Supplementary Information

High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program

Labbé et al.

Supplementary Figures

Supplementary Figure 1: High-fat diet and MYC over expression alters the prostatic metabolome

Supplementary Figure 2: High-fat diet and MYC over expression alters the global prostatic chromatin profile and transcriptome

Supplementary Figure 3: The MYC transcriptional signature is amplified by high-fat diet

Supplementary Figure 4: The saturated fat-induced MYC signature does not correlate with BMI

Supplementary Figure 1: High-fat diet and MYC over expression alters the prostatic metabolome. (a) Mice fed a high fat diet maintain an increased body weight at 24 and 36 weeks of age (n =biologically independent animals; two-way ANOVA, median, whiskers ± min/max: ****P<0.0001). (b, c, d, e) HFD results in liver steatosis (b, hematoxylin and eosin (H&E) staining; scale bar = 100 μ M), increased circulating insulin (c, *n* = biologically independent animals; two-way ANOVA, mean \pm s.d.; three samples were removed from the analysis - see methods; *****P*<0.0001) and glucose (d, n = biologically independent animals; two-way ANOVA, mean \pm s.e.m.; **P < 0.01; obtained from metabolic profiling), and decreased circulating 1,5-anhydroglucitol (e, n = biologically independent animals; two-way ANOVA, mean \pm s.e.m.; ****P<0.0001; obtained from metabolic profiling) in 12-week-old mice. (f) Representative H&E staining of prostate lobes from 12-week-old mice fed a CTD diet depicting representative normal (WT) and transformed (MYC; prostatic intraepithelial neoplasia (PIN) in the AP (arrow), DLP and VP; scale bar = 100 μ M) prostatic glands. (g, h, i) Quantification of metabolites related to the HFD-associated phenotype (g), demethylation (h) and methylation processes (i) in the VP of 12-weeks-old mice (n = biologically independent VP; mean \pm s.e.m.; HFD vs. CTD or MYC vs. WT two group comparisons: two-way ANOVA; single group comparisons: unpaired t test, ; *P < 0.05, **P < 0.01, ***P < 0.001, ****P<0.0001). Complete details on changes in prostatic and serum metabolites are shown in Supplementary Data 2 and 15, respectively. Source data are provided as a Source Data file.

Supplementary Figure 2: High-fat diet and MYC over expression alters the global prostatic chromatin profile and transcriptome. (a) Global chromatin profiling of AP lobes (histone marks levels relative to the DLP, VP and AP CTD_WT median values; MYC vs. WT comparisons, unpaired *t* test; **P*<0.05; Supplementary Data 6). (b) MYC overexpression, irrespective of diet, results in a significant hypomethylation of the H3K27 mark (MYC vs. WT comparisons, unpaired *t* test; **P*<0.05, ***P*<0.01, *****P*<0.0001). (c) Decrease in H4K20me1 gene body-associated mark (relative to the CTD_WT condition) is associated with a lower level of gene transcription (*left*) while its gain to higher gene transcription (*right*) especially in the context of MYC overexpression (median, whiskers \pm min/max). (d) Venn diagram showing overlapping genes between the CTD_MYC and HFD_MYC conditions that demonstrate either a decrease (*left*) or an increase (*right*) in H4K20me1 gene body-associated mark relative to the CTD WT condition.

Supplementary Figure 3: The MYC transcriptional signature is amplified by high-fat diet. (a) MYC transgene protein level (VP, n = 7 biologically independent lobes) and its quantification (unpaired *t* test, mean \pm s.d.). MyC-CaP cell lysates were used as positive controls for MYC transgene expression (*arrow*). (b) Heatmap representation of all MYC-related gene sets, enriched (*red*) or depleted (*blue*) either by MYC overexpression (*left column*) or HFD in a MYC or WT context (GSEA, Chemical and Genetic Perturbation). Leading edge genes included in the enriched gene sets, together with both MYC-related Hallmark gene sets (n = 610 genes) were used to derive the murine prostatic MYC signature (Supplementary Data 9). Source data are provided as a Source Data file.

Supplementary Figure 4: The saturated fat-induced MYC signature does not correlate with BMI as observed in the TJU/JHMI-I/II cohorts (n = 494).

Supplementary Tables

Supplementary Table 1: Murine diets – Selected nutrients

Supplementary Table 2: MYC signature score based on randomly picked MYC_targets_V1 genes in relation to the risk of prostate cancer death among men diagnosed with non-metastatic prostate cancer

Supplementary Table 3: Univariate survival analysis – Validation cohorts

Supplementary Table 4: Multivariate survival analysis including gleason grade – Validation cohorts

Supplementary Table 5: Multivariate survival analysis including Cell Cycle Progression score – Validation cohorts

Supplementary Table 6: Murine diets – Formula

Supplementary Table 7: Metabolomics – Internal standards

Supplementary Table 8: Metabolomics – Elution gradient profiles

Supplementary Table 9: Metabolomics – MS details

	Control diet		High fat diet				
	TD.130838		TD.06414				
Nutrient	% by weigh	% kcal from	% by weigh	% kcal from			
Protein	16.5	18.4	23.5	18.4			
Carbohydrate	63.9	71.1	27.3	21.3			
Fat	4.2	10.5	34.3	60.3			
Soybean Oil	2	5	3	5.3			
Lard	2	5	31	54.7			
kcal/g	3.6		5.1				

Supplementary Table 1: Murine diets – Selected nutrients

Supplementary	Table	2: N	MYC	signat	ture s	score	base	ed on	randor	nly	picked	MY	C_ta	rgets_	V1
genes in relation	to the	risk	of pro	ostate	canc	er de	ath a	mong	g men d	liagn	losed w	vith 1	non-n	netasta	tic
prostate cancer															

		<u> </u>		
MYC score	Ν	OR	OR	OR
	13	(95% CI)*	(95% CI)‡	(95% CI)§
Tertile 1 (low)	17	1.00	1.00	1.00
Tertile 2	19	1.17 (0.57, 2.44)	1.03 (0.47, 2.30)	0.96 (0.43, 2.16)
Tertile 3 (high)	26	1.79 (0.90, 3.64)	1.71 (0.81, 3.70)	1.66 (0.78, 3.61)
P, linear trend†		0.094	0.152	0.170

N = lethal events; OR = odds ratio; CI = confidence interval.

*Logistic regression model adjusted for age and year at diagnosis (continuous).

†Estimated by modeling tertiles of MYC score as continuous variable (tertile 1=0, tertile 2=1, tertile 3=2).

‡Logistic regression model adjusted for age and year at diagnosis (continuous), and Gleason grade (continuous: <7, 3+4, 4+3, >7).

§Logistic regression model adjusted for age and year at diagnosis (continuous), Gleason grade (continuous: <7, 3+4, 4+3, >7), and BMI at diagnosis (continuous).

Bio	Biochemical recurrence							
Variable	HR	2.50%	97.50%	Р				
SFI-induced MYC signature	1.09	0.95	1.24	0.212				
log2(PSA)	1.15	1.03	1.28	0.016				
Seminal vesicle invasion	2.06	1.60	2.65	<0.001				
Surgical margins	1.42	1.08	1.88	0.014				
Extracapsular extension	1.55	1.21	1.97	<0.001				
Lymph node invasion	1.98	1.32	2.97	<0.001				
Cell Cycle Progression score	1.11	0.97	1.27	0.139				
Gleason grade	1.67	1.33	2.11	<0.001				
Ме	tastatic pro	gression		1				
Variable	HR	2.50%	97.50%	Р				
SFI-induced MYC signature	1.61	1.18	2.19	0.003				
log2(PSA)	1.15	0.91	1.46	0.240				
Seminal vesicle invasion	3.43	2.12	5.53	<0.001				
Surgical margins	1.90	1.12	3.23	0.017				
Extracapsular extension	3.15	1.74	5.70	<0.001				
Lymph node invasion	4.60	2.67	7.91	<0.001				
Cell Cycle Progression score	1.64	1.35	1.99	<0.001				
Gleason grade	5.37	2.88	10.04	<0.001				
Prostate	cancer spe	cific mortal	ity	ſ				
Variable	HR	2.50%	97.50%	Р				
SFI-induced MYC signature	1.53	0.95	2.45	0.079				
log2(PSA)	1.39	0.99	1.97	0.058				
Seminal vesicle invasion	4.49	2.16	9.35	<0.001				
Surgical margins	1.60	0.74	3.47	0.229				
Extracapsular extension	2.31	1.03	5.16	0.041*				
Lymph node invasion	4.83	2.23	10.48	<0.001				
Cell Cycle Progression score	1.64	1.24	2.17	<0.001				
Gleason grade	4.48	1.82	11.03	0.001				

Supplementary Table 3: Univariate survival analysis – Validation cohorts

*Gleason grade groups 3, 4, 5 (ref = groups 1 and 2)

Biochemical recurrence						
Variable	HR	2.50%	97.50%	Р		
SFI-induced MYC signature	1.04	0.91	1.19	0.555		
log2(PSA)	1.09	0.97	1.22	0.168		
Seminal vesicle invasion	1.71	1.29	2.28	<0.001		
Surgical margins	1.46	1.09	1.94	0.010		
Extracapsular extension	1.16	0.88	1.53	0.291		
Lymph node invasion	1.73	1.13	2.63	0.011		
Gleason grade	1.49	1.16	1.90	0.001		
Ме	tastatic pro	gression				
Variable	HR	2.50%	97.50%	Р		
SFI-induced MYC signature	1.45	1.06	1.97	0.020		
log2(PSA)	1.01	0.8	1.29	0.905		
Seminal vesicle invasion	1.87	1.11	3.17	0.020		
Surgical margins	1.68	0.99	2.84	0.055		
Extracapsular extension	1.62	0.84	3.11	0.149		
Lymph node invasion	2.75	1.54	4.92	<0.001		
Gleason grade	3.84	2.01	7.33	<0.001		
Prostate	e cancer spe	ecific mortal	ity	1		
Variable	HR	2.50%	97.50%	Р		
SFI-induced MYC signature	1.32	0.85	2.05	0.212		
log2(PSA)	1.29	0.92	1.79	0.138		
Seminal vesicle invasion	2.86	1.24	6.58	0.014		
Surgical margins	1.45	0.68	3.09	0.330		
Extracapsular extension	0.88	0.35	2.17	0.777		
Lymph node invasion	2.51	1.07	5.89	0.034		
Gleason grade	3.37	1.31	8.65	0.012		

Supplementary Table 4: Multivariate survival analysis including gleason grade – Validation cohorts

*Gleason grade groups 3, 4, 5 (ref = groups 1 and 2)

Biochemical recurrence						
Variable	HR	2.50%	97.50%	Р		
SFI-induced MYC signature	1.05	0.92	1.20	0.464		
log2(PSA)	1.08	0.97	1.21	0.177		
Seminal vesicle invasion	1.88	1.42	2.49	<0.001		
Surgical margins	1.45	1.09	1.92	0.011		
Extracapsular extension	1.18	0.90	1.55	0.241		
Lymph node invasion	1.87	1.23	2.85	0.003		
Cell Cycle Progression score	1.12	0.97	1.30	0.113		
Metastatic progression						
Variable	HR	2.50%	97.50%	Р		
SFI-induced MYC signature	1.36	1.03	1.80	0.032		
log2(PSA)	0.95	0.75	1.19	0.645		
Seminal vesicle invasion	2.68	1.58	4.54	<0.001		
Surgical margins	1.70	1.01	2.86	0.046		
Extracapsular extension	1.64	0.85	3.14	0.138		
Lymph node invasion	3.31	1.86	5.89	<0.001		
Cell Cycle Progression score	1.69	1.37	2.09	<0.001		
Prostate	cancer spe	cific mortali	ty			
Variable	HR	2.50%	97.50%	Р		
SFI-induced MYC signature	1.35	0.90	2.00	0.142		
log2(PSA)	1.15	0.83	1.60	0.393		
Seminal vesicle invasion	3.83	1.68	8.74	0.001		
Surgical margins	1.49	0.69	3.20	0.311		
Extracapsular extension	0.90	0.37	2.19	0.823		
Lymph node invasion	2.95	1.30	6.70	0.010		
Cell Cycle Progression score	1.66	1.25	2.21	<0.001		

Supplementary Table 5: Multivariate survival analysis including Cell Cycle Progression score – Validation cohorts

	Cont	rol diet	High fat diet		
	TD.1	30838	TD.06414		
Ingredient	g/kg	g/3.6 (Kcal/g)	g/kg	g/5.1 (Kcal/g)	
Casein	186	51.7	265	52.0	
Maltodextrin	112.5	31.3	160	31.4	
L-Cystine	2.8	0.8	4	0.8	
Sucrose	63.2	17.6	90	17.6	
Cellulose	46	12.8	65.5	12.8	
Soybean Oil	20	5.6	30	5.9	
Lard	20	5.6	310	60.8	
Corn Starch	496.25	137.8	NA	NA	
Calcium Phosphate, dibasic	2	0.6	3.4	0.7	
Choline Bitartrate	2.15	0.6	3	0.6	
Mineral Mix*	34	9.4	48	9.4	
Vitamin Mix†	15	4.2	21	4.1	
Red Food Color	0.1	0.0	NA	NA	
Blue Food Color	NA	NA	0.1	0.0	

Supplementary Table 6: Murine diets – Formula

*AIN-93G-MX (94046) †AIN-93-VX (94047)

Supplementary Table 7: Metabolomics – Internal standards

Method	Internal Standard
LC Neg	D7-glucose, d3-methionine, d3-leucine, d8-phenylalanine, d5-tryptophan, bromophenylalanine, d15-octanoic acid, d19-decanoic acid, d27- tetradecanoic acid, d35-octadecanoic acid, d2-eicosanoic acid
LC HILIC	D35-octadecanoic acid, d5-indole acetic acid, bromophenylalanine, d5- tryptophan, d4-tyrosine, d3-serine, d3-aspartic acid, d7-ornithine, d4-lysine
LC Pos	D7-glucose, d3-methionine, d3-leucine, d8-phenylalanine, d5-tryptophan, bromophenylalanine, d4-tyrosine, d5-indole acetic acid, d5-hippuric acid, amitriptyline, d9-progesterone, d4-dioctylphthalate
I C = Liquid	Chromatography

LC = Liquid Chromatography HILIC = Hydrophilic Interaction Liquid Chromatography

Reverse Phase Pos and Neg Gradient Profile							
Time (min)	Solvent A (%)	Solvent B (%)	Flow Rate (mL)				
0	99.5	0.5	0.35				
4	30	70	0.35				
4.5	2	98	0.35				
5.4	2	98	0.35				
5.6	99.5	0.5	0.35				
11	99.5	0.5	0.35				

Supplementary Table 8: Metabolomics – Elution gradient profiles

HILIC Neg Gradient Profile						
Time (min)	Flow Rate (mL)					
0	95	5	0.5			
3.5	50	50	0.5			
5.5	5	95	0.5			
6.5	5	95	0.5			
6.7	95	5	0.5			
11	95	5	0.5			

Instrument	Q-Exactive			
Method	RP Pos	RP Neg	HILIC Neg	
Source Type	HESI-II	HESI-II	HESI-II	
Sheath Gas (au)	80	75	60	
Auxiliary Gas (au)	12	15	20	
Spray Voltage (kV)	4	2,75	3	
Source Heater Temp. (°C)	400	400	380	
Ion Transfer Tube Temp. (°C)	300	300	400	
Normalized Collision Energy (au)	45	60	60	
Stepped Normalized Collision Energy (%)	20	20	20	
Mass Range (m/z)	80-1000			
MS AGC target (au)	1,00E+06			
MS Max Fill Time (ms)		60		
MS ⁿ Ion Target (au)	2,00E+05			
MS ⁿ Max Time (ms)	120			
MS ⁿ Isolation Window (m/z)		3		
MS ⁿ Dynamic Exclusion Time (s)		3		

Supplementary Table 9: Metabolomics – MS details