Supporting Information

Catalytic Asymmetric Synthesis of Diketopiperazines by Intramolecular Tsuji-Trost Allylation

Matteo Faltracco[†], Silvia Cotogno[†], Christophe M. L. Vande Velde[‡] and Eelco Ruijter^{*,†}

[†] Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands

[‡] Advanced Reactor Technology, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium

Email: e.ruijter@vu.nl

Contents

Optimization of reaction conditions	S3
X-Ray crystallography	S6
Determination of enantiomeric ratio by SFC	S7
NMR Spectra	S8

Optimization of reaction conditions

Table S1. Optimization study

Entry ^a	R	Catalyst	Ligand	Conc. (M)	Solvent	T⁰(C)	Yield (%) ^b	ee (%) [°]
1	Et	Pd(PPh ₃) ₄	-	0.025	MeCN	60	-	-
2	Et	$Pd(OAc)_2$	-	0.025	MeCN	60	-	-
3	Et	PdCl ₂	-	0.025	MeCN	60	-	-
4	Et	Pd ₂ dba ₃	-	0.025	MeCN	60	4%	-
5	Et	[PdClAllyl] ₂	-	0.025	MeCN	60	-	-
6	Et	$Pd(PPh_3)_4$	dppe	0.025	MeCN	60	-	-
7	Et	Pd(OAc) ₂	dppe	0.025	MeCN	60	-	-
8	Et	PdCl ₂	dppe	0.025	MeCN	60	-	-
9	Et	Pd₂dba₃	dppe	0.025	MeCN	60	11%	-
10	Et	[PdClAllyl] ₂	dppe	0.025	MeCN	60	traces	-
11	Et	Pd(PPh ₃) ₄	-	0.2	THF	50	28%	-
12	Et	Pd(OAc) ₂	-	0.2	THF	50	-	-
13	Et	PdCl ₂	-	0.2	THF	50	-	-
14	Et	Pd₂dba₃	-	0.2	THF	50	-	-
15	Et	[PdClAllyl] ₂	-	0.2	THF	50	-	-
16	Et	Pd(PPh ₃) ₄	dppe	0.2	THF	50	56%	-
17	Et	Pd(OAc) ₂	dppe	0.2	THF	50	33%	-
18	Et	PdCl ₂	dppe	0.2	THF	50	-	-
19	Et	Pd_2dba_3	dppe	0.2	THF	50	86%	-
20	Et	[PdClAllyl] ₂	dppe	0.2	THF	50	67%	-
21 ^d	Et	Pd₂dba₃	L1	0.2	THF	50	-	-
22 ^d	Et	Pd₂dba₃	L2	0.2	THF	50	41%	14%
23 ^d	Et	Pd ₂ dba ₃	L3	0.2	THF	50	22%	57%
24	Et	Pd₂dba₃	L1	0.2	THF	50	-	-
25	Et	Pd₂dba₃	L2	0.2	THF	50	35%	16%
26	Et	Pd₂dba₃	L3	0.2	THF	50	12%	60%
27 ^e	Et	Pd₂dba₃	L4	0.2	THF	50	43%	76%
28	Et	Pd_2dba_3	L4	0.2	THF	50	46%	76%
29 ^f	Et	Pd_2dba_3	L4	0.2	THF	50	56%	68%
30	Et	Pd_2dba_3	L5	0.2	THF	50	62%	16%
31	Et	Pd_2dba_3	L6	0.2	THF	50	17%	63%
32	Et	Pd₂dba₃	L7	0.2	THF	50	75%	26%
33	Et	Pd_2dba_3	L8	0.2	THF	50	72%	20%
34	Et	Pd_2dba_3	L9	0.2	THF	50	74%	2%
35 ^g	Et	Pd_2dba_3	L4	0.2	THF	r.t.	31%	86%
36 ^h	Et	Pd_2dba_3	L4	0.2	THF	r.t.	29%	89%
37	Et	Pd_2dba_3	L4	0.2	THF	r.t.	27%	91%
38 ⁱ	Et	Pd_2dba_3	L4	0.2	THF	r.t.	22%	91%
39 ^j	Et	Pd_2dba_3	L4	0.2	THF	r.t.	27%	88%
40	Et	Pd_2dba_3	L4	0.2	DCM	r.t.	75%	78%
41	Ft	Pd ₂ dba ₂	L4	0.2	Tol	r.t.	12%	78%

42	Et	Pd₂dba₃	L4	0.2	DMF	r.t.	-	-
43	Et	Pd₂dba₃	L4	0.2	Diox	r.t.	41%	88%
44	Et	Pd₂dba₃	L4	0.2	MeCN	r.t.	traces	n.d.
45	Et	Pd₂dba₃	L4	0.2	Et ₂ O	r.t.	17%	84%
46	Et	Pd₂dba₃	L4	0.2	MeO <i>t</i> Bu	r.t.	13%	81%
47	Et	Pd₂dba₃	L4	0.2	2-MeTHF	r.t.	40%	86%
48	Et	Pd₂dba₃	L4	0.2	Anisole	r.t.	36%	84%
49	Et	Pd₂dba₃	L4	0.2	DCM/Diox 1:1	r.t.	41%	87%
50	Et	Pd₂dba₃	L4	0.2	DCM/Diox 2:1	r.t.	48%	86%
51	Et	Pd₂dba₃	L4	0.2	DCM/Diox 4:1	r.t.	55%	86%
52	Et	Pd_2dba_3	L4	0.2	DCM/Diox 8:1	r.t.	40%	85%
53 ^k	Et	Pd₂dba₃	L4	0.2	Diox	r.t.	31%	92%
54 ¹	Et	Pd₂dba₃	L4	0.2	Diox	r.t.	11%	n.d.
55	Et	Pd₂dba₃	L4	0.2	DCM	0°C	22%	60%
56	Et	Pd₂dba₃	L4	0.5	Diox	r.t.	21%	86%
57	Et	Pd_2dba_3	L4	0.1	Diox	r.t.	54%	89%
58	Et	Pd_2dba_3	L4	0.05	Diox	r.t.	53%	90%
59	Et	Pd_2dba_3	L4	0.025	Diox	r.t.	86%	94%
60	Et	Pd_2dba_3	L4	0.01	Diox	r.t.	56%	94%
61	Et	Pd_2dba_3	L10	0.025	Diox	r.t.	-	-
62	Et	Pd_2dba_3	L11	0.025	Diox	r.t.	-	-
63	Et	Pd_2dba_3	L12	0.025	Diox	r.t.	46%	91%
64	Et	Pd_2dba_3	L13	0.025	Diox	r.t.	49%	42%
65	Et	Pd_2dba_3	L14	0.025	Diox	r.t.	81%	41%
66	Et	Pd_2dba_3	L15	0.025	Diox	r.t.	88%	90%
67	Me	Pd_2dba_3	L4	0.025	Diox	r.t.	80%	88%
68	<i>t</i> Bu	Pd_2dba_3	L4	0.025	Diox	r.t.	38%	78%
69 ^m	Et	Pd_2dba_3	L4	0.025	Diox	r.t.	-	-
70 ⁿ	Et	Pd_2dba_3	L4	0.025	Diox	r.t.	-	-
71 [°]	Et	Pd₂dba₃	L4	0.025	Diox	r.t.	-	-

^aReactions were performed using **2a** (0.20 mmol), Pd source (10 mol%), ligand (20 mol% for monodentate ligands and 10% for bidentate ligands) for 24h, unless stated otherwise. ^b Isolated yield. ^c Determined by chiral SFC. ^d Reaction performed using 20 mol % of **L1**, **L2** and **L3**. ^e Reaction performed using 40 mol % of **L4**. ^f Reaction performed using 10 mol % of **L4**. ^g Reaction performed using 10 mol% of **L4**. ^h Reaction performed using 15 mol % of L4. ^l Reaction performed using 40 mol% of **L4**. ^l Reaction time 120 h. ^k Reaction performed using 20 mol % catalyst loading and 40 mol% of **L4**. ^l Addition of catalyst/ligand complex over 24h. ^m Reaction performed using 1 eq. of *n*Bu₄NCl. ⁿ Reaction performed using 1 eq. of L4.

`PPh₂ ,PPh₂

L10

L13

L14

PPh₂

ó,

L15

X-Ray crystallography

Crystals of **7** suitable for single crystal X-ray diffraction were obtained from recrystallization by slow solvent evaporation from cyclohexane. Crystals were mounted on a borate glass capillary on an Agilent Supernova Kappa diffractometer with Cu microsource, and cooled to 100.0(1)K for intensity measurement by 0.5° omega scans. Intensity data were scaled and corrected for absorption by CrysalisPro 1.171.39.45i.

The structure was solved with SHELXT (Sheldrick, 2015a) and refined with SHELXL 2016/4 (Sheldrick, 2015b). The space group was found to be $P2_1$, and the Flack parameter refined to -0.02(17) for absolute configuration R, with a Friedel pair coverage of 82%. (Figure 1)

ORTEP plot of **7** with displacement ellipsoids at the 30% level and H atoms represented as spheres of arbitrary radius.

The structure forms N-H ...O hydrogen bonded pairs between the 2,5-pyrazinediones of the two nonsymmetry equivalent molecules. The structure can thus be described as two sets of U-shaped channels consisting of dimers running along the a axis, in which both non-symmetry equivalent molecules have the *R*-configuration.

View of the structure along the *a* direction. Hydrogen bonds between the non-symmetry equivalent molecules are indicated by cyan dotted lines.

Determination of enantiomeric ratio by SFC

==== Shimadzu LabSolutions Browser Report ====

Peak#	Ret. Time	Area	Area%
1	3.884	981263	49.889
2	4.075	985629	50.111
Total		1966892	100.000

Peak#	Ret. Time	Area	Area%
1	3.863	256464	96.916
2	4.055	8160	3.084
Total		264624	100.000

NMR Spectra

S25

S35

S36

NOESY analysis of 4a

All relevant correlations are indicated by a red outline.

NOESY analysis of 4b

All relevant correlations are indicated by a red outline.

