      | \$ 175                             | -                                  | landsberg        | suspension cells             | LC-MS/MS (IMAC)              | Sugiyama et al., 2008     |
| 54/5                                                 | 3473                               |                                    | erecta           |                              |                              |                           |
|                                                      | T460                               | -                                  | columbia         | leaves                       | LC-MS/MS (IMAC)              | Whiteman et al., 2008     |
|                                                      | T460                               | -                                  | col-0            | protoplasts/seedlings        | LC-MS/MS                     | Jones et al., 2009        |
|                                                      | T460, S475, S488, S490             | -N/ammonium resupply               | col-0            | roots                        | HPLC-MS/MS (15N)             | Lanquar et al., 2009      |
| S488, S490, S492, T496, T497<br>T499<br>S490<br>S488 | S488, S490, S492, T496, T497,      | end of night/end of day            | col-0            | shoots/rosette leaves        | LC-MS/MS (TiO <sub>2</sub> ) | Reiland et al., 2009      |
|                                                      | T499                               |                                    |                  |                              |                              |                           |
|                                                      | S490                               | ABA, GA, JA, IAA or cytokinin      | col-0            | suspension cells             | MS/MS (TiO <sub>2</sub> )    | Chen et al., 2010         |
|                                                      | S488                               | ABA                                | Lehle            | seedlings                    | MS/MS ( <sup>15</sup> N)     | Kline et al., 2010        |
| T460 8475                                            |                                    | landsberg                          | suspension cells | LC MS/MS (MAC)               | Nelsagemi et al. 2010        |                           |
|                                                      | 1400, 8475                         | -                                  | erecta           | suspension cens              | LC-MS/MS (IMAC)              | Nakagann et al., 2010     |
| T460, S475, S488, S490, S492,<br>T497                | -N/ammonium resupply or -N/nitrate | col-0 seedlings                    | andlings         | LC-MS/MS (TiO <sub>2</sub> ) | Engelsberger and Schulze,    |                           |
|                                                      | resupply                           |                                    | securings        |                              | 2012                         |                           |
|                                                      | T460                               | -N/ammonium resupply               | col-0            | roots                        | pT464 antibody               | Lanquar et al., 2009      |
|                                                      | T460                               | -N/ammonium resupply               | col-0            | roots                        | GMDMT(p)RAGGFA antibody      | Straub et al., 2017       |
| AtAMT1;2                                             | T472                               | -                                  | col-0            | protoplasts/seedlings        | LC-MS/MS                     | Jones et al., 2009        |
|                                                      | T472                               | -N/ammonium resupply               | col-0            | roots                        | GMDMT(p)RAGGFA antibody      | Straub et al., 2017       |
| AtAMT1;3                                             | S480, S487, T494                   | -N/ammonium resupply or -N/nitrate | col-0            | seedlings                    | LC-MS/MS (TiO <sub>2</sub> ) | Engelsberger and Schulze, |
|                                                      |                                    | resupply                           |                  |                              |                              | 2012                      |
|                                                      | T464, S487                         | ammonium or nitrate depletion      | col-0            | roots                        | LC-MS/MS (TiO <sub>2</sub> ) | Menz et al., 2016         |

Supplemental Table S2: The phosphorylation sites in AtAMT1s C-terminals.

Note: -, untreatment; -N, nitrogen starvation.



Supplemental Fig. S1. Transcript expression levels of *AtAMT1;3* in *qko+13* roots in response to ammonium and nitrate resupply.

Transcript expression levels of *AtAMT1;3* in roots quantified by qPCR with three replicates, and normalized by *AtEIF4a* expression level. Six-weeks-old hydroponically-grown Arabidopsis mutant qko+13 (*atamt1;1, atamt1;2* and *atamt2;1*) were subjected to N starvation for 4 days, and then resupplied with 4 mM NH<sub>4</sub>Cl or 4 mM KNO<sub>3</sub> for 5, 15 and 30 min. Bars indicate means  $\pm$  SD (n=3) and significant differences at P<0.001 according to Tukey's test are indicated by different letters.



Supplemental Fig. S2. Phosphorylation dynamics of AtAMT1;3 CTR<sup>NC</sup> at multiple sites (S480, S487, and T494) in response to nitrate or ammonium.

Normalized ion intensity of (A) phosphorylated AtAMT1;3 peptides HGGFAYIYHDND DES(ph)HRVDPGS(ph)PFPR (S480/S487) and (B) SAT(ph)PPRV (T494) that responded to nitrate or ammonium. The phosphorylated peptides were identified by phosphoproteomics, and the data was obtained from Engelsberger and Schulze (2012). ND, not determined.



## Supplemental Fig. S3. Yeast growth complementation of AtAMT1;3 S480, S487 and T494 single phosphor-mutants.

The yeast mutant *31019b* (*Amep1-3*) were transformed with empty vector *p426*, AtAMT1;3 single phosphor-variant T464A, S480A, S480D, S487A, S487D, T494A or T494D. Transformants were selected on YNB medium supplemented with 1 mM arginine (Arg). Five microliters of yeast cell suspensions from overnight cultures were spotted in 1- to 4-fold dilution on YNB medium supplemented with either 1 mM Arg or 1 mM ammonium as the sole N source at pH 5.5 for 3 days at 28 °C.



Supplemental Fig. S4. Functional characterization of AtAMT1;3 T494 single phosphor-mutants and T464 T494 double phosphor-mutants in *Xenopus* oocytes. Ammonium induced currents in oocytes injected with AtAMT1;3, and AtAMT1;3 single phosphor-mutants T494A, T494D or T464A, and double phosphor-mutants T464A T494D or T464A T494D. Net currents were measured conditions of 1000  $\mu$ M NH<sub>4</sub>Cl at -100 mV. Bars indicate means  $\pm$  SD (n≥4) and significant differences at P<0.05 according to Tukey's test are indicated by different letters.



## Supplemental Fig. S5. Yeast growth complementation of AtAMT1;3 CTR<sup>NC</sup> deletion mutant.

The yeast mutant *31019b* ( $\Delta mep1$ -3) were transformed with empty vector *p426*, AtAMT1;3 wild type or the CTR<sup>NC</sup> deletion mutant AtAMT1;3 H474stop. Transformants were selected on YNB medium supplemented with 1 mM arginine (Arg). Five microliters of yeast cell suspensions from overnight cultures were spotted in 1- to 4-fold dilution on YNB medium supplemented with either 1 mM Arg or 1 mM ammonium as the sole N source at pH 5.5 for 3 days at 28 °C.



## Supplemental Fig. S6. Functional characterization of AtAMT1;3 T464 S480 S487 triple phosphor-mutants in yeasts.

Influx of <sup>15</sup>N-labelled ammonium into yeast mutant *31019b* expressing empty vector *p426*, AtAMT1;3 single phosphor-variant T464A and triple phosphor-variants T464A S480A S487A or T464A S480D S487D. The yeast cells were grown on YNB medium supplemented with 3% glucose and 1 mM Arg to OD600 of 0.8. Cells were harvested and suspended in 100 mM potassium phosphate buffer (pH 5.8) to a final OD600 of 40 for <sup>15</sup>N-labelled ammonium influx assay. Influx assays were performed at the concentration of 250  $\mu$ M of <sup>15</sup>NH<sub>4</sub><sup>+</sup> for 6 min. Bars indicate means ± SD (n=5) and significant differences at P<0.001 according to Tukey's test are indicated by different letters.