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Supplementary Figure 1. Protein alignment of BDR proteins. Alignment generated by
CLUSTAL O (1.2.4).



Supplementary Figure 2. Rescue of bdr1,2,3 root growth using MYC-tagged BDR1, BDR2,
and BDR3 constructs.
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Supplementary Figure 3. BDR
protein colocalize with Pol Il.
Correlation of BDR1, BDR2, and
BDR3 occupancy and other
genomic features. Heatmap and
average profiles (top) of ChIP-seq
or MNase-seq signals around BDR
peaks sorted by levels of BDR
occupancy; the top 10,000 regions
are shown.
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Supplementary Figure 4. Correlation between genomic features in 250bp regions
immediately before the TSS, after the TSS, before the TES, and after the TES. Strength of
the correlation is shown by color and corrected p values are shown. p values < 1e-300 are
shown as 0.
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Supplementary Figure 5. BDR-protected genes occur in a specific genomic context.

A) Identification of BDR-protected (downregulated in bdr1,2,3) and BDR-repressed (upregulated
in bdr1,2,3) genes by RNA-seq analysis (Supplementary Data 1, Table S2).

B) BDR-protected genes preferentially have an upstream gene on the same strand. Orientation
of upstream and downstream neighbors of all expressed genes, non-differentially expressed
control genes, or BDR-protected genes. Enrichment for a given orientation is evaluated by
Fisher exact test with a BH p-value correction. Adjusted p-values below 0.01 are shown.
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Supplementary Figure 6. Expression of a control set of 1,500 genes that were selected to

have a similar expression distribution to the upstream neighbors of BDR-protected
genes in Arabidopsis seedlings.
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Genomic coordinate

Supplementary Figure 7. BDR protein enrichment at the borders of the tandem upstream

Genomic coordinate

neighbors of BDR-protected genes.
Metagene profiles of BDR1 and BDR2 ChlP-seq coverage for the upstream neighbors of BDR-
protected, BDR-repressed, expression-matched control genes, and non-differentially expressed
genes. BDR ChiIP-seq data is presented as wild-type-normalized read density and following

normalization to Pol Il.
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Supplementary Figure 8. Genome browser tracks showing BDR-protected genes and

their upstream neighbors.
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Supplementary Figure 9. Biochemical pathway analysis of genes showing reduced
induction in bdr1,2,3.
For each condition (dark, light 2h or light 4h), we selected genes that showed significantly lower
expression in bdr1,2,3 compared to wild type. These genes were analyzed with the goseq
Bioconductor package to determine the enrichment (p<0.01, at least 3 DE genes in the
pathway) of AraCyc pathways (www.plantcyc.org). Enrichment scores were plotted as a
heatmap (-log10(p-value) for all pathways that were significantly enriched in at least one
condition. The rows/pathways were reordered by hierarchical clustering using Euclidean
distance and Ward agglomeration criterion. This analysis shows that several genes in the
Calvin-Benson-Bassham cycle display an altered induction in the bdr7,2,3 mutant compared to

wild-type plants.
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Supplementary bioinformatic methods for each figure
Supplementary Figure 1. Protein sequences for BDR1, BDR2 and BDR3 were aligned using
Clustal Omega version 1.2.4 " .

Supplementary Figure 3.

For each BDR::MYC ChIP-seq, we sorted the top 10,000 peaks by decreasing level of
normalized coverage near the peak summit (+/-100bp around peak summit). We then
represented as heatmaps the signal obtained around these peaks (+/-500bp) for the BDR ChlP-
seq (GSE113059 for BDR1 and BDR2 or GSE131772for BDR3), for Pol Il ChlP-seq
(GSE113078), for MNase-seq and H3 ChlIP-seq (GSE113076) as well as for input DNA from
BDR ChIP-seq control (GSE113059).

Supplementary Figure 4. The signal of normalized BDR1, BDR2 and BDR3 ChIP-seq, Polll,
S2P and S5P ChlP-seq, DNAse hypersensitivity (DHS, GSE34318), MNase-seq and H3 native
ChiIP-seq was extracted in each region for all expressed protein-coding genes (n=21,290) and
the Spearman correlation coefficient was calculated (in order to account for possible non-linear
relationships). The reported p-values are from a t-test evaluating if the correlations are
significantly different from 0 and were corrected for multiplicity by the Benjamini-Hochberg
procedure.

Supplementary Figure 5. Panel A. The heatmap was produced with the EnrichedHeatmap
package 2 using as input log2(mutant/wild-type) obtained from DESeq2 analysis on a selection
of 1124 genes that were significantly up- or downregulated (FDR<5%) in at least one of the
mutant genotypes (Table S3).

Supplementary Figure 5. Panel B. For all expressed genes (defined by positive read counts in
RNA-seq study GSE112441 and after removing genes located at chromosome borders;
n=23570), for control "Not DE" genes (n=1408), and for genes upregulated (BDR-repressed,
n=529) or downregulated (BDR-protected, n=592) in the bdr1,2,3 triple mutant compared to
wild-type plants, we counted the number of upstream genes located on the same strand (blue),
on the opposite strand (green) or with an overlapping upstream gene (grey) and calculated the
corresponding proportions. We did the same for the downstream gene neighbors, but we also
individualized from the "Other" category the frequent situation of an overlapping gene on the
opposite strand (dark green). Significance of the enrichment for a given orientation was
assessed by a Fisher exact test with a Benjamini-Hochberg (BH) correction. Only adjusted p-
values below 0.01 are shown.

Supplementary Figure 6. We sampled 1,500 genes from non-differentially expressed genes
having an upstream gene neighbor on the same strand so that the expression distribution of
their upstream genes follows a normal distribution with mean and variance identical to the
upstream tandem genes of BDR-protected genes. The histograms represent the distribution of
the expression levels of these upstream tandem gene neighbors for BDR-protected genes or
the control gene set.

Supplementary Figure 7. We analyzed the occupancy of BDR1 (GSE113059), BDR2
(GSE113059) and BDR3 (GSE131772) at genes located upstream, either on the same strand
(left plots) or on the opposite strand (right plots) for the following groups of genes: BDR-
protected genes, (n=592), BDR repressed genes (n=529), “Not DE” control genes (n=1408) or
expression level-matched controls (n=1500 for each orientation). For each orientation of the
upstream gene, we plotted metagene profiles representing the ChIP-seq coverage of

12



BDR::MYC protein normalized by their corresponding wild-type control ChIP only (log2(BDR
ChIP / WT control)) or also by Pol Il (GSE113078) ChIP-seq coverage (log2(normalized BDR
ChIP / Pol Il ChIP)). Average normalized coverages (solid lines) and 95% confidence intervals
(shades) are represented.

Supplementary Figure 8. Coverages from ChIP-seq fragments of BDR1::MYC (GSE113059),
BDR2::MYC (GSE113059), BDR3::MYC (GSE131772), Pol Il (GSE113078) and Pol Il S2P
(GSE113075) in wild-type and bdr1,2,3 triple mutant (units: FP10M) and average coverage from
RNA-seq (GSE112441) fragments obtained from 3 wild-type or bdr1,2,3 mutant samples (units:
RPM, sign indicating on which strand the reads align) were plotted with the Gviz R package * for
genomic regions corresponding to 9 BDR-protected genes and their upstream gene neighbor on
the same strand.

Supplementary Figure 9. Using the RNA-seq data GSE112442, we identified all genes
downregulated in bdr1,2,3 mutant compared to wild-type under the dark, light 2h or light 4h
conditions (DESeq2, FDR<5%). Using Bioconductor goseq package * we identified all Aracyc
pathways (www.plantcyc.org) that were significantly enriched in at least one of these gene sets
(p<0.01 and at least 3 differentially expressed genes in the pathway) and plotted the
corresponding —log10(p-value) as a heatmap in which rows were re-organized by hierarchical
ascending clustering using the Euclidean distance and Ward agglomeration criterion. To limit
the effect of extremely low p-values in the heatmap we set the maximum color intensity at p-
value=1e-06.
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