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This document provides supplementary information for the
manuscript “Adaptive Zone Model Predictive Control of Ar-
tificial Pancreas Based on Glucose- and Velocity-Dependent
Control Penalties,” submitted for publication in IEEE Trans-
actions on Biomedical Engineering. In Section I, we review
the zone MPC algorithm with velocity-weighting and velocity-
penalty developed in [1], based on which the adaptive zone
MPC approach described in the manuscript is developed. The
implementation details of the developed parameter adaptation
approach are presented in Section II.

I. ZONE MODEL PREDICTIVE CONTROL

In [1], a periodic zone MPC with velocity-weighting and
velocity-penalty is developed for the artificial pancreas to
achieve safe and satisfactory closed-loop blood glucose reg-
ulation for patients with TIDM. Driven by the arrival of
glucose measurements, the controller runs in discrete time and
calculates a numeric control law every 5 minutes. Specifically,
at discrete time instant ¢, the control law of the zone MPC with
velocity-weighting and velocity-penalty is obtained by solving
a constrained optimization problem of the following form:

Ug:N,—1 °= arg u(glviufilJ(xu Uo:N,—1) )]
subject to

X0 = x; (2.1)
Xpy1 = Axg + Bup,  Vk € Zo.n,—1 (2.2)
yi = Cyxg Vk € Zo:n, (2.3)
v = CyXg Vk € Zo.n, 2.4)
ug < &itk Vk € Zo.N, 1 2.5)
up > &ign Vk € Zo.n,—1 (2.6)
up =0 Vk € ZnyN, -1 2.7)
2 = Z (Y, i+ k) Vk € Zo.n, (2.8)
Zy := max (z, 0) VEk € Zg.n, (2.9)
7y :=min (zx, 0) VEk € Zo.n, (2.10)
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{y := max (ug, 0) Vk € Zo.N, -1 (2.11)
Ug := min (le, 0) Vk € Z();Nu,1 (2.12)
Vi := max (Vk-, 0) Vk € ZO:Np (2.13)
~ | D>0 ifyo+ys €D
D= { 0 otherwise. 214
In eq. (1), the cost function J (-, -) is defined as
I =0 (3 + Q) 2 + Dif) )

+ g (Rep + Ra).
where vy, Zg, Zj, Uy, U and Vi are respectively defined in
(2.4), (2.9), (2.10), (2.11), (2.12) and (2.13); in particular, g,
7; are determined on the basis of a diurnal zone-excursion
function Z (y,4) (see (2.8) for an illustration) defined by

Z(y,i) = argmin {a2 .y— o€ [@-,&]} ;
with [éz, @] representing the diurnal glucose target zone (see
Fig. 1). Q(vi) denotes a velocity-dependent weighting matrix
[2] satisfying

ifv>0
ifv<1 4
otherwise.

1
Q)=
sleos(vm)(1 =) + (L +)

An illustration of Q(v) is provided in Fig. 2. Parameter D in
(3) determines a glucose-dependent cost on glucose velocity,
which is defined in (2.14) with D := [140,180] and D :=
1000. The prediction horizon and control horizon in the MPC
are set to N, := 9 and IV, := 5, which correspond to 45 and 25
minutes, respectively. The control input weighting parameters
in [1] are set to R := 6500 and R := 100, respectively. The
state space model in (2.2)-(2.4) is parameterized by

p1+2p>  —2pip2 — P P1p3
A= 1 0 0 |,
0 1 0
B._ 1800K [1 0 O]T’
UTDI
Cy = [0 0 1} ,
C,:=[01 0 —0.1],

=

= 90(py — 1)(p2 — 1)2, p1 := 0.98, py := 0.965,

where urpy denotes the subject-specific total daily insulin; fH k
and 5¢+k in (2.5)-(2.6) denote the upper and lower bounds on
the control input uy; we refer the interested reader to [3], [4]
for more details about the model. The detailed description of
this MPC algorithm can be found in [1].
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Fig. 1: An illustration of the upper and lower bounds (Ai and (;
of diurnal BG target zone (reproduced from Fig. A.1 in [1]).
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Fig. 2: An illustration of velocity-weighting function Q(v)
(reproduced from Fig. 1 in [1]).

We note that uj in the MPC optimization problem denotes
the relative correction of insulin infusion ugps 3 from the basal
rate Upgel, Namely, Ug 1= Uaps i — Upasal. As the amount of
insulin infusion is non-negative, it holds that £i+k > —Upasal
and Uy > —Upyg. By definition, Gy and g indicate delivery
rates above and below the basal rate up,g,, respectively; thus
the separate weighting parameters R and R on iy and iy
allows independent penalization of the costs of insulin delivery
above and below basal rate.

II. IMPLEMENTATION DETAILS

In terms of implementation, the proposed adaptive MPC
method basically replaces the original cost function in (3) with

J () = Z;ivil (ii +Q (i) 22 + ﬁ\?i) (5)
+ 3 (R(/Jk, yr)0E + R, yk)ﬂi) ,

which adds to the non-convexity of the MPC optimization
problem. To ensure the convergence of the optimization algo-
rithm and speed up the computation, a heuristic technique is
introduced to implement the proposed adaptive MPC based on
the physiological properties of the insulin-glucose metabolic
process. To aid the description, we use the notation {-}; to
denote a data sequence obtained by the zone MPC at controller
update time instant ¢ (e.g., {yx : k € Zo.n,—1}i). The motivat-
ing observation is that a lag of 10 — 30 minutes exists between
the plasma insulin concentrations and the effect of insulin [5].
As the control horizon N, is equal to 5 and the sampling
time is 5 minutes, the predictions {y; : k € Zo.n,—1}; and
{pr :+ k € Zo.n,—1}; are dominated by the historical glucose
measurements at time instant ¢ rather than the optimal inputs
{u}}i, which was also observed in [6]. In this regard, we
estimate {yx : k € Zo.n,—1}; and {pg : k € Zo.nN,—1}4
with {yy : k € Zi.n, }i—1 and {yx —yx—1 : k € Z1.N, }iz1,

respectively, and calculate {R(uk,yk) : k € Zo.n,—~1}i and
{R(yx) : k € Zo.n,_1}; based on the obtained estimates for
{yk : k € Zo.n,—1}i and {ui : k € Zo.N,—1}i- An important
property of these estimates is that they can be calculated
before solving the MPC optimization problem formed by (1),
(5) and (2) at time instant ¢ and are constant during the
solution procedure of the optimization problem. In this way,
the resultant structure of constrained optimization problem
remains unchanged compared with that in [2], [6] and thus
the optimization problem can be solved following the same
procedure proposed in Section 3 of [6].

Note that the glucose velocity sequence {u} we adopt
in this work is different from {v;} defined according to
(2.4), which was proposed to quantify the velocity weighting
and velocity penalties in [1]. By definition, {y} provides a
closer approximation of the velocity sequence of the noiseless
glucose prediction {yx}. Another major consideration here,
however, is to avoid introducing {u }-induced disturbances
to the convergence of the {vy }-driven sequential optimization
procedure utilized to solve non-convex MPC optimization
problem (see Section 3 in [6] for details). In particular, during
the sequential optimization procedure, the sequence {vy} is
updated in each iteration until the convergence conditions are
satisfied. As the estimates for {1} remain constant and do not
change with {v} throughout this procedure, the adopted { }
sequence does not affect the convergence of the sequential
optimization algorithm.
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