
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

My main concerns about the manuscript titled “Ageing affects DNA methylation drift and 
transcriptional cell-to-cell variability in muscle stem cells” are the following:  

 

1. The paper is very concise and lacks some important details. For example, it is not clear how 
many young and old animals were tested in this experiment. I can only judge based on the figures 
but they also not consistent (Fig 1D and E; S1B).  

2. One of the main conclusions is that “Epigenetic drift, by accumulation of stochastic DNA 
methylation changes in promoters, is a substantial driver of the degradation of coherent 
transcriptional networks” (taken from the Abstract). Since investigated muscle stem cells are 
mitotically inactive, where the epigenetic drift is coming from? Isn’t it more likely that transcriptomic 
networks are the primary cause of instability and stochastic age-dependent changes, which may 
differ across different cells. And DNA methylation/demethylation mRNAs and enzymes, which are 
part of the transcriptomes and proteomes, have only secondary effect? In general, the mechanisms 
of DNA methylation changes/drift in mitotically inactive cells are not clear and should be discussed in 
greater detail. The authors attempted to add some information on the DNA methylation machinery 
but it is not clear what is shown in Fig S5. What is meant by “expression levels of … the enzymes”? 
What are the “normalized counts” and do they really differ by 10 orders of magnitude??  

3. In connection to the previous comment, is it really the case that Pax7 gene expression is a 
sufficient indicator of mitotic quiescence? Is it possible that ageing stem cells would become more 
mitotically active despite high Pax7 gene expression, and this would be the actual reason for the 
increased variation of DNA methylation in the ageing stem cells?  

4. It would be very helpful, actually necessary, to show the degrees of technical variation. How 
technical variation compares to the biological differences within/between old and young cell 
samples? Fig 1D shows quite significant differences between the young cell samples, where one 
sample shows the highest correlation coefficients but two other young samples are in the middle 
toward the old samples. What would be the distribution of correlation coefficients if multiple 
cohorts of cells from the same animal are investigate separately (from the cell enrichment step) and 
then compared to each other?  

5. I am not sure if the experimental design allowed the authors to differentiated transcriptional 
variability originating from the cell subpopulations vs purely stochastic process.  

6. GO analyses do not provide much insight and can be omitted or shortened.  

7. The study would have been much more interesting if the same experiment was performed 
on differentiated myocytes, and their transriptomic and epigenomic changes compared to the ones 



in the muscle stem cells. The authors noted that increased cell-to-cell variability has been detected 
in aging non-stem cells but data exist for either differentiated cells or stems cells but not both. It 
remains unclear to what extent ageing effects in differentiated cells are transmitted from the stem 
cells and to what extent such effects are accumulated during the differentiation .  

 

 

 

Reviewer #2 (Remarks to the Author):  

 

In this manuscript, Hernando-Herraez et al. investigate how transcriptomic and epigenetic variability 
change with age in mouse muscle stem cells. By employing scM&T-seq on FACS-sorted muscle 
satellite cells, the authors show that cell-to-cell transcriptional and methylation heterogeneity is 
increased in older mice compared to younger mice. Functionally, younger cells and older cells (with 
transcriptomes similar to younger cells) were enriched for genes involved in the extracellular matrix; 
older cells with divergent transcriptomes were more enriched for processes involved in translation, 
hinting at alterations in niche-specific interactions. Additionally, they show that DNA methylation 
increases slightly with age, primarily at active genes and among transposable elements (TEs), and 
that different genomic elements (such as promoters or CpG islands) have different levels of 
methylation heterogeneity. With age, methylation heterogeneity of most of these genomic elements 
increases, with the exception of TEs, whose heterogeneity decreases. Sites that had increased levels 
of methylation with age were found to decrease in methylation heterogeneity. Finally, the authors 
show that increased promoter methylation heterogeneity is correlated with increased 
transcriptional heterogeneity.  

 

This article describes an interesting and invaluable resource, and a unique dataset at the single cell 
level, which will be of broad interest to the aging and epigenomics field. A couple of points need to 
be further clarified, and some complementary analyses need to be performed for reproducibility and 
statistical soundness.  

 

Major comments:  

1. The authors describe that old cells have notably more cells with dropouts than young cells. It 
would be important to check whether this has any relationship with library size (UMI/read counts) or 
PCR duplication per cell (which may be high with 25 cycles of PCR), which was not investigated, 
rather than just whether this has a link to gene expression levels.  

 



2. For high dimensionality single cell data, PCA (Fig 1B) is not the best dimensionality reduction 
method to detect structure in the data, and t-SNE is the usual tool recommended. It would be 
important to include t-SNE analyses for the scRNA-seq and scMethylome, coupled with cluster 
detection methods (e.g. SC3, PAGODA) to confirm that the purified cells constitute an homogeneous 
population, and not an assortment of distinct cell states, which could explain the observed results. If 
multiple cell populations are detected, the downstream analyses need to be modified to account for 
this (repeated in each cell subcluster).  

 

3. The authors mention the use of DNAme for the epigenetic clock described by Steve Horvath’s 
work. A mouse compatible DNAme age clock has recently been published (PMID: 30348905). It 
would be important to see chat can be said of the distribution of the DNAme age of each cell in the 
study, or if the coverage of each cell is insufficient, the age of the aggregated sample (each young 
and old animal). 

 

4. Single cell profiling experiments are definitely costly and time consuming, so this reviewer 
understands why only 3 young vs. 2 old samples are analyzed. However, since variability between 
cells is the variable of interest, we feel that the authors need to discuss the potential sampling bias 
and how this may or may not hold with more animals.  

 

5. The Pax7-nGFP model is very elegant and help purify cells of interest readily. However, it is 
important to note that this reporter gene is subject to the same variability with age than 
endogenous genes (i.e. since the GFP-locus is likely to also experience cell-to-cell variability in its 
transcription/methylation). Thus, I am concerned that in the old samples, a biased sample of cell 
may have been obtained by selecting based on high levels of GFP expression, which may or may not, 
by selecting for a specific subpopulation, extend to other loci. The authors need to address this 
caveat in the discussion.  

 

Minor comments:  

1. The authors need to specify the sex of the mice used, the genetic background for the Pax7-nGFP 
transgene, and the time of the day at which mice were euthanized (to account for circadian gene 
expression influence). Whether a single sex, isolated samples from each sex, or pooled sex samples 
were used needs to be explicated.  

 

 

 

Reviewer #3 (Remarks to the Author):  



 

In this manuscript, Hernando-Herraez et Al. have used single cell RNA seq combined with single cell 
bisulfite sequencing to examine epigenetic drift in aging satellite cells. Using satellite cells from 
young (2 months) or old (24 months) mice, transcriptome analysis revealed no differences in 
expression of myogenic regulatory factors Pax7, Myf5, and Myod1, but did show upregulation in 
Fosb, Egr1, and Mmp2 in the old satellite cell population. Further intra-population analysis revealed 
increased transcriptional heterogeneity in the aged satellite cell population, which the authors used 
to classify the old satellite cells into two classes – (i) those closely resembling the homogenous 
young satellite cells characterized by increased expression of genes relating to ECM functions, and 
(ii) those that differed more than the young satellite cells and exhibited increased peptide and 
protein biosynthesis genes. The authors further revealed that genes exhibiting the highest amount 
of age-related heterogeneity were collagen genes (Col4a2, Col5a3, Col4a1) and extracellular matrix 
related genes (Dag1, Sparc, Cdh15, Itgb1). Collectively, the authors propose that this age-related 
transcriptional heterogeneity likely results in reduced cell-niche interactions, causing satellite cells to 
exit quiescence.  

Global DNA methylation analysis did not identify distinct subpopulations between the young and old 
satellite cell populations. To refine their results, the authors proceeded to intrapopulation DNA 
methylation analysis which revealed that different genomic regions expressed methylation 
heterogeneity consistent with age – specifically, LINE-1 elements became more homogenous with 
age whereas regions associated with H3K27me3 expressed increased heterogeneity with age. 
Because H3K27me3 regions are associated with genomic regions that are poised for rapid 
expression, increased methylation heterogeneity at the epigenetic level could be a likely factor 
resulting in the previously observed age-related increased transcriptional heterogeneity. Lastly, the 
authors revealed that increased promoter methylation heterogeneity arising from aging is correlated 
to increased transcriptional heterogeneity, effectively confirming that epigenetic drift results in 
increased transcriptional heterogeneity during satellite cell aging. Based on these results, they 
conclude that age related drift in DNA methylation leads to loss of a coherent transcriptional 
network.  

Overall this is an very interesting manuscript that makes use of a combination of single cell 
technologies to provide strong evidence for the genetic drift in quiescent stem cells during aging. 
While the authors have already published the combination of single cell RNA-Seq and single cell 
methylation sequencing (scM&T-seq), this is the first application of the technique to understanding a 
biological problem. In particular, their finding that loci that lose methylation show greater 
heterogeneity of methylation is interesting as it suggests that this mechanism might drive the 
epigenetic drift. Elucidating the mechanism of the heterogeneity of methylation is beyond the scope 
of this manuscript but is likely to be of interest to many going forward. The manuscript looks very 
polished, and I have only minor comments:  

 

1. The authors conclude in the abstract that the degradation of coherent transcriptional networks 
have a consequence on stem cell functional decline during aging. While it is agreed that the 
identified ECM-related genes are showing altered expression with aging, the relationship to 
functional decline is only inferred. This is fine to discuss in the main text, but should not be stated as 



fact in the final sentence of the abstract. Please modify the final sentence of the abstract to remove 
the words “…with consequent stem cell functional decline…”  

 

2. The methods section refers to papers rather than providing details on the single cell RNA seq 
conditions. It would be useful for the authors to provide a line or two of detail of how the barcoding 
is introduced with the beads to allow batch sequencing of the samples (also perhaps mentioning 
how transcripts from each mouse were distinguished).  

 

 

 

 

Reviewer #4 (Remarks to the Author):  

 

In this manuscript, Hernando-Herraez et al analyzed transcriptional heterogeneity together with 
alterations of DNA methylation with age by using single-cell transcriptome and DNA methylome 
profiling of mouse PAX7-high-expression muscle progenitor/stem cells. The authors suggested that 
ageing uncoordinatedly increases DNA methylation and transcriptional variability and the epigenetic 
drift might driver the degradation of coherent transcriptional network. Although the topic of this 
paper is interesting and the combination of single-cell RNA and DNA methylation sequencing is 
technically fancy, unfortunately, I found no conclusion in this paper could be sufficiently supported 
by evidences which were provided. In the whole manuscript, the authors did not provide even a 
single experimental validation, which made the only bioinformatics analysis quite superficial. The 
writing and organization of the figures was also quite sloppy. Several of my major concerns and 
suggestions are discussed as follows:  

 

Main points:  

1. One of the main weak points of the paper is none of the data presented in the paper was 
conclusive, or at least supported a causative logic reasoning. Instead of, I can only see very weak 
correlations or independent pieces of data. For instance, as a quite simple paper, the authors 
emphasize in the abstract and the last paragraph with one of the few conclusive sentences as "we 
show that epigenetic drift, or the uncoordinated accumulation of methylation changes in promoters, 
contributes to the increased transcriptional variability with age". However, in the manuscript, 
epigenetic drift and transcriptional variability, at best, was just two separated sections of data (with 
weak evidences. see my minor points below). The authors did not present even a single evidence to 
prove the causative link of them. To improve it, the authors should perform biological experiments, 
for instance, using genetic animal models and/or at least cell models to modify methylation and 



check the transcriptional changes. As this is the key point of the paper, the suggested experimental 
validation is essential.  

2. I was concerning about the quality of cell isolation and library preparation, thereafter data 
quality. As show in Tab S2, the cells that passed QC was very low. In some plates/individuals no cell 
passed QC, and this happened in both single-cell RNA and DNA methylation sequencing. Can authors 
explain it? Furthermore, I suggest the authors provide detailed information of the QC and data pre-
process, such as mean and distribution of genes/reads, mitochondrial genes ratio of each single cell 
experiments.  

3. I was also quite surprised that the authors only analyzed the PAX7-high expression cells. The 
power of the single-cell techniques is exactly to identify the cell heterogeneity of complex cell 
population. From the data that the authors presented, PAX7-high expression cells seem to be quite 
unique from cell clustering. The authors are therefore suggested to analyze all PAX7 positive cells, as 
it might significantly improve the impact of the paper. This is especially true, as the title of the paper 
reads "Ageing affects DNA methylation and transcriptional cell-to-cell variability in muscle stem 
cells".  

4. In several sections, such as Fig. 1C, 2A, the authors only showed single genes as examples, 
the authors should analyze with GO or KEGG etc to check systemic pathway/function change, but 
instead of giving a few simple genes to suggest a pathway change.  

 

Minor points:  

1. The authors concluded, from figure1B, that no global differences with age and absence of 
sequencing-related batch effects. From my point of view, this data cannot reflect the batch bias, let 
alone the clustering of cells was based on two components of PCA analysis. Is there another result to 
support this point?  

2. In figure1C, the gene expression of Myf5 which was claimed to be no difference between 
groups was actually appeared higher difference than those which were down and up regulated 
genes, such as Spry1 and Ccl19, with the same scale of axis. Is it a fallacy or other reasons? 
Therefore, again, pathway analysis is essential.  

3. In the part of analysis of DNA methylation patterns, according to all results, I think the 
difference between old and young mouse does not make sense or is not significant, so the 
conclusion that methylation changes in promoters, contributes to the increased transcriptional 
variability with age may not be compelling.  

4. Does the gene expression heterogeneity in line 87 and 88 (Col4a2, Col5a3, Col4a1, Dag1, 
Sparc, Cdh15 Itgb1) accordingly be able to see DNA methylation heterogeneity (Fig3 section)? And 
why only two genes were presented in Fig. 2A, where are the results of the other genes?  

5. The writing of the manuscript was very sloppy. Such as, Fig S1 A and B were not cited in the 
main text. And several writing examples, such as "While several reports indicate a loss of clonal 



diversity during early life stages little is known about how cell-to-cell variability at the molecular 
level is involved in stem cell ageing", a comma was missed between the word 'stages' and 'little'. 
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Reviewer #1 (Remarks to the Author): 45 

 

My main concerns about the manuscript titled “Ageing affects DNA methylation drift and transcriptional cell-

to-cell variability in muscle stem cells” are the following: 

 

1. The paper is very concise and lacks some important details. For example, it is not clear how many young 50 

and old animals were tested in this experiment. I can only judge based on the figures but they also not 

consistent (Fig 1D and E; S1B). 

 

We would like to thank the reviewer for thoroughly reading our manuscript, for their insightful comments, and 

for raising critical points. We processed eight samples for RNA-seq and six for bisulfite-sequencing. 55 

However, due to the small amount of starting material and low capture efficiency of single cell technologies, 

library preparation did not work for all our samples. After quality control, we included 4 young and 2 old 

individuals for the transcriptome analysis (samples labelled as:  young 1, young 2, young 3, young 4, old 1 

and old 2) and 2 young and 2 old individuals for the methylation analysis (samples labelled as:  young 1, 

young 5, old 1 and old 2). We have now clearly highlighted this information in the manuscript (line 72, line 60 

130, line 147, line 261, line 323, line 355 and line 372). Furthermore, we have updated Table S2 (line 714) 

which summarizes sample information and number of cells that we used for the analysis. 

 

2. One of the main conclusions is that “Epigenetic drift, by accumulation of stochastic DNA methylation 

changes in promoters, is a substantial driver of the degradation of coherent transcriptional networks” (taken 65 

from the Abstract). Since investigated muscle stem cells are mitotically inactive, where the epigenetic drift is 

coming from? Isn’t it more likely that transcriptomic networks are the primary cause of instability and 

stochastic age-dependent changes, which may differ across different cells. And DNA 

methylation/demethylation mRNAs and enzymes, which are part of the transcriptomes and proteomes, have 

only secondary effect? In general, the mechanisms of DNA methylation changes/drift in mitotically inactive 70 

cells are not clear and should be discussed in greater detail. The authors attempted to add some information 

on the DNA methylation machinery but it is not clear what is shown in Fig S5. What is meant by “expression 

levels of … the enzymes”? What are the “normalized counts” and do they really differ by 10 orders of 

magnitude?? 

 75 

We thank the reviewer for raising this point. We agree that the current experiment does not allow us to 

determine causality and we have now discussed this limitation in the manuscript (lines196-199, 242). 

Furthermore, we have carefully investigated the transcriptional changes in the key methylation and 

demethylation enzymes and clarified Figure S9 (previously Figure S5), which shows no clear differences in 

the levels of the enzymes between ages (line 185). We also observe that Dnmt3a and Tet3 show no 80 

differences in variability with age either. Variability was difficult to address for the other 

methylation/demethylation enzymes due to their low expression levels. These results suggest that age-

associated epigenetic changes are not likely to be driven by alterations at the transcriptional level in the 

quiescent state. Other factors such as protein levels or enzymatic activity during quiescence may underlie 
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the observed epigenetic changes. DNA methylation turnover has been shown to occur during the exit of 85 

pluripotency when DNMT3s and TET are co-expressed1. We hypothesized that DNA methylation turnover 

could also take place in the quiescence state and that the age-associated epigenetic alterations could result 

from errors during this turnover. Alternatively, despite the low proliferative history of these cells, we cannot 

discard the possibility that Pax7Hi cells do still enter the cell cycle occasionally and accumulate DNA 

methylation changes when replicating. We have now discussed all these hypotheses in the manuscript (lines 90 

183-194).  

 

 

3. In connection to the previous comment, is it really the case that Pax7 gene expression is a sufficient 

indicator of mitotic quiescence? Is it possible that ageing stem cells would become more mitotically active 95 

despite high Pax7 gene expression, and this would be the actual reason for the increased variation of DNA 

methylation in the ageing stem cells?  

  

We thank the reviewer for raising this point. In this study, we specifically investigated muscle stem cells 

expressing high levels of Pax7 since this is linked to our previous report that in young homeostatic muscles 100 

Pax7Hi cells were in a deep quiescent state, compared to Pax7Lo cells, which are more poised for activation2. 

Additionally, the mitotic inactivity of the Pax7Hi cells we investigated here during ageing has been inferred 

from this report and the paper from Chakkalakal et al. (Figure 1j)3, showing that during ageing, non-cycling 

muscle stem cells express higher levels of Pax7 than cycling muscle stem cells. Following the reviewer’s 

comment, we have now investigated the quiescent state of satellite cells by measuring BrdU uptake in vivo in 105 

aged and young individuals (Figure S2). When considering the total Pax7-nGFP population, old satellite cells 

were cycling less frequently than young satellite cells (p=0.0045), although the differences were small. 

However, no significant difference was observed between young and old Pax7Hi cells. Therefore, we 

conclude that transcriptional and epigenetic variability is unlikely to be driven by differences in mitotic activity.   

 110 

In addition, we applied a learning algorithm to our sc-RNA-seq data to assign a cell cycle stage to each cell4. 

As a result, we observed that (with the exception of one cell from sample Young 2) cells are unlikely to be 

cycling and show no differences between ages (Figure S1). We have included these analyses in the 

manuscript (Figure S1 and Figure S2) (lines 75-79, lines 286-300, lines 336-337). 

 115 

4. It would be very helpful, actually necessary, to show the degrees of technical variation. How technical 

variation compares to the biological differences within/between old and young cell samples? Fig 1D shows 

quite significant differences between the young cell samples, where one sample shows the highest 

correlation coefficients but two other young samples are in the middle toward the old samples. What would 

be the distribution of correlation coefficients if multiple cohorts of cells from the same animal are investigate 120 

separately (from the cell enrichment step) and then compared to each other?  

 

We completely agree that technical variability is an important issue to address. Due to the low availability of 

starting material, experimental technical replicates are not feasible in single cell studies. In order to minimize 

the effects of potential technical variability, we have used more than one individual per age and processed all 125 

samples in parallel . Furthermore, we observed no clear differences in sequencing depth (Figure S12 D) and 



4 
 

gene expression variability was calculated considering that technical variability affects mostly lowly 

expressed genes5 (Methods and Figure S13).  

 

Following the reviewer’s suggestion, we have now performed correlation analysis using cohorts of 10 cells 130 

from the same individual. Results from 1,000 iterations show that cells from old individuals are clearly less 

correlated than those from young, supporting the higher variability of older transcriptomes (Figure S3). 

Furthermore, in these 1,000 iterations the mean correlation levels of young individuals were always higher 

than the old ones (P< 0.001). We have now included these analyses in the manuscript (lines 93-96, lines 

341-342).   135 

   

5. I am not sure if the experimental design allowed the authors to differentiated transcriptional variability 

originating from the cell subpopulations vs purely stochastic process.  

 

We again thank the reviewer for the thoughtful comment. Although we interpreted the increase of variability 140 

in the absence of clear substructure as a stochastic process, we agree that undetected rare cell types or 

hidden population substructure may influence our findings. Following the reviewer’s comment, we revised 

the manuscript and toned-down our interpretations (lines 248-254). 

 

6. GO analyses do not provide much insight and can be omitted or shortened.  145 

 

We agree with the reviewer that GO analyses do not consider the gene expression values and may not be 

highly informative. However, we think it can be useful for reader to have a broader overview and biological 

feel of the results. Following the reviewer’s comment, we have shortened this part in the current version of 

the manuscript. 150 

 

7. The study would have been much more interesting if the same experiment was performed on 

differentiated myocytes, and their transriptomic and epigenomic changes compared to the ones in the 

muscle stem cells. The authors noted that increased cell-to-cell variability has been detected in aging non-

stem cells but data exist for either differentiated cells or stems cells but not both. It remains unclear to what 155 

extent ageing effects in differentiated cells are transmitted from the stem cells and to what extent such 

effects are accumulated during the differentiation.  

 

We agree with the reviewer that investigating how the observed variability affects differentiation is an 

interesting question to pursue. However, differentiated mononucleated myocytes are virtually absent from 160 

adult homeostatic resting muscles. Mononucleated myocytes can be obtained in vitro following differentiation 

of muscle stem cells, but transcriptome and epigenome data obtained from in vitro samples would be difficult 

to compare to data obtained from in vivo muscle stem cells. Otherwise, following muscle injury, quiescent 

muscle stem cells activate, give rise to proliferating committed progenitors that differentiate to post-mitotic 

myocytes, which eventually fuse together or to damaged myofibers. While FACS strategies are well 165 

established for isolating muscle stem cells or proliferating progenitors, there is currently no established 

method for isolating pure mononucleated myocytes from regenerating muscles. In addition, several reports 

indicate that a fraction of aged muscle stem cells enter senescence4 or apoptosis5,6 upon activation cues, 
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which accounts partially for the decreased regenerative capacity of aged muscles. We anticipate that 

mononucleated myocytes present in aged regenerating muscles would derive from a subset of the quiescent 170 

muscle stem cell population, that has retained ‘young-like’ proliferative and differentiation capacities. Aged 

myocytes would therefore not represent homogeneously the initial muscle stem cell population and could in 

this case be enriched in ‘young-like’ myocytes arising from ‘young-like’ muscle stem cells, that we already 

identified in our analysis. Our approach allowed us to study variability while minimising key confounder 

factors such as cell cycle or differentiation state. Nonetheless, it would be very interesting to develop a 175 

method to overcome these limitations and pursue this type of work in future studies.   

 

Reviewer #2 (Remarks to the Author): 

 

In this manuscript, Hernando-Herraez et al. investigate how transcriptomic and epigenetic variability change 180 

with age in mouse muscle stem cells. By employing scM&T-seq on FACS-sorted muscle satellite cells, the 

authors show that cell-to-cell transcriptional and methylation heterogeneity is increased in older mice 

compared to younger mice. Functionally, younger cells and older cells (with transcriptomes similar to 

younger cells) were enriched for genes involved in the extracellular matrix; older cells with divergent 

transcriptomes were more enriched for processes involved in translation, hinting at alterations in niche-185 

specific interactions. Additionally, they show that DNA methylation increases slightly with age, primarily at 

active genes and among transposable elements (TEs), and that different genomic elements (such as 

promoters or CpG islands) have different levels of methylation heterogeneity. With age, methylation 

heterogeneity of most of these genomic elements increases, with the exception of TEs, whose heterogeneity 

decreases. Sites that had increased levels of methylation with age were found to decrease in methylation 190 

heterogeneity. Finally, the authors show that increased promoter methylation heterogeneity is correlated with 

increased transcriptional heterogeneity. 

 

This article describes an interesting and invaluable resource, and a unique dataset at the single cell level, 

which will be of broad interest to the aging and epigenomics field. A couple of points need to be further 195 

clarified, and some complementary analyses need to be performed for reproducibility and statistical 

soundness. 

 

We appreciate the reviewer’s critical reading of the manuscript, concise summary of our findings and 

recognition of the relevance of this study. 200 

 

Major comments: 

1. The authors describe that old cells have notably more cells with dropouts than young cells. It would be 

important to check whether this has any relationship with library size (UMI/read counts) or PCR duplication 

per cell (which may be high with 25 cycles of PCR), which was not investigated, rather than just whether this 205 

has a link to gene expression levels. 

 

We thank the reviewer for the suggestions. Unfortunately, the combined single cell methylation and 

transcription method uses the SMART-seq2 protocol, which is a non-UMI-based method. Typically, PCR 

duplicates can also be identified as reads that align to the same genomic coordinates using reference-based 210 
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alignment. However, in the SMART-seq2 protocol full length mRNAs are reverse transcribed, pre-amplified 

and then fragmented with a Tn5 transposase.  Due to this fragmentation step, PCR duplicates that arise 

during the pre-amplification step cannot be identified by their mapping positions.  

 

We tried to minimize the effects of potential technical variation by using more than one individual per 215 

condition and processed all samples in parallel. Furthermore, we observed no clear differences in 

sequencing depth between samples (Figure S12D) and gene expression variability was calculated 

considering that technical variability affects mostly lowly expressed genes5 (Methods and Figure S13). We 

also further extended the analysis of transcriptional variability and observed consistent higher variability in 

old individuals when subsampling different cohorts of cells from the same individual (see answer to point 4 of 220 

reviewer 1 and Figure S3) (lines 94-96, lines 341-342)  

 

2. For high dimensionality single cell data, PCA (Fig 1B) is not the best dimensionality reduction method to 

detect structure in the data, and t-SNE is the usual tool recommended. It would be important to include t-

SNE analyses for the scRNA-seq and scMethylome, coupled with cluster detection methods (e.g. SC3, 225 

PAGODA) to confirm that the purified cells constitute an homogeneous population, and not an assortment of 

distinct cell states, which could explain the observed results. If multiple cell populations are detected, the 

downstream analyses need to be modified to account for this (repeated in each cell subcluster). 

  

We thank the reviewer for the comment. Following the reviewer’s comment, we have applied t-SNE on the 230 

scRNA-seq and the sc-Methylome data exploring different perplexity values. The perplexity parameter can 

be interpreted as measure of the number of neighbors for each point and it has a complex effect on the 

results. In all the scenarios, we observe that t-SNE and PCA plots show similar results, indicating no clear 

substructure of the data. Furthermore, by applying learning algorithm to our scRNA-seq data, we have 

assigned a cell cycle stage to each cell and verified the dormancy state4. As a result, we observed that, with 235 

the exception of one cell from sample Young 2, cells are unlikely to be cycling and show no differences 

between ages (see response to point 3 of reviewer 1) (Figure S1). Therefore, cell cycle is unlikely to drive 

potential cell substructure of our data. We also applied SC3 interrogating a range of number of clusters (ks 

values=2:6). The separation of young and old individuals was identified as the best clustering (ks=2, average 

silhouette with 0.91) identifying similar markers of the ones we report in Table S1. No other clear cell 240 

populations were detected (average silhouette values < 0.6).  
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Figure #4: The two-dimensional outputs of t-SNE using the scRNA-seq data with different values of 245 
perplexity, between 5 and 50.  

 

 

 

Figure #5 The two-dimensional outputs of t-SNE using single-cell mean gene body methylation data with 250 
different values of perplexity, between 5 and 50. 
 

 

3. The authors mention the use of DNAme for the epigenetic clock described by Steve Horvath’s work. A 

mouse compatible DNAme age clock has recently been published (PMID: 30348905). It would be important 255 

to see chat can be said of the distribution of the DNAme age of each cell in the study, or if the coverage of 

each cell is insufficient, the age of the aggregated sample (each young and old animal). 
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We thank the reviewer for this interesting suggestion. Unfortunately, the aggregated coverage was 

insufficient to test the published models. However, we built a new model based on the epigenetic clock 260 

described in Stubbs et al.6 Detailed information is in the revised methods and results sections as well as in 

Figure 3A. In short, we In short, we used elastic net modelling combined with a double loop cross-validation 

described in Stubbs et al. on 140 of the training samples and we built a model with a median absolute error 

of 0.3 weeks on the training set and a median absolute error of 3.2 weeks on the test set. These prediction 

accuracies are in line with the original publication. The model is based on 474 CpG sites that are covered in 265 

all training samples and muscle satellite cells with at least 5X coverage. We found that the epigenetic ages 

of the old and young samples (pseudo bulk) are very similar, the two young samples have a predicted age of 

9.2 weeks (Young 1), 9.3 weeks (Young 5), the old samples have a predicted age of 11.6 weeks (Old 1) and 

10.2 weeks (Old 2) (Figure 3A). We observe a small difference between young and old muscle stem cells, 

which is far smaller than the actual age difference and falls within the prediction error of the model (3.2 270 

weeks).  We therefore hypothesize that differentiation potential can be an important factor driving the 

epigenetic clock. In this sense, the clock could be reflecting the different proportions of stem cells, that are 

known to decrease with age. However, changes in post mitotic cells are also likely to play an important role. 

Following the reviewer’s suggestion, we have now included these analyses in the manuscript (Figure 3A) 

(lines 30-31, line 39, lines 42-45, lines 126-141, lines 211-224, lines 354-366). 275 

 

4. Single cell profiling experiments are definitely costly and time consuming, so this reviewer understands 

why only 3 young vs. 2 old samples are analysed. However, since variability between cells is the variable of 

interest, we feel that the authors need to discuss the potential sampling bias and how this may or may not 

hold with more animals. 280 

 

We thank the reviewer for this comment. We agree that a larger number of individuals would reduce potential 

sample bias. Following the reviewer’s comment, we have now discussed this issue in the manuscript. 

Furthermore, to address whether cell sampling bias could affect our transcriptional variability measure, we 

have performed correlation analysis using cohorts of 10 cells from the same individual (Figure S3). Results 285 

from 1,000 iterations show that cells from old individuals are less correlated than those from young, 

supporting the higher variability of older transcriptomes. Importantly, in these 1,000 iterations the mean 

correlation levels of young individuals were always higher than the old ones (P < 0.001). We have now 

included this analysis in the manuscript (Figure S3) (lines 94-96, lines 341-342, lines 252-254).   
 290 

5. The Pax7-nGFP model is very elegant and help purify cells of interest readily. However, it is important to 

note that this reporter gene is subject to the same variability with age than endogenous genes (i.e. since the 

GFP-locus is likely to also experience cell-to-cell variability in its transcription/methylation). Thus, I am 

concerned that in the old samples, a biased sample of cell may have been obtained by selecting based on 

high levels of GFP expression, which may or may not, by selecting for a specific subpopulation, extend to 295 

other loci. The authors need to address this caveat in the discussion.  

 

We thank the reviewer for this comment. The selection of Pax7-nGFPHi cells allows us to investigate cellular 

variability while minimising key confounder factors such as cell cycle or differentiation state. However, as the 
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reviewer indicates, we cannot dismiss the possibility that the selection of high levels of Pax7-nGFP may 300 

potentially co-select other features. We have discussed this caveat in the discussion (lines 248-251).   

 

 

Minor comments: 

1. The authors need to specify the sex of the mice used, the genetic background for the Pax7-nGFP 305 

transgene, and the time of the day at which mice were euthanized (to account for circadian gene expression 

influence). Whether a single sex, isolated samples from each sex, or pooled sex samples were used needs 

to be explicated. 

 

We thank the reviewer for the comment. Male littermates were used, on a C57BL/6;DBA2 F1/JRj genetic 310 

background, euthanized around 9 am. Males were preferred to females to avoid interindividual variations due 

to asynchrony in the oestrus cycle. We have included that information in Table S2 and in the methods 

section of the manuscript (lines 260-264). 

 

 315 

Reviewer #3 (Remarks to the Author): 

 

In this manuscript, Hernando-Herraez et Al. have used single cell RNA seq combined with single cell bisulfite 

sequencing to examine epigenetic drift in aging satellite cells. Using satellite cells from young (2 months) or 

old (24 months) mice, transcriptome analysis revealed no differences in expression of myogenic regulatory 320 

factors Pax7, Myf5, and Myod1, but did show upregulation in Fosb, Egr1, and Mmp2 in the old satellite cell 

population. Further intra-population analysis revealed increased transcriptional heterogeneity in the aged 

satellite cell population, which the authors used to classify the old satellite cells into two classes – (i) those 

closely resembling the homogenous young satellite cells characterized by increased expression of genes 

relating to ECM functions, and (ii) those that differed more than the young satellite cells and exhibited 325 

increased peptide and protein biosynthesis genes. The authors further revealed that genes exhibiting the 

highest amount of age-related heterogeneity were collagen genes (Col4a2, Col5a3, Col4a1) and 

extracellular matrix related genes (Dag1, Sparc, Cdh15, Itgb1). Collectively, the authors propose that this 

age-related transcriptional heterogeneity likely results in reduced cell-niche interactions, causing satellite 

cells to exit quiescence.  330 

Global DNA methylation analysis did not identify distinct subpopulations between the young and old satellite 

cell populations. To refine their results, the authors proceeded to intrapopulation DNA methylation analysis 

which revealed that different genomic regions expressed methylation heterogeneity consistent with age – 

specifically, LINE-1 elements became more homogenous with age whereas regions associated with 

H3K27me3 expressed increased heterogeneity with age. Because H3K27me3 regions are associated with 335 

genomic regions that are poised for rapid expression, increased methylation heterogeneity at the epigenetic 

level could be a likely factor resulting in the previously observed age-related increased transcriptional 

heterogeneity. Lastly, the authors revealed that increased promoter methylation heterogeneity arising from 

aging is correlated to increased transcriptional heterogeneity, effectively confirming that epigenetic drift 

results in increased transcriptional heterogeneity during satellite cell aging. Based on these results, they 340 

conclude that age related drift in DNA methylation leads to loss of a coherent transcriptional network. 
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Overall this is an very interesting manuscript that makes use of a combination of single cell technologies to 

provide strong evidence for the genetic drift in quiescent stem cells during aging. While the authors have 

already published the combination of single cell RNA-Seq and single cell methylation sequencing (scM&T-

seq), this is the first application of the technique to understanding a biological problem. In particular, their 345 

finding that loci that lose methylation show greater heterogeneity of methylation is interesting as it suggests 

that this mechanism might drive the epigenetic drift. Elucidating the mechanism of the heterogeneity of 

methylation is beyond the scope of this manuscript but is likely to be of interest to many going forward. The 

manuscript looks very polished, and I have only minor comments: 

 350 

We would like to thank the reviewer for thoroughly reading our manuscript, for their insightful comments, and 

for pointing out the importance and novelty of our work. 

 

1. The authors conclude in the abstract that the degradation of coherent transcriptional networks have a 

consequence on stem cell functional decline during aging. While it is agreed that the identified ECM-related 355 

genes are showing altered expression with aging, the relationship to functional decline is only inferred. This 

is fine to discuss in the main text, but should not be stated as fact in the final sentence of the abstract. 

Please modify the final sentence of the abstract to remove the words “…with consequent stem cell functional 

decline…” 

 360 

We thank the reviewer for the comment, we have now removed these words from the abstract. 

 

2. The methods section refers to papers rather than providing details on the single cell RNA seq conditions. 

It would be useful for the authors to provide a line or two of detail of how the barcoding is introduced with the 

beads to allow batch sequencing of the samples (also perhaps mentioning how transcripts from each mouse 365 

were distinguished). 

 

We thank the reviewer for this comment. Following the reviewer’s comment, we have now expanded 

information about the library preparation in the methods section of the manuscript. We also would like to 

clarify that cells from different individuals were sorted in different plates. Therefore, we did not have to label 370 

the cells by sample. We have also clarified this information in the manuscript (line 282, lines 303-313) 

 
  

 

Reviewer #4 (Remarks to the Author): 375 

 

In this manuscript, Hernando-Herraez et al analyzed transcriptional heterogeneity together with alterations of 

DNA methylation with age by using single-cell transcriptome and DNA methylome profiling of mouse PAX7-

high-expression muscle progenitor/stem cells. The authors suggested that ageing uncoordinatedly increases 

DNA methylation and transcriptional variability and the epigenetic drift might driver the degradation of 380 

coherent transcriptional network. Although the topic of this paper is interesting and the combination of single-

cell RNA and DNA methylation sequencing is technically fancy, unfortunately, I found no conclusion in this 

paper could be sufficiently supported by evidences which were provided. In the whole manuscript, the 
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authors did not provide even a single experimental validation, which made the only bioinformatics analysis 

quite superficial. The writing and organization of the figures was also quite sloppy. Several of my major 385 

concerns and suggestions are discussed as follows: 

 

We appreciate the Reviewer’s critical reading of the manuscript, concise summary of our findings, 

recognizing the relevance of this study and for highlighting critical points. 

 390 

Main points: 

 

1. One of the main weak points of the paper is none of the data presented in the paper was conclusive, or at 

least supported a causative logic reasoning. Instead of, I can only see very weak correlations or independent 

pieces of data. For instance, as a quite simple paper, the authors emphasize in the abstract and the last 395 

paragraph with one of the few conclusive sentences as "we show that epigenetic drift, or the uncoordinated 

accumulation of methylation changes in promoters, contributes to the increased transcriptional variability with 

age". However, in the manuscript, epigenetic drift and transcriptional variability, at best, was just two 

separated sections of data (with weak evidences. see my minor points below). The authors did not present 

even a single evidence to prove the causative link of them. To improve it, the authors should perform 400 

biological experiments, for instance, using genetic animal models and/or at least cell models to modify 

methylation and check the transcriptional changes. As this is the key point of the paper, the suggested 

experimental validation is essential. 

 

We thank the reviewer for the comment. We agree that experimental perturbations of epigenetic 405 

heterogeneity would ultimately provide the most compelling evidence. However, due to the nature of the 

changes, such validations are particularly challenging. Genetic knockouts and epigenetic editing do not allow 

the modification of methylation patterns in a non-coordinated manner, this would require extensive method 

development that is beyond the scope of this paper but will be of high interest for future studies if 

experimental models can be developed to test causality. Following the reviewer’s comment, we revised the 410 

manuscript and toned-down our interpretations (lines 196-199, line 242). 

 

2. I was concerning about the quality of cell isolation and library preparation, thereafter data quality. As show 

in Tab S2, the cells that passed QC was very low. In some plates/individuals no cell passed QC, and this 

happened in both single-cell RNA and DNA methylation sequencing. Can authors explain it? Furthermore, I 415 

suggest the authors provide detailed information of the QC and data pre-process, such as mean and 

distribution of genes/reads, mitochondrial genes ratio of each single cell experiments. 

 

We thank the reviewer for the comment. We agree that QC is a critical step in single cell sequencing 

technologies. The small amount of starting material is an inherent limitation that usually leads to the 420 

presence of some low quality samples. This can be due to multiple factors that are difficult to control, 

including damage during the isolation procedure, RNA degradation or low capture efficiency. We first 

maximized the isolation of high-quality samples by including a viability marker at the time of FACS-isolation, 

keeping samples at 4°C during single-cell sorting and SNAP freezing sorted cells. Further, our pre-

processing and quality control pipelines have previously shown to be effective in identifying and removing 425 
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potential low-quality cells and artefacts5,8,9. For example, all cells have fewer than 10% of reads assigned to 

the mitochondrial genome and show similar distribution of reads and numbers of detected genes (Figure 

S12).  Furthermore, we do not detect any outliers when applying different clustering methods (see response 

to point 2 of reviewer 2). Following the reviewer’s comments, we have now included this information in the 

manuscript in the methods section and in Figure S12 (lines 322-325). 430 

 

3. I was also quite surprised that the authors only analyzed the PAX7-high expression cells. The power of 

the single-cell techniques is exactly to identify the cell heterogeneity of complex cell population. From the 

data that the authors presented, PAX7-high expression cells seem to be quite unique from cell clustering. 

The authors are therefore suggested to analyze all PAX7 positive cells, as it might significantly improve the 435 

impact of the paper. This is especially true, as the title of the paper reads "Ageing affects DNA methylation 

and transcriptional cell-to-cell variability in muscle stem cells". 

 

We thank the reviewer for the comment. We agree with the reviewer that investigating how variability affects 

the whole muscle stem cell population is a very interesting question. However, we focused on a defined 440 

population of stem cells to assess variability in a manner as accurate as possible, minimising key 

confounding factors such as cell cycle or differentiation states. We notably now measured the proliferation of 

young and old muscle stem cells in homeostatic muscles, through in vivo BrdU uptake (see response to 

point 3 of reviewer 1). Analysing the total Pax7-nGFP population, we observed that old satellite cells were 

cycling less frequently than young satellite cells (p=0.0045). However, no significant difference was observed 445 

between young and old Pax7Hi cells (Figure S2, lines 75-79, lines 286-300). Therefore, we anticipate that 

comparing young vs. old total Pax7 cells would at least compare cells with different proliferative histories. 

Restricting our analysis to Pax7Hi cells allows us to dismiss the possibility that the observed differences arise 

from different proliferation potential between ages. Beyond that we have now calculated that if we were to 

sequence the Pax7 total population, with n=6 mice (3 young + 3 old) and n>250 cells per mouse, this would 450 

mean eighteen 96-well plates of scRNA-seq and scBS-seq which would take approximately 9 months for 

library preparation, sequencing and analysis and would cost about £75k. This level of time and financial 

investment does not make sense to us for this manuscript and the conclusions it reaches. 

 

4. In several sections, such as Fig. 1C, 2A, the authors only showed single genes as examples, the authors 455 

should analyze with GO or KEGG etc to check systemic pathway/function change, but instead of giving a few 

simple genes to suggest a pathway change. 

 
We thank the reviewer for the comment. We have now systematically investigated potential pathway/function 

enrichments. The only category that is significant among the genes with increased transcriptional variability 460 

with age is “signalling receptor activity” (GO:0038023) (FDR q-value  2.37E-1).  

 

Minor points: 

1. The authors concluded, from figure1B, that no global differences with age and absence of sequencing-

related batch effects. From my point of view, this data cannot reflect the batch bias, let alone the clustering of 465 

cells was based on two components of PCA analysis. Is there another result to support this point? 
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We thank the reviewer for this comment that also helped us clarify an important point. In order to minimize 

potential technical bias, we processed all samples in parallel.  Cells were sorted into plates by individuals 

and individuals from the different ages were pooled into two sequencing lanes. Therefore, potential technical 470 

bias could be observed by individual or sequencing lane. The absence of clustering by individual in the PCA 

indicates absence of strong batch effects, which is also supported when clustering by t-SNE (Figure #9) and 

when interrogating different components of the PCA (Figure #10). Similar results are observed when 

considering sequencing lanes (Figure #11). Furthermore, all individuals show similar distributions of reads 

and number of genes (see point #2).  475 

 

 

 

Figure #9: The two dimensional outputs of t-SNE using the scRNA-seq data with different values of 
perplexity, between 5 and 50.  480 
 

 

 

Figure #10:  Second and third (left) and third and fourth dimensional outputs of the PCA using the scRNA-
seq data coloured by individual.  485 
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Figure #11: The two dimensional outputs of the PCA using the scRNA-seq data coloured by sequencing 490 
batch. 
 

2. In figure1C, the gene expression of Myf5 which was claimed to be no difference between groups was 

actually appeared higher difference than those which were down and up regulated genes, such as Spry1 and 

Ccl19, with the same scale of axis. Is it a fallacy or other reasons? Therefore, again, pathway analysis is 495 

essential. 

 

We thank the reviewer for pointing this out, we agree that Figure 1C could be misleading. In this plot we had 

represented the mean expression level of a given gene while the significance was assessed by SCDE10. 

This method is a specific probabilistic model for single cell data that takes more parameters into account 500 

than the mean to fit individual error models and assesses significance10. We have now plotted the log2 fold 

change and p-value to visualise differentially expressed genes (Figure 1C, line 555). This representation now 

shows more clearly that Myf5 shows no significant difference. 

 

3. In the part of analysis of DNA methylation patterns, according to all results, I think the difference between 505 

old and young mouse does not make sense or not significant, so the conclusion that methylation changes in 

promoters, contributes to the increased transcriptional variability with age may not be compelling. 

 

We thank the reviewer for this comment. Due to the lack of previous studies it is difficult to compare the 

magnitude of changes that we observed (Figure 4D: mean group 1: -0.0009, mean group 2:  0.42, P <0.001).  510 

We would like to highlight that the sparse coverage of processed single-cell epigenome data is one of the 

key limitations of the technology, which limits the number of genes with coverage on the transcriptome and 

the epigenome. Following the reviewer’s comment, we revised the manuscript and toned-down our 

interpretations (lines 196-199, line 242). 

 515 

 

4. Does the gene expression heterogeneity in line 87 and 88 (Col4a2, Col5a3, Col4a1, Dag1, Sparc, Cdh15 

Itgb1) accordingly be able to see DNA methylation heterogeneity (Fig3 section)? And why only two genes 

were presented in Fig. 2A, where are the results of the other genes?  

 520 
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We thank the reviewer for this comment. Unfortunately, the coverage on these genes is not enough to 

assess their epigenetic heterogeneity. However, we observe an increase of epigenetic variability in other 

genes related to the extracellular matrix such as Lamc3 (0.25 % increase in variability). Following the 

reviewer’s comment, we have now added new examples in Figure S4. 

 525 

 

5. The writing of the manuscript was very sloppy. Such as, Fig S1 A and B were not cited in the main text. 

And several writing examples, such as "While several reports indicate a loss of clonal diversity during early 

life stages little is known about how cell-to-cell variability at the molecular level is involved in stem cell 

ageing", a comma was missed between the word 'stages' and 'little'. 530 

 

We thank the reviewer for identifying these mistakes. We have revised the writing extensively based on this 

comment. 

 

 535 
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Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Revisions helped but the manuscript is still quite narrow and small scale, interpretations difficult 
and ambivalent, and the overall impact is limited.  
 
The new section on epigenetic aging is quite interesting but again, there is a series of issues:  
 
1. "Epigenetic clock ticks more slowly in adult stem cells". Really? The actual animal ages were 1.5 
months (=6 weeks) and 26 months; stem cell age prediction showed 9 weeks and 10-11 weeks, 
respectively. So, it was accelerated aging in the young adult animals and decelerated in the old 
ones.  
 
2. Then a new challenge became an explanation which makes compatible slow epigenetic aging 
with all other age-related changes in the old stem cells. DNA methylation in stem cells is "aging" or 
not?  
 
3. The interpretation provided in Discusson is confusing. My understanding is that the authors 
believe that the predictor primarily measured cell count changes in the aging tissue (external 
clock, according to Horvath), which did not work on purified homogenous stem cells (internal 
clock). If yes, this needs to be explicitely stated. Remains unclear if age discrepancy is it due to 
limitations of the algorithm or it is genuine deceleration (but see #1)?  
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have now addressed all my concerns, and as far as I can tell those of the other 
reviewers, in the revised version of the manuscript.  
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors have addressed my previous critiques, and I have no further concerns with the 
manuscript. 
 
 
Reviewer #4 (Remarks to the Author):  
 
In this revised manuscript, Irene Hernando-Herraez et al. have addressed some of my concerns, 
for instance, my previous main point #2 regarding sc-RNAseq data quality control. However, most 
of my others comments are still left without reasonable rebuttal. The authors also failed to provide 
any further experimental evidence to support a few important issues that I had pointed out in my 
previous review. Please check below for details:  
 
For previous main point #1, I agree that the genetic knockouts and epigenetic editing are 
particularly challenging. However, it is at least feasible and time-permitting to detect the 
expressions of several important genes by using molecular biological technique, such as FISH and 
immunofluorescent staining. Through this, the data presented in this manuscript will be much 
more conclusive. it is not advisable just to toned-down the already weak points.  
 
For previous main point #3, I don't think cell proliferation can really be a confounding factor, as 
there are several ways to regress out the effect of cell cycle in data analysis if the authors want. 
Neither I think differentiation states can be confounding factor but actually very interesting point 
(see exactly the same comment from reviewer 1). Furthermore, I believe time and costs are not 



good reasons to refuse to perform a key experiment. Actually, even only scRNAseq (without 
scBSseq) of total PAX7-positive cells should be able to acquire much more information than the 
current manuscript demonstrates.  
 
For previous main point #4, it is hard for me to buy it that the only category that is significant 
among the genes with increased transcriptional variability with age is "signaling receptor activity". 
If this is true as the authors claim, I would suspect that those genes presented in the paper are 
subjectively selected, hence double about the reliability of the conclusion based on the data Fig. 
1C and 2A.  
 
Another comment regarding authors' rebuttal that needs to ponder is that the authors may believe 
too deeply in the meaning of p value, for instance in main point 3 and minor point 2. Using p value 
should be very careful and rather than making scientific conclusions based solely on p value. All 
statistical experiments and the choice made in the calculations should be reasonably interpreted, 
otherwise the results are likely to look unreliable.  
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Reviewer #1 (Remarks to the Author): 

 

Revisions helped but the manuscript is still quite narrow and small scale, interpretations difficult and 

ambivalent, and the overall impact is limited.  

 

The new section on epigenetic aging is quite interesting but again, there is a series of issues:  

 

1. "Epigenetic clock ticks more slowly in adult stem cells". Really? The actual animal ages were 1.5 

months (=6 weeks) and 26 months; stem cell age prediction showed 9 weeks and 10-11 weeks, 

respectively. So, it was accelerated aging in the young adult animals and decelerated in the old ones.  

 

We thank the Reviewer for the comment and agree that the phrasing was unclear. The predicted ages 

for muscle stem cells for all our samples are very close to each other and the observed differences fall 

within the error range for the model (predicted ages 9.2 and 9.3 weeks in the young samples and 10.2 

and 11.6 weeks in the old ones, error in the training set 3.2 weeks). However, in order to investigate this 

point further, we have now estimated the impact of subsampling the merged single cells, to get an idea 

of the ages of the single cells and the error of the modelling.  We performed 100 permutations of the 

single cells by randomly removing 5% of the cells in each permutation and calculated the epigenetic 

age of each subset. Given the coverage of the single cells we used only the permutations with at least 

4x coverage on each of the sites used in the clock. These results show a significant increase in the 

epigenetic age of old samples; however, the predicted ages are still very different from the chronological 

age of the samples (Figure 3A). These results suggest two things: firstly, cell type and probably 

differentiation potential are important factors contributing to the model. In this sense, adult stem cells 

would have a different epigenetic age than postmitotic cells. Based on this hypothesis, the epigenetic 

clock would capture, at least in part, the differences in cell type composition in the ageing tissue (external 

clock). Secondly, the slight increase of the epigenetic age observed in old samples suggests intrinsic 

changes at the cellular level, in the stem cell population (internal clock). Therefore, the epigenetic clock 

would then be a combination of these internal and external factors.  Technical factors, such as the 

datasets used to train the model, may also contribute to these predictions.  We have now revised the 

manuscript to achieve greater clarity and avoid confusion (Lines 151-159; 227-242) and added the new 

analyses in Figure 3A. 

 

2. Then a new challenge became an explanation which makes compatible slow epigenetic aging with 

all other age-related changes in the old stem cells. DNA methylation in stem cells is "aging" or not?  

 

We thank the Reviewer for the comment. In our study, we have observed changes at the epigenetic 

level with age, some of them associated with transcriptional changes, suggesting that DNA methylation 

in stem cells is “ageing”. However, this is not well captured in the epigenetic clock (see previous 

comment). We have now explicitly discussed these points in the manuscript (Lines 151-159; 227-242) 
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and we conclude that stem cells do show significant DNA methylation alterations with ageing but are 

not strictly “ageing” as defined by the epigenetic clock. 

 

3. The interpretation provided in Discussion is confusing. My understanding is that the authors believe 

that the predictor primarily measured cell count changes in the aging tissue (external clock, according 

to Horvath), which did not work on purified homogenous stem cells (internal clock). If yes, this needs 

to be explicitly stated. Remains unclear if age discrepancy is it due to limitations of the algorithm or it 

is genuine deceleration (but see #1)? 

 

We thank the Reviewer for the comment and agree that the phrasing was unclear. Following the 

Reviewer’s comment, we have now clearly discussed this interpretation in the manuscript (see previous 

comments). 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have now addressed all my concerns, and as far as I can tell those of the other reviewers, 

in the revised version of the manuscript. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have addressed my previous critiques, and I have no further concerns with the 

manuscript. 

 

 

Reviewer #4 (Remarks to the Author): 

 

In this revised manuscript, Irene Hernando-Herraez et al. have addressed some of my concerns, for 

instance, my previous main point #2 regarding sc-RNAseq data quality control. However, most of my 

others comments are still left without reasonable rebuttal. The authors also failed to provide any 

further experimental evidence to support a few important issues that I had pointed out in my previous 

review. Please check below for details: 

 

For previous main point #1, I agree that the genetic knockouts and epigenetic editing are particularly 

challenging. However, it is at least feasible and time-permitting to detect the expressions of several 

important genes by using molecular biological technique, such as FISH and immunofluorescent 

staining. Through this, the data presented in this manuscript will be much more conclusive. it is not 

advisable just to toned-down the already weak points. 
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We thank the Reviewer for the comment. Following the Reviewer’s suggestion, we have validated the 

expression pattern of genes showing expression frequency differences with age using a different 

methodology and at the protein level. We selected Itgb1 and Cdh15 as antibodies are available against 

these proteins and validated our transcriptional findings by immunocytochemistry on muscle stem cells. 

As a control we quantified immunofluorescence intensity of nGFP (Tg:Pax7-nGFP, proxy for Pax7 

expression) and observed no differences in nGFP between muscle stem cells from young and old mice. 

However, while all analysed young muscle stem cells expressed Cdh15 or Itgb1, a few old muscle stem 

cells were showing low to no expression of Cdh15 (20%, 8 out of 40 analysed cells) or Itgb1 (12.5%, 5 

out of 40 analysed cells). These observations confirm at the protein level the increased expression 

variability with age observed by scM&T-seq. We have now included these results in the manuscript 

(Lines 116-125, Figure S8). 

 

For previous main point #3, I don't think cell proliferation can really be a confounding factor, as there 

are several ways to regress out the effect of cell cycle in data analysis if the authors want. Neither I think 

differentiation states can be confounding factor but actually very interesting point (see exactly the same 

comment from reviewer 1). Furthermore, I believe time and costs are not good reasons to refuse to 

perform a key experiment. Actually, even only scRNAseq (without scBSseq) of total PAX7-positive cells 

should be able to acquire much more information than the current manuscript demonstrates. 

 

We thank the Reviewer for the comment. We have now sequenced by scRNA-seq the total Pax7 positive 

population from two young and two old individuals, 96 cells per sample. A total of 147 cells passed 

quality control using the same parameters used for our Pax7Hi population (Figure S16, Figure S18). 

Despite the relatively low numbers, we observed consistent results between the Pax7Hi and Pax7-total 

populations. In particular, we observed similar cell cycle phase (Figure #1), absence of clear clustering 

or subclusters (Figure #2), increase of transcriptional variability with age (Figure S7 top) and similar 

gene expression patterns of our example genes (Figure S7 bottom). We have now included these results 

in the manuscript (Lines 114-116, Figure S7). 



 5 

 
Figure #1. Cell cycle stage of Pax7-total cells. 

Scatter plots of predicted phases of the cell cycle (G1 score and G2M score) for single cells (grey circles) 

from young and old mice. 

 
Figure #2: The two-dimensional outputs of t-SNE using highly variable genes from different scRNA-seq 

datasets (top: Pax7Hi and Pax7-total, bottom: Pax7-total).  Different plots show different values of 

perplexity. Number of iterations=10000. 
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For previous main point #4, it is hard for me to buy it that the only category that is significant among 

the genes with increased transcriptional variability with age is "signaling receptor activity". If this is true 

as the authors claim, I would suspect that those genes presented in the paper are subjectively 

selected, hence double about the reliability of the conclusion based on the data Fig. 1C and 2A.  

 

We thank the Reviewer for the comment; we agree that the explanation could be misleading. The genes 

presented in Figure 1C were selected based on current literature1.  For example, Myod and Myf5 were 

included because they are well known myogenic markers and Spry is a key quiescence factor1,2.  

We have now performed Gene Ontology analysis on upregulated and downregulated genes with age 

(Figure S3)3. Among the terms associated with the upregulated genes we noted that some of them, 

such as translation or peptide biosynthetic process, were also associated with the “older” phenotype of 

aged cells (Figure 2B).  

In addition, we have also now performed Gene Ontology analysis on the genes with decreased 

expression frequency and observed extracellular matrix structure and organization are one of the top 

categories (Figure S5). In addition, we noted that these categories are also observed in the “younger” 

phenotype of aged cells (Figure 2A). Based on these observations, we included examples (Figure 2A) 

of genes showing decreased expression frequency (Table S3) and associated with these GO categories 

such as Itgb1 (expression frequencies: young 0.79, old 0.59), Dag1 (expression frequencies: young 

0.96, old 0.65), or Cdh15 (expression frequencies: young 0.62, old 0.41). Itgb1 was also included in 

Figure 2A because its activation has been shown to be impaired in aged muscle stem cells4. 

 

When restricting the analysis to genes that have increased variability with age by correcting by mean 

expression levels, the only category that is significant after applying FDR correction is ‘signaling receptor 

activity’. We would like to mention that this analysis is much more restrictive and requires both genes to 

be expressed in young and old samples (average normalized read count of at least 10). Importantly, 

Dag1 is also one of the top genes (top 50) with increased variability with age using this method (Table 

S3). Following the Reviewer’s comment, we have now included these analyses in the manuscript (Lines 

82; 106. Fig. S3 and Fig. S5).  

 

 

Another comment regarding authors' rebuttal that needs to ponder is that the authors may believe too 

deeply in the meaning of p value, for instance in main point 3 and minor point 2. Using p value should 

be very careful and rather than making scientific conclusions based solely on p value. All statistical 

experiments and the choice made in the calculations should be reasonably interpreted, otherwise the 

results are likely to look unreliable. 

 

Although the p-value is widely used by the scientific community, we agree that it may not be proof of 

strong evidence. When analysing cell cycle entry through in vivo BrdU uptake (previous main point 3), 

we observed small to no differences (Fisher exact test) between ages whether analysing the total Pax7 
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population or Pax7Hi subpopulation. However, we agree that the biological relevance of these measures 

cannot be inferred from the calculated p-values. 

 

Regarding minor point 2 about the differential expression analysis (Figure 1C), we have now clarified in 

the manuscript that in some cases the differences may be small (line 82). However, we would like to 

mention that this analysis is based on one of the most common methods for measuring differential 

expression using single cell data5.  
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REVIEWERS' COMMENTS:  
 
Reviewer #4 (Remarks to the Author):  
 
In the revised version of the manuscript, The authors have addressed my previous major 
concerns. Therefore we consider this works suitable for publication in Nature Communications.  
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