
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The current manuscript develops a new computational method called PSIONIC (patient-specific 
inference of networks informed by chromatin) to exploit epigenomic data from relevant cancer 
models with expression data from patient tumours in order to identify the transcriptional programs 
and factors driving oncogenesis.  
 
Overall, the idea of combining epigenomic data, such as chromatin accessibility, with gene 
expression to identify the disrupted transcription regulatory processes in cancers is very 
interesting. The multi-task learning approach that presented in the manuscript is a valid approach 
proposed by the authors. However, the advantages of this method over single-task learning are 
not obvious considering the performance analysis presented (Fig. 3A). Additionally, multitask 
learning does not seem to provide any advantage for retrieving patient specific inferred 
transcription factors activity. While the authors showcase regulatory differences across tumor 
types, they present limited validation and have not shown evidence that this method is applicable 
at the per-patient level.  
 
Specific comments:  
 
- The text needs major revisions. The paper generally reads more like the method section. 
Furthermore, parts of the text are repeated. Citations are missing in the introduction section and 
reference to figures does not always match. Figure legends (Fig1 for instance) are to be revised. 
Labels are also missing on a number of figure panels.  
 
- Evaluation of performance of PSIONIC should be improved. The spearman correlation reported in 
Fig. 3A is considerably low. The authors did not mention how they selected the validation set of 
held-out genes nor provided any cross-validation or robustness of analysis. Considering the 
method, evaluation based on held-out tumors plus cross-validation would be more informative and 
needed.  
 
- The authors provided one example of inferred transcription factors activity to be prognostic 
based on 14 samples in uterine serous tumors (Fig 4). Also MTF1 inferred activity is shown to be 
correlated with sensitivity to MTF1 inhibition in cell lines (Fig 5). However, these are fairly limited 
validation based on the number and/or analysis of the data presented. More evidence and 
validation in both analyses are recommended.  
 
- The justification of selecting K=7 as the number of latent regulatory programs would need to be 
better justified.  
 
- Inferred activities of TFs were linked to survival using cox proportional hazards regression model. 
While this analysis should be univariate, it is mentioned that the stage of the tumor was used as 
an additional covariate. Significant association of TFs with outcome has been claimed while no 
known TFs (ER, HER1 or cytokeratin based on this paper: 
http://clincancerres.aacrjournals.org/content/10/16/5367.full-text.pdf) for basal breast cancer are 
reported in the current manuscript. The authors should address this discrepancy.  
 
- The authors mentioned training PSIONIC model on cell lines from CCLE. No validation and 
robustness for this analysis is reported. Also the concordance with the tumor inferred regulatory 
models need to be discussed in further details.  
 
- MTF1 inferred activity is mentioned to be associated with growth rate (Fig 5) while no correlation 
is reported for this analysis.  
 



 
Reviewer #2 (Remarks to the Author):  
 
The manuscript describes the identification of TFs in tumorigenesis. Authors use ATAC-seq in 
tumor cell lines to map changes in accessibility indicative of differences in TF binding and relate 
this information to gene expression measured by RNA-seq in primary tumors using a novel 
computational model. Using this approach, authors confirm some previous findings and identify 
new TFs associated with patient survival. These factors could be used as therapeutic targets, and 
authors attempt to prove this by showing that inhibition of MTF1 decreases growth rates in tumor 
cell lines in which this factor is expressed at higher levels.  
 
The results presented here, including computational strategies, are interesting and could 
potentially give important insights into personalized cancer treatment. Ideally, as described below, 
the ATAC-seq experiments should have been done using cells from the original tumors, but I 
realize that this may be difficult to accomplish without access to the original samples. The 
following are mostly minor comments asking for clarification of some important points:  
 
1. Authors used ATAC-seq information obtained in cell lines to compare to RNA-seq obtained from 
patient samples. Cell lines have been selected for growth in culture, and they may be expressing 
transcription factors not present in the original tumors. What is known about these cell lines and 
how well they compare to the original tumors? Authors should comment on the appropriateness of 
this comparison. Is it expected that ovarian and breast cancer cell lines have similar ATAC-seq 
profiles?  
 
2. Distances in kb and scales for the different tracks are missing in Figure 2B  
 
3. Page 7. Authors should comment on whether differences in TF signal between cell lines is due to 
the tumor type or the tissue of origin. Are HNF1 motifs more accessible in normal endometrial 
cells?  
 
4. Page 11, bottom. What is known about the role of MTF1 and how does this TF control cell 
growth?  
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Response to Reviewers’ Comments  
 
We have comprehensively addressed all comments from the reviewers, and we believe that we 
have greatly improved the clarity and organization of the manuscript.   
 

Reviewer #1 
 
The current manuscript develops a new computational method called PSIONIC (patient-
specific inference of networks informed by chromatin) to exploit epigenomic data from 
relevant cancer models with expression data from patient tumours in order to identify the 
transcriptional programs and factors driving oncogenesis. Overall, the idea of combining 
epigenomic data, such as chromatin accessibility, with gene expression to identify the 
disrupted transcription regulatory processes in cancers is very interesting. 

 

We appreciate that the reviewer finds our idea very interesting. 

 

The multi-task learning approach that presented in the manuscript is a valid approach 
proposed by the authors. However, the advantages of this method over single-task 
learning are not obvious considering the performance analysis presented (Fig. 3A). 
Additionally, multitask learning does not seem to provide any advantage for retrieving 
patient specific inferred transcription factors activity.  

 
MTL allows us to make direct comparisons between patient specific models. As can be seen 
from Fig. R1, the t-SNE plot of inferred TF activities mostly separates patients according to their 
tumor types, while this is not true when clustering models from the single task learning (STL) 
approach. Using STL, comparing different models is not straightforward. 

 
As can be seen from Fig. R2, we obtained significantly better regression performance with our 
MTL approach, PSIONIC, compared to a STL approach based on ridge regression (P < 10-21, 
one-sided Wilcoxon signed-rank test). 
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Fig. R1:  t-SNE projections of inferred TF activities for (A) PSIONIC model and (B) STL model.  

 
While the authors showcase regulatory differences across tumor types, they present 
limited validation and have not shown evidence that this method is applicable at the per-
patient level. 
 

We added the following new data and validation experiments to address this comment: 
(1) We validated tumor-type specific accessibility signatures derived from our cell line models 
using TCGA ATAC-seq for UCEC-ENDO and BRCA-BASAL (Supplementary Figure 1). 
(2) We collected additional ETV6 immunostaining data in serous endometrial tumor samples 
and updated the ETV6 survival figure (Fig. 5A) with increased sample size. 
(3) We performed new immunohistochemical analyses in primary tumor samples from patients 
with basal breast cancer for MITF to validate prognostic TF markers identified by PSIONIC (Fig. 
6A-B). 
(4) We manipulated MITF protein levels by shRNA-mediated knockdown in a basal breast cell 
line (MDA-MB-436) and performed RNA-seq to further validate role of MITF in basal breast 
cancer (Fig. 6C-E, Supplementary Figure 9), in particular, showing consistent MITF regulation 
of target genes in the experimental data with those whose expression levels correlate with 
PSIONIC-inferred activity across cell lines or tumors. 
 
In particular, the survival data and consistency of target gene expression patterns suggest that 
patient-specific inferred activities indeed provide prognostic and gene regulatory information. 
 

Specific comments: 
- The text needs major revisions. The paper generally reads more like the method 
section. Furthermore, parts of the text are repeated. Citations are missing in the 
introduction section and reference to figures does not always match. Figure legends 
(Fig1 for instance) are to be revised. Labels are also missing on a number of figure 
panels. 
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We have performed substantial text revisions and moved some technical details to the 
Methods. We also added citations in the introduction section and updated references to figures. 
We apologize for previous missing elements in the figure legends; we have revised figure 
legends and added missing labels of figure panels. 
 

- Evaluation of performance of PSIONIC should be improved. The spearman correlation 
reported in Fig. 3A is considerably low.  
 

As the reviewer correctly observes, when we predict held-out tumor gene expression from gene 
regulatory sequence derived from cell line ATAC-seq data, the mean Spearman rank correlation 
between predicted and measured gene expression is modest (mean ρ = 0.384, see Fig. R2). 
Note, however, that this is a very hard problem: tumor samples are heterogenous, adding to 
noise in the log fold changes in gene expression that we are trying to predict; patient-specific 
chromatin accessibility data are not available for our full cohort, so we use high quality cell line 
ATAC-seq data as a proxy; true enhancer-gene associations are unknown. Nevertheless, we 
can use the model to derive meaningful TF activities that predict drug response and survival, as 
shown in our results. To improve our evaluation, we have added 10-fold cross validation 
analysis for TCGA and CCLE models (Fig. R2 and Fig. R4). 
 

The authors did not mention how they selected the validation set of held-out genes nor 
provided any cross-validation or robustness of analysis. Considering the method, 
evaluation based on held-out tumors plus cross-validation would be more informative 
and needed. 
 

We performed 10-fold cross validation analysis and updated Fig. 3A. As shown in Fig. R2, in 
10‐fold cross‐validation experiments on held‐out genes, we obtained a mean Spearman rank 
correlation between predicted and measured gene expression changes of 0.384 ± 0.016, a 
modest but highly significant result (P < 10-16, one-sided Wilcoxon signed-rank test). Further, we 
obtained significantly better regression performance than a STL approach based on ridge 
regression (P < 10-21, one-sided Wilcoxon signed-rank test). Similarly, our models with motif 
data from promoter and enhancer regions outperformed models where only motif hits in 
promoter regions were used (P < 10-16, one-sided Wilcoxon signed-rank test). In contrast, if we 
randomized motif hits for each chromatin accessible region across all motifs, or if we 
randomized accessible regions for each motif, then assigned to the nearest gene, the prediction 
performance also significantly decreased (P < 10-32, one-sided Wilcoxon signed-rank test). 
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Fig. R1 (Fig. 3A): PSIOINC and STL regression models predict differential expression of held‐out genes 
and subtypes of tumor samples. Plot showing Spearman correlations between predicted and actual gene 
expression changes for all samples, sorted based on performance of the PSIONIC model using enhancer 
and promoter TF binding sites. For each method and each sample, the Spearman correlation is computed 

using 10‐fold cross‐validation on held‐out genes. Using TF binding sites from enhancer promoter as 

features (mean ρ =0.384±0.016) is significantly better than we randomized motif hits for each chromatin 

accessible region across all motifs (mean ρ = 0.144±0.022; P < 10
-32

, one-sided Wilcoxon signed-rank 

test), or if we randomized accessible regions for each motif, then assigned to the nearest gene (mean ρ 
= 0.235±0.025; P < 10

-32
, one-sided Wilcoxon signed-rank test). PSIONIC models with motif data from 

promoter and enhancer regions outperformed models where only motif hits in promoter regions were 

used (mean ρ = 0.337±0.012; P < 10
-16

, one-sided Wilcoxon signed-rank test) and STL approach based 

on ridge regression (mean ρ = 0.352±0.019; P< 10
-21

, one-sided Wilcoxon signed-rank test). TCGA 
tumor types are shown in the top bar.  

 
We could not perform cross-validation analysis based on held-out tumors since our current 
computational framework does not allow us held-out tumors completely.  That is, while MTL 
learns patient-specific models that are comparable to each other, we cannot learn a model for a 
held-out patient (i.e. without expression data for at least some genes for the patient). 
 
 

- The authors provided one example of inferred transcription factors activity to be 
prognostic based on 14 samples in uterine serous tumors (Fig 4). Also, MTF1 inferred 
activity is shown to be correlated with sensitivity to MTF1 inhibition in cell lines (Fig 5). 
However, these are fairly limited validation based on the number and/or analysis of the 
data presented. More evidence and validation in both analyses are recommended. 

 
Although uterine serous is a rare cancer type, we were able to perform additional ETV6 staining 
in uterine serous tumors to increase our cohort size. We updated the ETV6 survival figure (Fig. 
4A) with increased sample size. For the current analysis, 31 patients with stage III or IV UPSC 
were studied as 2 groups (patients with cytoplasmic, negative or weak / medium [score=1 or 2] 
nuclear ETV6 staining, N=20; and patients with strong [score=3] nuclear ETV6 staining, N=11) 
by Kaplan-Meier analysis and log-rank test. When we increased the sample size, we got 
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statistically more significant results (cytoplasmic or weak nuclear ETV6: median survival of 2330 
days (95% CI: 104-4556 days); stronger nuclear ETV6: median survival of 214 days (95% CI: 
53-891); log-rank P = 0.004). 

 
- The justification of selecting K=7 as the number of latent regulatory programs would 
need to be better justified. 

 
When we compare 10-fold cross validation results with different values of K, we found that 
prediction performance was stable after K = 4, with no sign of overfitting with higher K.  
However, a higher number of regulatory programs does allow PSIONIC-inferred models to 
better distinguish between tumors of distinct subtypes (Fig. R3, Supplementary Figure 4). 
Therefore, K = 7 seems like a reasonable choice for optimizing both overall prediction 
performance and capturing tumor-type specific components of the regulatory models.  We have 
added this justification to the text. 
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Fig. R2 (Supplementary Figure 4): t-SNE projections of inferred TF activities with varying K values. 10-
fold cross validation results, reported as mean Spearman correlation values, are: K = 2: 0.383±0.019; K = 
3: 0.383±0.016; K = 4: 0.384±0.016; K = 5: 0.384±0.016; K = 6: 0.384±0.016; K = 7: 0.384±0.016; K = 8: 
0.384±0.016; K = 9: 0.384±0.016. 
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- Inferred activities of TFs were linked to survival using cox proportional hazards 
regression model. While this analysis should be univariate, it is mentioned that the stage 
of the tumor was used as an additional covariate.  

 
We added clinical stage and age as additional covariates in order to show inferred activities of 
TFs associated with survival after controlling for these factors. We have clarified this in the text. 
 

Significant association of TFs with outcome has been claimed while no known TFs (ER, 
HER1 or cytokeratin based on this 
paper: http://clincancerres.aacrjournals.org/content/10/16/5367.full-text.pdf) for basal 
breast cancer are reported in the current manuscript. The authors should address this 
discrepancy.   

 
Previous immunohistochemical analyses of HOXB91 and ZEB12 showed that the expression 
of these TFs was significantly associated with prognosis of triple-negative breast cancer 
patients, consistent with our result. In clinical breast cancer specimens, Zhang et al. showed 
that SOX4 was abnormally overexpressed and correlated with the triple-negative breast 
cancer subtype (ER-/PR-/HER2-)3. 
 
We have performed new immunohistochemical analyses in primary tumor samples from 
MSKCC patients with basal breast cancer (n = 45) for MITF to validate the localization of this 
PSIONIC-identified prognostic TF marker. MITF inferred activity separated patients into high- 
and low-risk groups in BASAL-BRCA (FDR = 0.011, Cox analysis). Indeed, tissue microarray 
analyses in clinically-annotated primary basal breast tumor samples (n = 45) validated MITF 
positivity in tumor cells and revealed a significant association between MITF expression and 
patient survival (log-rank test, P < 0.006), with median survival of 1208 and 2406 days for the 
positive and negative staining groups, respectively (see Kaplan-Meier survival curve and 
representative MITF positive staining in basal breast cancer patients in Fig. R4-6A, B. MITF is a 
key TF in melanocyte development and differentiation and a diagnostic biomarker for metastatic 
melanoma4. However, the role of MITF in non-melanoma cancer cells, including basal breast 
cancer, is largely undefined.  Thus, we next sought to functionally validate PSIONIC-predicted 
MITF activity in basal breast cancer cells.  
 
To this end, we generated inducible shRNA vectors5 targeting MITF and evaluated their impact 
on basal breast cancer gene expression. Potent shRNA-driven MITF downregulation was 
confirmed in both MDA-MB-436 basal breast cancer cells and SK-Mel-28 melanoma cells with 
known high MITF levels (Supplementary Figure 9A-C). RNA-seq following MITF silencing 
revealed an effect on gene expression with 58 consistently down-regulated and 103 consistently 
up-regulated genes (adjusted P-value < 0.05 and fold change > 2) in MDA-MB-436 cells 
transduced with two independent MITF shRNAs (Fig. 6C; Supplementary Table 6). 
Interestingly, commonly down-regulated genes included c-Myc and c-Myc target genes, as well 
as additional pro-oncogenic factors such as IL1B, NT5E (CD73) and other molecules with 
functions in tumor immune escape (Fig. R4-6D, Supplementary Table 7-8)6,7 , which were 
validated by qPCR (Fig. S9C). Commonly upregulated genes were enriched in ontology terms 
associated with immune activation (defensins, complement, IFN, IL15, CCL2) and cell adhesion 
(e.g. SVEP1) (Fig. R4-6D, Supplementary Table 7-8, Supplementary Figure 9D). These 
effects were not associated with changes in the proliferation rate of MDA-MB-436 cells in vitro 
(not shown) yet are suggestive of an in vivo role for MITF in the regulation of cancer – 
microenvironment crosstalk in basal breast cancer. Importantly, most differentially expressed 
genes (DEGs) identified in MDA-MB-436 upon MITF suppression correlated with PSIONIC-

http://clincancerres.aacrjournals.org/content/10/16/5367.full-text.pdf
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inferred MITF activity across multiple basal breast cancer cell lines (n = 29; 75 out of 161 DEG, 
~47%, |ρ| > 0.4, Fig. 6E) as well as across patient samples (n = 92; 43 out of 161 DEG, ~27%, 
|ρ| > 0.4).   Together, these results validate the prediction made by PSIONIC on MITF activity 
and gene regulation in basal breast cancer. 
 

 
Fig. R4 (Fig. 6). Clinical and in vitro validation of MITF in basal breast cancer.  
(A) Kaplan-Meier plot for basal breast cancer patients stratified by MITF staining score. Patient samples 
(n = 45) were divided into two groups based on MITF positivity (n=10) and negativity (n= 35) in nuclei or 
cytoplasm staining. A significant difference in survival was observed between the groups (log-rank test, P 
= 0.006). The median survival was 1208 days for positive staining group and 2406 days  for negative 
staining group. (B) Representative image of IHC staining with MITF antibody on a primary basal breast 
cancer tumor. (C) Volcano plot depicting the changes in representation (log2 fold change; x-axis) and 
significance (-log10 adjusted P-value; y-axis) of Mitf shRNA versus dox-inducible Ren expressing MDA-
MB-436 cells at day 17. (D)  Hallmarks of cancer and REACTOME gene sets analyzed from the 
transcriptome analysis comparing MDA-MB-436 cells transduced with two independent MITF shRNAs 
and control. Enrichment score (ES) is shown. (E) RNA-seq expression (row-normalized) for the subset of 
differentially expressed genes where gene expression correlated with PSIONIC-inferred MITF activity 

across breast cancer cell lines target genes with |ρ| > 0.4 shown). Red labels indicate positive 

correlation, blue labels indicate negative correlation. Bold labels indicate the existence of correlation in 
TCGA BASAL-BRCA tumors. 

 
 

 

 
 
- The authors mentioned training PSIONIC model on cell lines from CCLE. No validation 
and robustness for this analysis is reported.  

 



 9 

We have added 10-fold cross validation analysis for models on cell lines from CCLE in 
Supplementary Figure 6. As shown in the Fig. R5, in 10‐fold cross‐validation experiments on 

held‐out genes, we obtained a mean Spearman rank correlation between predicted and 
measured gene expression changes of 0.387, a modest but highly significant result relative to 
baseline methods. In particular, we obtained significantly better regression performance than a 
STL approach based on ridge regression (P < 10-21, one-sided Wilcoxon signed-rank test). 
Similarly, our models with motif data from promoter and enhancer regions outperformed models 
where only motif hits in promoter regions were used (P < 10-16, one-sided Wilcoxon signed-rank 
test). In contrast, if we randomized motif hits for each chromatin accessible region across all 
motifs, or if we randomized accessible regions for each motif, then assigned to the nearest 
gene, the prediction performance also significantly decreased (P < 10-32, one-sided Wilcoxon 
signed-rank test). 
 
 

 
Fig. R5 (Supplementary Figure 6): PSIONIC and STL regression models predict differential expression 

of held‐out genes and subtypes of cell lines from CCLE. Plot showing Spearman correlations between 

predicted and actual gene expression changes for all samples, sorted based on performance of the 
PSIONIC model using enhancer and promoter TF binding sites. For each method and each cell line, the 
Spearman correlation is computed using 10-fold cross-validation on held-out genes. Using TF binding 

sites from enhancer promoter as features (mean ρ = 0.387± 0.018) is significantly better than we 

randomized motif hits for each chromatin accessible region across all motifs (mean ρ = 0.116± 0.007; P 
< 10

-32
, one-sided Wilcoxon signed-rank test), or if we randomized accessible regions for each motif, then 

assigned to the nearest gene (mean ρ =  0.128± 0.014; P <  10
-32

, one-sided Wilcoxon signed-rank test). 
PSIONIC models with motif data from promoter and enhancer regions outperformed models where only 

motif hits in promoter regions were used (mean ρ = 0.364± 0.016; P < 10
-16

, one-sided Wilcoxon signed-

rank test) and STL approach based on ridge regression (mean ρ = 0.352± 021; P < 10
-21

, one-sided 
Wilcoxon signed-rank test). TCGA tumor types are shown in the top bar. 

Also the concordance with the tumor inferred regulatory models need to be discussed in 
further details. 

 
We mean centered tumor and cell line inferred transcription factor activities (W) and we use t-
SNE to cluster profile specific regulatory models. As can be seen from Supplementary Figure 
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5/Fig. R6, regulatory models for cell lines to some extent recapitulated patient-specific tumor 
regulatory models (Supplementary Figure S5). Importantly, cell line models as well as tumor 
models were clustered mostly within themselves. For example, ovarian cell line models as 
indicated in orange plus symbols clustered mostly with OV tumors. 
 

 
 
 
 
Fig. R6 (Supplementary Figure 5): t-SNE projections of mean centered inferred TF activities for TCGA 
patients (as denoted with squares) and CCLE cell lines (as denoted with plus sign).  

 
- MTF1 inferred activity is mentioned to be associated with growth rate (Fig 5) while no 
correlation is reported for this analysis. 

 
We had planned to include this correlation value in the original supplementary document and 
apologize for the oversight. We updated the text as below as well as Fig. 5: “MTF1 inferred 
activity was significantly associated with growth rate inhibition by Spearman correlation analysis 
(P < 10−2 for these cell lines, ρ = 0.795).” 
 
 

 
 
Reviewer #2  

 
The manuscript describes the identification of TFs in tumorigenesis. Authors use ATAC-
seq in tumor cell lines to map changes in accessibility indicative of differences in TF 
binding and relate this information to gene expression measured by RNA-seq in primary 
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tumors using a novel computational model. Using this approach, authors confirm some 
previous findings and identify new TFs associated with patient survival. These factors 
could be used as therapeutic targets, and authors attempt to prove this by showing that 
inhibition of MTF1 decreases growth rates in tumor cell lines in which this factor is 
expressed at higher levels. The results presented here, including computational 
strategies, are interesting and could potentially give important insights into personalized 
cancer treatment.  

 
We appreciate that the reviewer finds our computational strategy and results interesting. 

 
Ideally, as described below, the ATAC-seq experiments should have been done using 
cells from the original tumors, but I realize that this may be difficult to accomplish without 
access to the original samples. The following are mostly minor comments asking for 
clarification of some important points: 
 
1. Authors used ATAC-seq information obtained in cell lines to compare to RNA-seq 
obtained from patient samples. Cell lines have been selected for growth in culture, and 
they may be expressing transcription factors not present in the original tumors.  
 
What is known about these cell lines and how well they compare to the original tumors?  
Authors should comment on the appropriateness of this comparison.  

 
In this study, we chose cell lines widely used as representative of corresponding tumor types 
depending on availability to our group.  In several cases, we are providing the first epigenomic 
characterization of these cell line models. 
 
Endometrial endometrioid cell lines. Ishikawa and RL-95-2 derived from type I and KLE and 
AN3CA derived from type II endometrial carcinomas tumors have been widely used as models 
to investigate molecular genetics and mechanisms underlying their development, progression 
and response to therapeutics8. KLE and AN3CA cells, originating from peritoneal and lymph 
node metastases, respectively, and RL-95-2 cells derived from a moderately differentiated 
(Grade 2) endometrial adenosquamous carcinoma. Ishikawa cells were established from the 
epithelial component of a moderately differentiated, stage 2, endometrial adenocarcinoma.  
 
Ovarian cell lines. CAOV3 and OVCAR8 have been widely used as representatives of high-
grade serous cancer. CAOV3 and OVCAR8 possess TP53 mutations and substantial copy-
number changes, key characteristics of high grade serous ovarian cancer (HGSOC).  
 

Uterine serous cell lines. ARK1, ARK2, ACI-158 and ACI-126 are the main uterine serous 
(UPSC) cell lines. However, they are not commercially available.  Dr. John I. Risinger kindly 
sent us the ACI158 and ACI126 cell lines. Hence, we chose these two cell lines for uterine 
serous cancer. 
 
Uterine carcinosarcoma cell lines. JHUCS-1 and SNU685 are uterine carcinoma cell lines 
available to our group. JHUCS-1 was established from a carcinosarcoma (malignant mixed 
mesodermal tumor) of the uterus that was surgically removed from a 57-year-old Japanese 
woman9. SNU-685 was derived from uterine malignant mixed mullerian tumor10. 
 
In order to investigate how well these cell lines compare to primary tumors, we used recently 
published ATAC-seq profiles of tumor samples from TCGA11 including 13 UCEC-ENDO (24 with 
replicates) and 15 BRCA-BASAL (30 with replicates). First, we examined patterns of gain or 
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loss of chromatin accessible regions between endometrial and basal breast cancer cell lines 
(FDR < 10-4, log2(FC) > 3).  We identified 368 peaks that were more accessible in basal breast 
cancer cell lines and 366 peaks more accessible in endometrial cell lines. Currently only bigwig 
files are publicly available for TCGA ATAC-seq but not raw data. We extracted the sum of 

ATAC-seq signals  0.5kb from peak center for differentially accessible cell line peak regions for 
patients from these bigwig files. Consistent with our cell line data, high accessibility regions in 
breast cancer cell lines displayed significantly higher accessibility in BRCA-BASAL patients 
compared to UCEC-ENDO (P < 10−4, one-sided Wilcoxon signed-rank test).  Similarly, high 
accessibility regions in uterine endometrioid cell lines showed significantly higher accessibility in 
UCEC-ENDO patients compared to BRCA-BASAL (P = 0.00016, one-sided Wilcoxon signed-
rank test) as shown in Fig. R7.  

 
 
Fig. R7 (Supplementary Figure 1): Comparison of ATAC-seq profiles of BRCA-BASAL and UCEC-
ENDO tumors in diffrential chromatin accecibility  regions from basal breast and endometrial cell lines: (A) 
BRCA-BASAL tumors have significantly higher sum of ATAC-seq signal compared to UCEC-ENDO 
tumors at loci with increased chromatin accessibility in  basal breast cancer cell lines compared to 
endometrial cell lines (P<10

−4
, one-sided Wilcoxon signed-rank test); (B) UCEC-ENDO tumors have 

significantly higher sum of ATAC-seq signal compared to BRCA-BASAL tumors at loci with increased 
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chromatin accessibility in endometrial cell lines compared to basal breast cancer cell lines (P = 0.00016, 
one-sided Wilcoxon signed-rank test) 

 
Is it expected that ovarian and breast cancer cell lines have similar ATAC-seq profiles? 

 
The TCGA Research Network uncovered notable genomic similarities between the basal-like 
breast cancer subtype and serous ovarian cancer. The mutation spectrum, or types and 
frequencies of genomic mutations, were largely the same in both cancer types (e.g. widespread 
copy number alterations and frequent mutations in TP53 gene).  
 

2. Distances in kb and scales for the different tracks are missing in Figure 2B 
 
We updated Fig. 2B. All y-axis scales now range from 0–235 in normalized arbitrary units. 
The x-axis scale is indicated by the scale bars. 

 
3. Page 7. Authors should comment on whether differences in TF signal between cell 
lines is due to the tumor type or the tissue of origin.  

 
In some cases the TF signal between cell lines might indeed be due to the tissue of origin.  To 
look more closely at this issue, we examined publicly available chromatin accessibility data in 
relevant normal tissues. 
 
We generated a reference chromatin accessibility atlas for normal uterine (n=1), ovarian (n=3), 
and breast (n=1) tissue using DNase-seq data by the Roadmap Epigenomics project12 and 
assembled an atlas of ~397K accessibility regions. We performed motif analysis in each 
chromatin accessible regions in the common atlas. Then, we examined the patterns of gain or 
loss of chromatin accessible regions between each pair of tumor types by performing pairwise 
differential read count analysis on accessible regions. 
 

 
Fig. R8: Pairwise comparison of transcription factor motifs enriched in differentially accessible regions in 
normal tissues Uterus vs Ovary. Volcano plot showing effect size versus –log10(P), using a Bonferroni 
correction to adjust P values for each plot. TF symbol annotations are written where the adjusted  
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P < 10
5
. The foreground occurrence is the number of peaks containing a particular TF motif within the 

group of differential accessible peaks according to log2 fold-change read counts, respectively. The 
background occurrence is the number of peaks containing a particular TF motif found among all the 
differentially accessible peaks. 
 

Are HNF1 motifs more accessible in normal endometrial cells? 
 
HNF1 motifs are not more accessible in normal uterus cells from the Roadmap Epigenomics 
project when we performed pairwise analysis. We also performed motif analysis on 144,535 
peak regions from these uterus tissue samples; interestingly, only 329 peak regions contain the 
HIF1A motif and 291 regions contain HIF1B motif. 
 
 

4. Page 11, bottom. What is known about the role of MTF1 and how does this TF control 
cell growth? 
 

The metal response element-binding transcription factor-1 (MTF-1) is a ubiquitously expressed 
transcription factor that is activated by heavy metals, redox stresses, growth factors and 
cytokines13. Under normal conditions, MTF1 localizes both to the nucleus and the 
cytoplasm but accumulates in the nucleus upon these diverse stresses. After binding 
DNA, MTF1 recruits different co-regulators and often relies on other transcription factors such 
as p300 /CBP, Sp1, and HIF1α for coordinated target gene expression. Its established targets 
have important roles in metal homeostasis, embryonic development, tumor progression, and 
oxidative stress or hypoxia signaling. Importantly, inhibition of MTF1 induces the expression of 
tumor suppressor factor Kruppel like factor 4 (KLF4)14. This leads to the downregulation of 
cyclin D1, blocking cell cycle progression and proliferation. MTF1 inhibitor LOR-253 enhances 
apoptosis induced by cisplatin in both SKOV3 and OVCAR3 cells15, is cytotoxic to Raji and 
Raji/253R lymphoma cell lines16, and suppresses the proliferation of acute myeloid leukemia 
(AML) cell lines17. A clinical trial testing LOR-253 in patients with AML and myelodysplastic 
syndrome is currently ongoing (ClinicalTrials.gov: NCT02267863).  
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I only had minor comments asking authors to clarify some points I felt there were important for 
the non-expert to understand the manuscript. The authors have addressed all these points in the 
response to the reviewers. However, it appears that authors did not integrate this information in 
the manuscript. For example, I couldn't find a place in the manuscript where the authors briefly 
describe the characteristics and properties of the cell lines, so that the reader can understand the 
significance of the results obtained with these cell lines in the context of different tumor types. 
Similarly, I couldn't find where the authors explained in the revised manuscript if the differences in 
TF signal between cell lines is due to the tumor type or the tissue of origin. I apologize if it is in the 
manuscript and I didn't see it. Other than this, I think the manuscript is appropriate for publication 
in Nat Comm  
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The manuscript presents a new computational method, PSIONIC, that combines chromatin 
accessibility with gene expression data to better understand the effect of enhancers in 
transcriptional programs in cancer. The idea of leveraging epigenomic data, as well as the use of 
Multi task learning, is novel and the results presented in the article are promising. The authors go 
one step further and experimentally validate the ability of two PSIONIC predicted transcription 
factors (ETV6 and MITF) to influence prognostic outcome. This article has the potential of 
influencing personalized cancer therapy. The authors performed extensive validation studies in 
response to the first round of reviews. I find that they have adequately addressed the critiques 
and therefore I recommend this manuscript for publication.  



REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have addressed my concerns. 
 
 
Reviewer #2 (Remarks to the Author): 
 
I only had minor comments asking authors to clarify some points I felt there were important for 
the non-expert to understand the manuscript. The authors have addressed all these points in 
the response to the reviewers. However, it appears that authors did not integrate this 
information in the manuscript.  
 
For example, I couldn't find a place in the manuscript where the authors briefly describe the 
characteristics and properties of the cell lines, so that the reader can understand the 
significance of the results obtained with these cell lines in the context of different tumor types.  
 
We added a section on Cell line selection for ATAC-seq to the Methods.  For convenience, we 
repeat the new text below: 
 

Cell line selection for ATAC-seq 
In this study, we chose cell lines widely used as representative of corresponding tumor 
types depending on availability to our group.  In several cases, we are providing the first 
epigenomic characterization of these cell line models. ATAC-seq libraries generated 
from basal breast (MDA-MB-231, MDA-MB-436) high-grade serous ovarian (OVCAR8, 
Caov3), uterine carcinosarcoma (JHUCS, SNU685), endometrial endometrioid (AN3-
CA, KLE, Ishikawa, RL95-2) and serous carcinoma (ACI-126, ACI-158) cell lines. 
Gynecologic cell lines OVCAR8, Caov3, JHUCS, SNU685, AN3-CA, KLE, Ishikawa, 
and RL95-2 were supplied by Douglas A. Levine. Uterine serous cell lines ACI-126 and 
ACI-158 were kindly supplied by John I. Risinger from Michigan State University. Basal 
breast cancer cell lines MDA-MB-231 and MDA-MB-436 were acquired from ATCC.  
The cell lines have been tested negative for mycoplasma contamination. 

 
Briefly, Ishikawa and RL-95-2 derived from type I and KLE and AN3CA derived from 
type II endometrial carcinomas tumors have been widely used as models to investigate 
molecular genetics and mechanisms underlying their development, progression and 
response to therapeutics1. KLE and AN3CA cells, originating from peritoneal and lymph 
node metastases, respectively, and RL-95-2 cells derived from a moderately 
differentiated (Grade 2) endometrial adenosquamous carcinoma. Ishikawa cells were 
established from the epithelial component of a moderately differentiated, stage 2, 
endometrial adenocarcinoma. CAOV3 and OVCAR8 have been widely used as 
representatives of high-grade serous cancer. CAOV3 and OVCAR8 
possess TP53 mutations and substantial copy-number changes, key characteristics of high 
grade serous ovarian cancer (HGSOC).  ACI-158 and ACI-126 are the main uterine 
serous (UPSC) cell lines. JHUCS-1 was established from a carcinosarcoma (malignant 
mixed mesodermal tumor) of the uterus that was surgically removed from a 57-year-old 
Japanese woman2. SNU-685 was derived from uterine malignant mixed mullerian tumor3. 



 
Similarly, I couldn't find where the authors explained in the revised manuscript if the differences 
in TF signal between cell lines is due to the tumor type or the tissue of origin.  
 
We tried to clarify this point by adding the section below to Results: 
 

In some cases the TF signal between cell lines might be due to the tissue of origin.  To 
look more closely at this issue, we examined publicly available chromatin accessibility 
data in relevant normal tissues. We generated a reference chromatin accessibility atlas for 
normal uterine (n=1), ovarian (n=3), and breast (n=1) tissue using DNase-seq data by the 
Roadmap Epigenomics project4 and assembled an atlas of ~397K accessibility regions. 
We performed motif analysis in each chromatin accessible regions in the common atlas. 
Then, we examined the patterns of gain or loss of chromatin accessible regions between 
each pair of tumor types by performing pairwise differential read count analysis on 
accessible regions. While several FOS family motifs and SMARCC1 are enriched both in 
normal uterus vs. ovary as well as in the comparison of uterine serous vs. ovarian serous, 
in most cases the motifs identified by differential accessibility in cancer cell lines did not 
arise from the tissue of origin based on available normal tissue accessibility data 
(Supplementary Figure 4) 

 
 

 
Supplementary Figure 4: Pairwise comparison of transcription factor motifs enriched in differentially accessible 
regions in normal tissues Uterus vs Ovary. Volcano plot showing effect size versus –log10(P), using a Bonferroni 
correction to adjust P values for each plot. TF symbol annotations are written where the adjusted P < 105. The 
foreground occurrence is the number of peaks containing a particular TF motif within the group of differential 
accessible peaks according to log2 fold-change read counts, respectively. The background occurrence is the number 
of peaks containing a particular TF motif found among all the differentially accessible peaks. 
 
 
I apologize if it is in the manuscript and I didn't see it. Other than this, I think the manuscript is 
appropriate for publication in Nat Comm 
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Reviewer #3 (Remarks to the Author): 
 
The manuscript presents a new computational method, PSIONIC, that combines chromatin 
accessibility with gene expression data to better understand the effect of enhancers in 
transcriptional programs in cancer. The idea of leveraging epigenomic data, as well as the use 
of Multi task learning, is novel and the results presented in the article are promising. The 
authors go one step further and experimentally validate the ability of two PSIONIC predicted 
transcription factors (ETV6 and MITF) to influence prognostic outcome. This article has the 
potential of influencing personalized cancer therapy. The authors performed extensive validation 
studies in response to the first round of reviews. I find that they have adequately addressed the 
critiques and therefore I recommend this manuscript for publication. 
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