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1 Appendix

1.1 Glossary of mathematical symbols

symbol domain description

s R≥0 the selection coefficient*

K N≥2 the number of discrete timepoints

X [0, 1]K allele frequency trajectory

N RK
>0 population size trajectory

G · the ancestral recombination graph (ARG)

Gk · the local tree at the site indexed by k

G\k · the ARG, omitting Gk

Cder NK the number of derived lineages remaining at each timepoint 1, . . . ,K.

Canc NK the number of ancestral lineages remaining at each timepoint.

Cmix NK the number of mixed lineages remaining at each timepoint.

C · := (Cder, Canc, Cmix)

L(s) R≥0 the full likelihood of the selection coefficient s

M N the number of posterior ARG samples, after thinning and burn-in

G(m) · the mth posterior ARG sample, after thinning and burn-in s.t. m ∈ 1, . . . ,M

L̂R(s) R≥0 importance sampling estimate of L(s)/L(s = 0)

Ω(m) R≥0 mth importance sampling weight

*NB: as we mention in the main text, we also use s as shorthand for arbitrarily complex pa-

rameters describing the selection model; e.g., s (in the Methods derivations) can be thought of as

shorthand for a vector containing both the actual selection coefficient as well as the timing of the

onset of selection.
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1.2 Calculating allele frequency transition probabilities

Our likelihood calculations require allele frequency transition distributions for different selection

coefficients, population sizes, and spans of time. Rather than employ the more common approach

of numerically calculating allele frequency transition distributions using the Wright-Fisher diffusion

process with drift and selection (e.g., [1,2]), we follow [3] and precompute allele frequency transition

distributions on a grid of time spans (i.e., generations) and scaled selection coefficients (i.e., α = 2Ns)

using the Wright-Fisher model of reproduction in a finite population experiencing genetic drift and

natural selection (see [1]). Specifically, for each value of α, we use simple matrix multiplication

to produce allele frequency transition matrices for discrete frequencies in a haploid population of

size Nhap = 2000 at a number of generations spanning from g = 1 to g = gmax (corresponding to

scaled drift times of 1/2000 to g′ = gmax/2000). We use this smaller population size to approximate

the transition probabilities in larger population sizes (N ≥ 104), where calculating the full Wright-

Fisher transition matrix is prohibitively expensive. We approximate the probability of a transition

over t generations with selection coefficient s under diploid population size N using the haploid

population of size Nhap with rescaled time s̃ = Nhap

2N t and rescaled selection coefficient s̃ = 2N
Nhap s.

Our simulated results suggest this model is accurate even when 2N
Nhap ≈ 100 (S3 Fig).

The allele frequencyX in the haploid population take on discrete values in {0, 1/Nhap, 2/Nhap, . . . , 1}.

Let Xk be the allele frequency in the kth epoch. Then, conditional on Xk = xk, Yk+1 := NhapXk+1

follows a binomal distribution Bin
(
Nhap, p‡(xk)

)
, where

p‡(x) := p†(x)(1 + s)/(p†(x)(1 + s) + 1− p†)

and

p†(x) := (1− u)x+ v(1− x)

and u and v are the mutation rates from derived to the ancestral type and vise versa, respec-

tively. We note that u and v are also rescaled similarly to s in order to approximate mutation in

a population of smaller size. Thus, the transition probability from i → j is simply the probability

Bin
(
Nhap, p‡(xk)

)
.

The spacing of time points for these transition probabilities is chosen a priori; in practice, we use

3/15



linear spacing for recent history and/or periods of population growth. We bin allele frequencies into

d discrete frequency categories unevenly distributed between 0 and 1 such that extreme frequency

bins outnumber intermediate frequency bins. To calculate allele frequency transition distributions

for time spans and selection coefficients not contained in the grid of pre-computed values, we linearly

interpolate between the nearest precomputed values. See [3] for details.

We also note that if the time of the onset of selection, ts, is to be inferred, then it is necessary

to let s depend on the epoch i; specifically, whether the allele is under selection vs. neutral during

said epoch. Let si denote the value of the selection coefficient during epoch i, and s = (s1, . . . , sK).

Additionally, we condition the allele frequency process on the present-day frequency X0 by using

the following reweighting:

P(Xi | Xi+1, X0, s) =
P(Xi | Xi+1, s)P(X0 | Xi, s)

P(X0 | Xi+1, s

where P(Xi1 | Xi2 , s) is the forward-time unconditional probability of transitioning from Xi2 to Xi1

(in coalescent time, ti2 > ti1 ; in forward time, ti2 < ti1).
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1.3 Forward and backward probabilities

Here we derive recursions for the forward and backward probabilities fi(xi) and bi(xi), respectively.

These quantities are equivalent to P(C1:i | Xi, Ni−1) and P(Ci+1:K−1, Xi | Xi, Ni), respectively,

where Ca:b = Ca, Ca+1, . . . , Cb.

Let bi(xi) = P(C1:i | Xi, Ni−1). We calculate this quantity recursively moving from i = 1→ i:

b1(x1) =
∑
x0

P(C1 | C0, X0 = x0, N0)P(X0 = x0 | X1 = x1, N0, s) (1)

bi(xi) =
∑
xi−1

bi−1(xi−1)P(Ci | Ci−1, Xi−1 = xi−1, Ni−1)P(Xi−1 = xi−1 | Xi = xi, Ni, s) (2)

and we can apply this recursion to calculate the likelihood function of s given G as

L(s | G) ∝ bK(0). (3)

The above is commonly known as the backward algorithm when applied to HMMs. In our

model, the backward algorithm’s recursion proceeds backwards through time. Alternatively, using

the forward algorithm, with its recursion proceeding forwards in time:

fK−1(xK−1) = P(XK−1 = xK−1 | XK = 0, NK−1, s) (4)

fi(xi) = P(Ci+1 | Ci, Xi = xi, Ni+1)
∑
xi+1

fi+1(xi+1)P(Xi = xi | Xi+1 = xi+1, Ni, s) (5)

and we can apply this recursion to calculate the likelihood function of s given G as

L(s | G) ∝
∑
x0

f0(x0) (6)
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1.4 Importance sampling estimate of the posterior probability of the al-

lele frequency

Here we show a quick derivation of the importance sampling estimate of the marginal posterior

probability of the allele frequency trajectory at timepoint i, i.e. the posterior of Xi. Notation

follows directly from the glossary.

First, let us establish that P(Xi | Gk, s) = P(Xi | Ck, s); i.e., that the topology of the tree,

conditioned on the allelic labeling of its leaves, does not affect the posterior probability of Xi. We

will suppress s for easy of notation.

P(Xi | Gk) =
P(Gk | Xi)P(Xi)

P(Gk)
(7)

=
P(topok | Ck, Xi)

P(topok | Ck)

P(Ck | Xi)P(Xi)

P(Ck)
(8)

Because the topology is independent of the allele frequency if we condition on the allelic labeling,

=
P(topok | Ck)

P(topok | Ck)

P(Ck | Xi)P(Xi)

P(Ck)
(9)

=
P(Ck | Xi)P(Xi)

P(Ck)
(10)

= P(Xi | Ck) (11)

where we use topo to denote the topology of the tree, conditioned on its allelic labeling.

Next, we derive the importance sampling estimator of the allele frequency marginal posterior:
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π(Xi | D, s) = EG|D,s[P(Xi | G,D, s)] (12)

= EG|D,s=0

[
P(Xi | G,D, s)

P(G | D, s)
P(G | D, s = 0)

]
(13)

= EG|D,s=0

[
P(Xi | G,D, s)

P(G | s)
P(G | s = 0)

]
× L(s)

L(s = 0)
(14)

∝ EG|D,s=0

[
P(Xi | G,D, s)

P(G | s)
P(G | s = 0)

]
(15)

≈ EG|D,s=0

[
P(Xi | Gk, G\k, D, s)

P(Gk | s)
P(Gk | s = 0)

]
(16)

≈ EG|D,s=0

[
P(Xi | Gk, s)

P(Gk | s)
P(Gk | s = 0)

]
(17)

= EG|D,s=0

[
P(Xi | Ck, s)

P(Ck | s)
P(Ck | s = 0)

]
(18)

Hence,

1

M

M∑
m=1

P(Xi | C(m)
k , s)Ω(m)(s)→ EG|D,s=0

[
P(Xi | Ck, s)

P(Ck | s)
P(Ck | s = 0)

]
≈ κπ(Xi | D, s) (19)

where κ is
[
L(s)/L(s = 0)

]−1
, for which we have already established an importance sampling

estimator (main text). Thus, our importance sampling estimate of the posterior marginal given s is

π̂(xi | D, s) :=

∑M
m=1 P(Xi | C(m)

k , s)Ω(m)(s)∑M
m=1 Ω(m)(s)

. (20)
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1.5 Bayesian estimates of the selection coefficient

Allowing a prior distribution on s, π(s), the posterior of the selection coefficient π(s | D) follows

π(s | D) ∝ L(s)

L(s = 0)
π(s) ≈ L̂R(s)π(s). (21)

Then the estimate of the posterior marginal is given by

π̂(xi | D) =

∫ ∞
−∞

π̂(xi | D, s)π(s|D)ds (22)

which can be approximated by a sum over d discretized values of s, S = {s1, . . . , sd} as

π̂(xi | D) :=
∑
s∈S

π̂(xi | D, s)π̃(s|D) (23)

where π̃ represents a probability mass function over s.
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2 Commands to reproduce simulations and analyses

2.1 Simulations of trajectories, local trees, and haplotypes

To simulate data, we used a slight modification of the standard discoal package [4], available at

https://github.com/kern-lab/discoal. In the standard discoal , there is no option to output

the allele frequency trajectory, and there is also no option to simultaneously output the sample’s

local trees and haplotypes. This is important in order to compare inference vs. ground truth for

the same replicate. Our modified version prints the trajectory to stdout, as well as the local trees

and the haplotypes, and is available on the CLUES Github page. Nonetheless, the standard discoal

documentation applies completely to our modified version, and we will leave the reader to learn the

exact meaning of the arguments and options from documentation available through that repository.

To simulate data under the constant effective population size model, we ran

$ ./discoal 51 100 100000 -t 100 -r 50 -A 1 0 0.5 -x 0.5 -c 75e-2 -ws 0 -a 200 -N 10000 -

i 4 > example.const.discoal

This specifies a sample of 50 modern haplotypes, simulated independently 100 times, with N = 104

diploid individuals, 4Nµ = 100, 4Nr = 50, and 1 ancient haplotype from 0.5 coalescent units ago.

We specify the selected site to be in the center of the locus, segregating at 75% frequency in the

present day, with a selection strength of α = 200 = 2Ns where s = 0.01. We simulate the trajectory

assuming a time discretization of 1/(4N) coalescent units, on the order of 1 generation.

To simulate data under the European demographic model, we ran

$ ./discoal 51 100 100000 -t 3760 -r 1880 -A 1 0 0.021 -x 0.5 -c 75e-2 -ws 0 -i 4 -a 3762

-N 188088 -en 0.000120 0 0.124319 -en 0.000272 0 0.042569 -en 0.000399 0 0.031529 -

en 0.000532 0 0.023182 -en 0.000665 0 0.017045 -en 0.000797 0 0.012532 -en 0.000930 0

0.009214 -en 0.001063 0 0.006576 -en 0.001224 0 0.009894 -en 0.001329 0 0.009894 -en

0.001595 0 0.009894 -en 0.001994 0 0.009910 -en 0.002713 0 0.076953 -en 0.003722 0

0.076953 -en 0.004918 0 0.076953 -en 0.006247 0 0.076892 -en 0.007870 0 0.038865 -en

0.008507 0 0.038865 -en 0.009304 0 0.038865 -en 0.010367 0 0.038865 -en 0.011962 0

0.038865 -en 0.014621 0 0.038865 -en 0.018608 0 0.038865 -en 0.023925 0 0.038865 -en

0.033229 0 0.038865 -en 0.046521 0 0.038865 -en 0.066458 0 0.038865 -en 0.132917 0

0.038865 -en 0.398750 0 0.038865 > example.ceu.discoal

9/15

https://github.com/kern-lab/discoal


This specifies a sample of 50 modern haplotypes, simulated independently 100 times, with N =

188088 diploid individuals, 4Nµ = 3760, 4Nr = 1880, and 1 ancient haplotype from 0.021 coalescent

units ago (scaled by the present-day effect population size, N = 188088). We specify the selected

site to be in the center of the locus, segregating at 75% frequency in the present day, with a

selection strength of α = 3762 = 2Ns where s = 0.01. We simulate the trajectory assuming a time

discretization of 1/(4N) coalescent units, on the order of 1 generation. We use the -en option in

order to scale effective population size to the harmonic mean of the population size during that time

interval.

$ ./discoal 101 100 100000 -t 3760 -r 1880 -A 1 0 0.021 -x 0.5 -c 50e-2 -ws 0 -a 3762 -f

0.268 -i 4 -N 188088 -en 0.000120 0 0.124319 -en 0.000272 0 0.042569 -en 0.000399 0

0.031529 -en 0.000532 0 0.023182 -en 0.000665 0 0.017045 -en 0.000797 0 0.012532 -en

0.000930 0 0.009214 -en 0.001063 0 0.006576 -en 0.001224 0 0.009894 -en 0.001329 0

0.009894 -en 0.001595 0 0.009894 -en 0.001994 0 0.009910 -en 0.002713 0 0.076953 -en

0.003722 0 0.076953 -en 0.004918 0 0.076953 -en 0.006247 0 0.076892 -en 0.007870 0

0.038865 -en 0.008507 0 0.038865 -en 0.009304 0 0.038865 -en 0.010367 0 0.038865 -en

0.011962 0 0.038865 -en 0.014621 0 0.038865 -en 0.018608 0 0.038865 -en 0.023925 0

0.038865 -en 0.033229 0 0.038865 -en 0.046521 0 0.038865 -en 0.066458 0 0.038865 -en

0.132917 0 0.038865 -en 0.398750 0 0.038865

This specifies the same demographic model as in the previous simulation, except we increase the

sample size to 100 haplotypes (and still 1 ancient haplotype). Additionally, to enforce a SSV, we use

-f 0.268 to enforce that the allele evolves under selection from the present day back to the point

that it reaches a frequency of 0.268, and neutrally leading up to that point. We must simulate the

SSV this way because discoal does not have an option to specify the time of selection’s onset. We

obtained the frequencies for the -f option by simulating under selection and finding the average

frequency of the allele 100 generations before the present.

2.2 Reformatting discoal output

It is necessary to parse the output of discoal to not only prepare the input files for ARGweaver

(and CLUES , which just uses ARGweaver -formatted data), but also useful to separate trajectories,

local trees, and haplotypes into separate data files. We wrote a Python script to run this process,

parseDiscoalOutput.py, which is available on our Github page. The command to run this script is
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$ python parseDiscoalOutput.py example.discoal <length_of_sequence> <num_sites> <num_haps

> <out>

where you set the arguments to be the length of the sequence in base-pairs, the number of sites

in the discoal simulation (in the two examples above, this would be 105), the total number of

haplotypes sampled (n = 51), and a basename for output files. This script will generate 3 files, with

extensions .traj, .trees, .sites, that hold the trajectory, the true local tree at the site of interest,

and the haplotypes reformatted in ARGweaver format, respectively. These files will be generated and

named by the index of each replicate simulated in the file example.discoal. Note that currently this

script is hardcoded to assume the SNP of interest is located at the center of the locus.

2.3 Performing ARG-sampling using ARGweaver

We use the arg-sample function in the ARGweaver package, available at https://github.com/mjhubisz/

argweaver, to sample the posterior ARG [5]. This function requires one major input: the .sites

we generated in the previous step. However, it is also necessary to provide the proper demographic

model, mutation rate, and recombination rate. Furthermore, you should specify the desired length

of the MCMC chain (here M = 3000 samples). You can also compress sequence blocks to greatly

speed up the process (here we compress down to 25-bp blocks). By default, ARGweaver thins down

to every 10th sample, but this option may be adjusted.

To sample ARGs under a constant population size, we run

$ ./arg-sample -s example.const.sites -o example.const --age-file N_10000_agefile.txt --

times-file N_10000_timesfile.txt -N 10000 --overwrite --quiet -m 2.5e-8 -r 1.25e-8 -c

25 -n 3000 --resample-window 40000 --resample-window-iters 8 --infsites

To sample ARGs under the European demographic model, we run

$ ./arg-sample -s example.ceu.sites -o example.ceu --times-file tennessen_times_fine.txt

--age-file tennessen_age.txt --popsize-file tennessen_popsize_fine.txt --overwrite -m

2.5e-8 -r 1.25e-8 -c 25 --quiet -n 3000 --resample-window 100000 --resample-window-

iters 8 --infsites

The files that are specified using --times-file, --age-file, and --popsize-file correspond to

specifying the time discretization (in generations), the age of the ancient haplotype used to polarize
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alleles (in generations), and the population size trajectory. We supply all of the corresponding files

on the CLUES Github page.

We also want to point out several tuning parameters: --resample-window and --resample-window

-iters adjust the size of the resampling window and the number of resamples to perform on a

particular window. Adjusting these parameters can affect the behavior of the MCMC routine by

changing how aggressively changes are proposed to the ARG. Increasing the resample window will

decrease the acceptance probability of a given proposal, but increasing the number of iterations will

increase that probability that any of these proposals will be accepted. These parameters should be

adjusted to yield about a 30-70% acceptance rate (Melissa Hubisz, personal communication).

This procedure will output a series of .smc.gz files.

2.4 Extracting local trees from ARGweaver samples

We used the smc2bed-all and arg-summarize programs included in the ARGweaver package to extract

local trees at the site of selection. Your ARGweaver output has the form example.<k>.smc.gz, where

k = 0, 10, 20, . . . , 3000. To run extraction,

$ ./smc2bed-all example; ./arg-summarize -a example.bed.gz -r chr:50000-50000 -l example.

log -E > argweaver.example.trees

This saves a list of Newick trees extracted from the site 50000 to argweaver.example.trees.

2.5 Preliminaries for CLUES

CLUES depends on a probabilistic model for allele frequency changes. Thus, it is necessary to either

download our pre-computed transition probabilities for either the constant N = 104 or European

demography models (formatted in HDF5 using the h5py package [6]). We provide an example file

example.f_75.hdf5, precomputed conditioned on X(0) = 0.75, but one can alternatively compute

transition probabilities from scratch for a custom model. We next describe how to do so.

To compute transition probabilities for a set of selection coefficients s1,s2,...sL from scratch,

run the following commands:

$ python make_transition_matrices_from_argweaver.py <Nsmall> <s1> example.log trans.s_<s1

>.h5 --breaks 0.95 0.025 --debug
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$ python make_transition_matrices_from_argweaver.py <Nsmall> <s2> example.log trans.s_<s2

>.h5 --breaks 0.95 0.025 --debug

...

$ python make_transition_matrices_from_argweaver.py <Nsmall> <sL> example.log trans.s_<sL

>.h5 --breaks 0.95 0.025 --debug

$ mkdir example_trans_dir; mv trans.s_*.h5 example_trans_dir

The argument Nsmall denotes the population size of the Wright Fisher model used to calculate

the times. It should be no greater than ∼ 104, and only around ∼ 103 if you want it to run quickly;

note that this number can be mucher smaller than the “true” population size, and it is scaled down

to simply speed up calculations, and results are rescaled to the “true” size. The example.log file is

obtained from the ARGweaver run, and it summarizes the actual demographic model.

After completing this step, it is necessary to aggregate the transition probabilities and condition

them on present-day frequencies:

$ python conditional_transition_matrices.py example.log example_trans_dir/ --listFreqs

0.25 0.5 0.75 -o trans

This will create a HDF5 file called trans.hdf5. This file contains transition matrices conditioned

on the present-day frequency being 0.25, 0.50, and 0.75. It may be wise to use a richer set of

frequencies by modifying --listFreqs if you are interested in analyzing real data.

To calculate transition matrices under an SSV model, there is a --ssv option. Warning: this will

require substantially longer runtime and storage than the model assuming a hard sweep.

2.6 Running CLUES

To run CLUES , the minimal command is

$ python clues.py <treesFile> <conditionalTrans> <sitesFile> <popFreq>

For example,

$ python clues.py example.trees example.f_75.hdf5 example.sites 75e-2 --thin 10 --burnin

100 --output example.clues

The 4 key inputs here are:

1. treesFile: local trees sampled and extracted from ARGweaver .
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2. conditionalTrans: transition matrices conditioned on selection coefficient and present-day

frequency, formatted in HDF5.

3. sitesFile: the .sites file used by ARGweaver . (This file is necessary to label the trees by

derived/ancestral allele.)

4. popFreq: the present-day allele frequency you’d like to condition on. If conditionalTrans is

conditioned on too sparse a grid of present-day frequencies, CLUES will fail if popFreq is too

distant from all of the frequencies.

There are also several options you can deploy. Here we show --thin and --burnin, which we use

here to treat the first 100 trees in example.trees as burnin, and thin down to every 10th tree in the

file after that point. This corresponds to an overall burnin of 1000 samples and an overall thinning

rate of 100 trees, assuming you use the baseline ARGweaver thinning rate of 10 trees. The --output

option saves the output of CLUES (e.g. the likelihood surface, importance sampling weights, MLEs,

trajectory posterior marginals, and more) to a HDF5 file named example.clues.h5.

There are more options available. To run CLUES under an SSV model, simply use the --ssv

option. (Note: running --ssv will require a transition probability file computed using the --ssv

option in conditional_transition_matrices.py.) To fix the value of s = s′ (rather than optimize

over all potential values of s), use the option --selCoeff s’. To deploy a uniform prior on s, use

the option --prior. To specify the position of the site of interest, set --posn <position>, which

defaults to 50000.

2.7 Runtime

To give a sense of the expected runtime of transition probability pre-computation, ARG sampling

in ARGweaver , and CLUES itself, we timed each of these 3 steps for an example analysis. We found

that transition probabilities ran in 36 minutes (14 minutes of unconditional transition probabilities,

22 minutes of conditioning; we used 45 discretized allele frequencies, 39 discrete timepoints, and 25

different values of the selection coefficient, on par with values used in our analysis in the main text).

We ran ARG sampling and CLUES on the dataset used in the our study of background selection

(see “Effects of background selection”, main text). Time required to perform ARG sampling varied

across replicates, but generally fell within 40-60 minutes. Time required to run CLUES was 5 minutes,
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using M = 40 sample ARGs after thinning. For analyses of larger regions and/or sample sizes, the

ratio of ARGweaver runtime to CLUES runtime will increase.
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