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Supplementary Notes 13 

I.Supplemental PDE Model Descriptions 14 

Model development 15 

The pattern formation circuit is from Payne, et al.1. The circuit consists of a mutant T7 RNA 16 

polymerase (T7RNAP) that activates its own expression as well as the expressions of LuxR and LuxI. 17 

Once activated by T7RNAP, LuxI mediates synthesis of an acyl-homoserine lactone (AHL), which 18 

can diffuse across the cell membrane. When the global AHL concentration surpasses a threshold, 19 

intracellular AHL binds to LuxR to activate the synthesis of T7RNAP lysozyme. Lysozyme then binds 20 

to the T7RNAP and forms a complex, therefore inhibiting the T7RNAP binding to the T7RNAP 21 

promoter. This complex also inhibits T7RNAP transcription. CFP and mCherry fluorescent proteins 22 

are used to report the circuit dynamics since they are co-expressed with T7RNAP and lysozyme 23 

respectively (Supplementary Figure 1).  24 

The gene circuit dynamics can be described using the following partial differential equations 25 

(adopted from Cao et al2), which describe the cell growth, colony expansion, nutrient and AHL 26 

diffusion, intracellular circuit dynamics, as well as signaling and transport. Parameters are described in 27 

Supplementary Table 1. This PDE model corresponds to the hydrodynamic limit of the stochastic 28 

agent-based model from Payne et al.1. Because the air pocket between the glass plate and dense agar 29 

is only 20 µm high, the system was modeled in two spatial dimensions and vertical variations in gene 30 

expression profiles were neglected. Although the PDE formulation is computationally less expensive 31 

to solve numerically than the stochastic agent-based model and better facilitates the development of 32 

mechanistic insights into the patterning dynamics, it still needs a lot of computational power when 33 

extensive parameter search is needed. 34 

  35 
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 (1) 

 36 

𝐶(𝑡, 𝑥) is the cell density; 𝑁(𝑡) is the nutrient concentration; 𝐴(𝑡) is the AHL concentration; 37 

𝐿(𝑡, 𝑥), 𝑇(𝑡, 𝑥), 𝑃(𝑡, 𝑥)  are cellular lysozyme, T7RNAP and the T7-lysozyme complex density 38 

respectively; 𝜓V(𝑡, 𝑥) and 𝜓*(𝑡, 𝑥) are mCherry and CFP, which are co-expressed with lysozyme and 39 

T7RNAP, respectively, and act as reporters in experiments. These are added in order to allow for a 40 

direct comparison between model and experiment; 41 

The following assumptions were made in deriving these equations: 42 

1. Cells are assumed to perform an unbiased random walk; their movement is modeled as diffusion3-43 
5. We considered "diffusion" as an approximation of the observed colony expansion, so that cell 44 

movement can be described by a single lumped parameter. Intracellular components are modeled 45 

with passive-tracer equations2. 46 

2. Cell growth is modeled by a logistic term, along with a Monod function. The Monod function is 47 

to account for the contribution of nutrient to overall colony growth. The nutrient here refers to 48 

one or more limiting factors that constrain growth. The logistic term accounts for the limit of cell 49 

growth in a particular location. This carrying capacity is unlikely limited by nutrient availability. 50 

Instead, it is limited by the spatial confinement imposed by our device, which is the colony height 51 

confined to be ~20 𝜇𝑚 between the coverslip and the agar surface. 52 

3. Fast diffusion of AHL and nutrient. 53 
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4. Gene expression capacity: 54 

𝜑(𝑥, 𝐶) = [
𝐾\]

𝐾\] + ^𝑅\ − 𝑥`
] , 𝑥 ≤ 𝑅\

1, 𝑥 > 𝑅\
 (2) 

where 𝑅\ is defined as the distance between the colony center and the location where cell density is 55 

95% of the carrying capacity. 56 

5. Assume that 𝐿, 𝑇 and	𝑃 are at equilibrium due to the reversible first-order kinetics of T7RNAP 57 

bind with T7 lysozyme to form T7-lysozyme complex is fast6.  58 

𝑃 =
𝑘Q
𝑘R
𝑇𝐿 (3) 

Non-dimensionalization of the model 59 

First, we rescaled the time and space variables as 60 

𝑡̂ = 𝛼*𝑡,					𝑥d =
𝑥
ℒ	, 

(4) 

where ℒ	is a length scale to be chosen later.  61 

We next rescaled the state variables,  62 

𝐶f =
𝐶
𝐶̅
,			𝑁g =

𝑁
𝑁h
,			𝐴f =

𝐴
𝐾C
,			𝐿i =

𝑑N
𝛼N
𝐿,			𝑇i =

𝑇
𝐾D
,			𝑃i =

𝑃
𝐾E
,			𝜓Vj =

𝜓V
𝛼N
,			𝜓*j =

𝜓*
𝛼D
	. (5) 

Then we defined some new parameters for simplicity, 63 

𝛼d = 𝛼𝐾D,			𝛽f =
𝛼N
𝑑N
𝛽. (6) 

With these dimensionless variables, and by defining	𝜑d^𝑥d, 𝐶f` = 𝜑(𝑥, 𝐶) , we can rewrite the 64 

model equations in a dimensionless form. Introducing the parameter groups 𝐺l, (𝑖 = 1,… ,12) (see 65 

Supplementary Table 2), the non-dimensioned equations become: 66 



5 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧𝜕𝐶

f
𝜕𝑡

= 𝐺QΔ𝐶f +
1

1 + 𝛼d𝑇i + 𝛽f𝐿i
𝐶f^1 − 𝐶f`

𝑁g

𝐺R + 𝑁g
	,

𝑑𝑁g
𝑑𝑡

= 	−𝐺p 	? 𝐶f^1 − 𝐶f`
𝑁g

𝐺R + 𝑁g
𝑑𝜎

A
,

𝑑𝐴f
𝑑𝑡

= 	𝐺q ? 𝐶f 	
𝑇i

1 + 𝑇i
1

1 +	𝑃i
	𝜑^𝑥d, 𝐶f`𝑑𝜎 − 𝐺r𝐴f	,

A
𝜕𝐿i
𝜕𝑡

= 𝐺Q
∇𝐿i ∙ ∇𝐶f

𝐶f
− 𝐿i

1
1 + 𝛼d𝑇i + 𝛽f𝐿i

𝑁g

𝐺R + 𝑁g
^1 − 𝐶f` − 𝐺s𝐿i + 𝐺t

𝑇i

1 + 𝑇i
𝐴fO

1 + 𝐴fO
𝜑^𝑥d, 𝐶f`	,

𝜕𝑇i
𝜕𝑡

= 𝐺Q
∇𝑇i ∙ ∇𝐶f

𝐶f
− 𝑇i

1
1 + 𝛼d𝑇i + 𝛽f𝐿i

𝑁g

𝐺R + 𝑁g
^1 − 𝐶f` − 𝐺u𝑇i + 𝐺v

𝑇i

1 + 𝑇i
1

1 + 𝑃i
𝜑^𝑥d, 𝐶f`	,

𝜕𝑃i
𝜕𝑡

= 𝐺Q
∇𝑃i ∙ ∇𝐶f

𝐶f
− 𝑃i

1
1 + 𝛼d𝑇i + 𝛽f𝐿i

𝑁g

𝐺R + 𝑁g
^1 − 𝐶f`	,

𝜕𝜓Vj
𝜕𝑡
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𝛻𝜓Vj ∙ 𝛻𝐶f

𝐶f
− 𝜓Vj

1
1 + 𝛼d𝑇i + 𝛽f𝐿i
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𝜕𝑡 = 𝐺Q

𝛻𝜓*j ∙ 𝛻𝐶f

𝐶f
−	𝜓*j

1
1 + 𝛼d𝑇i + 𝛽f𝐿i
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(7)	

	

The definition of parameter groups 𝐺l, (𝑖 = 1,… ,12) can be found in Supplementary Table 2. 67 

Supplementary Equation 3 becomes 68 

𝑃i =
𝐺Qh

𝐺QQ𝐺QR
𝑇i𝐿i (8) 

Numerical solver for the PDE model 69 

To solve the model numerically in Matlab, we exploit the radial symmetry of the system and 70 

reduce it to a PDE in polar coordinates, only depending on one spatial variable, namely the radius 71 

𝑟 ∈ [0, 𝑅]. We combine the Matlab built-in Runge-Kutta solver ode45 with a second order centered 72 

finite difference scheme for discretization of the gradients. Due to the radial symmetry, we use the 1D 73 

distribution along the radius as the ground truth for training/testing the neural network 74 

(Supplementary Figure 1B) without losing any information. 75 

In addition, due to the assumption that 𝐿, 𝑇 and	𝑃 are at equilibrium, the L-T-P system is updated 76 

in each step by projecting it onto the manifold defined by 𝑃 = ���
������

𝑇𝐿. With this constraint, the 77 

concentrations are updated to (𝐿Q, 𝑇Q, 𝑃Q)   78 
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𝐿Q =
1
2�𝐿h − 𝐺Qh𝑇h − 𝐺QQ +

�(𝐿h − 𝐺Qh𝑇h − 𝐺QQ)R + 4𝐺QQ(𝐿h + 𝐺QR𝑃h)�,	 (9) 

 79 

𝑃Q = 𝑃h +
1
𝐺QR

(𝐿h − 𝐿Q),	 (10) 

𝑇Q = 𝑇h −
1
𝐺Qh

(𝐿h − 𝐿Q). (11) 

 80 

Although the PDE model is computationally less expensive than the stochastic agent-based 81 

model1, it still imposes a prohibitive barrier for practical applications while intensive parameter 82 

searching or estimation are needed, even when computer clusters are used. 83 

Parameter screening and the execution of PDE model 84 

Each dimensionless parameter (Supplementary Table 1) is a combination of several parameters 85 

with units (Supplementary Table 2). Rather than estimating dimensionless parameters directly, we 86 

search values of dimensional parameters in a realistic range, and then determine the corresponding 87 

dimensionless parameters. We have 13 dimensional parameters randomly picked from predefined 88 

ranges. Some due to lack of literature estimations/measurements; some can be tuned with varying pH, 89 

temperature, nutrient, agar density and other factors (marked bold in Supplementary Table 1). Other 90 

parameters are fixed with specific values either from literature or from experiments.  91 

Our approach is complementary to the Design of Experiment approach. For instance, even with 92 

proper Design of Experiment approach, the total computational demand for a specific model can still 93 

be large (depending on the number of parameter sets to run). If so, our approach will be useful for 94 

accelerating the predictions that are deemed necessary. Conversely, when an NN is properly trained 95 

to make fast and accurate predictions, it will alleviate the need for aggressive optimization when taking 96 

the Design of Experiment approach.  97 

  98 
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II.Supplemental SDE Model Descriptions 99 

Model description 100 

The deterministic Ordinary differential equations (ODE) for the Myc-E2F system, developed in 101 

the previous work, served as the basis for the stochastic Rb-E2F model7,8.  102 
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𝑑[𝑀𝐶]
𝑑𝑡 =

𝑘�*[𝑆]
𝐾� + [𝑆]

− 𝑑�*[MC]	,

𝑑[𝐸𝐹𝑚]
𝑑𝑡 = 6𝑘�

[𝑆]
𝐾� + [𝑆]

+ 𝑘�|O
[𝑀𝐶]

𝐾�* + [𝑀𝐶]
[𝐸𝐹𝑝]

𝐾�| + [𝐸𝐹𝑝]
+

𝑘�[𝑀𝐶]
𝐾�* + [𝑀𝐶]

9
𝐾V

𝐾V + [𝑀𝐶]
− 𝑑�|O[EFm],

𝑑[𝐸𝐹𝑝]
𝑑𝑡 = 𝑘�|�[𝐸𝐹𝑚]

𝐾�V
𝐾�V + [𝑀𝑅]

+
𝑘�Q[𝐶𝐷][𝑅𝐸]
𝐾*� + [𝑅𝐸]

+
𝑘�R[𝐶𝐸][𝑅𝐸]
𝐾*� + [𝑅𝐸]

− 𝑘V�[RB][EFp]

−(1 + 𝐾C|V[AF])𝑑�|�[EFp]
𝑑[𝐶𝐷]
𝑑𝑡 = 	

𝑘*�[𝑀𝐶]
𝐾�**� + [𝑀𝐶]

+
𝑘*��[𝑆]
𝐾� + [𝑆]

− 𝑑*�[CD]

𝑑[𝐶𝐸]
𝑑𝑡 =

𝑘*�[𝐸𝐹𝑝]
𝐾�| + [𝐸𝐹𝑝]

− 𝑑*�[CE],

𝑑[𝑅𝐵]
𝑑𝑡 = 𝑘V¡ +

𝑘�E[𝑅𝑃]
𝐾VE + [𝑅𝑃]

− 𝑘V�[RB][EFp] −
𝑘�Q[𝐶𝐷][𝑅𝐵]
𝐾*� + [𝑅𝐵]

−
𝑘�R[𝐶𝐸][𝑅𝐵]
𝐾*� + [𝑅𝐵]

− 𝑑V¡[RB],

𝑑[𝑅𝑃]
𝑑𝑡 =

𝑘�Q[𝐶𝐷][𝑅𝐵]
𝐾*� + [𝑅𝐵]

+
𝑘�R[𝐶𝐸][𝑅𝐵]
𝐾*� + [𝑅𝐵]

+
𝑘�Q[𝐶𝐷][𝑅𝐸]
𝐾*� + [𝑅𝐸]

+
𝑘�R[𝐶𝐸][𝑅𝐸]
𝐾*� + [𝑅𝐸]

−
𝑘�E[𝑅𝑃]
𝐾VE + [𝑅𝑃]

− 𝑑VE[RP]	,

𝑑[𝑅𝐸]
𝑑𝑡 = 𝑘V�[RB][EFp] −

𝑘�Q[𝐶𝐷][𝑅𝐸]
𝐾*� + [𝑅𝐸]

−
𝑘�R[𝐶𝐸][𝑅𝐸]
𝐾*� + [𝑅𝐸]

− 𝑑V�[RE]	,

𝑑[𝐴𝐹]
𝑑𝑡 = 𝑘C|� + 𝑘C|�*

[𝑀𝐶]
𝐾C|�* + [𝑀𝐶]

+
𝑘C|�|[𝐸𝐹𝑝]
𝐾C|�| + [𝐸𝐹𝑝]

− 𝑑C|[AF]	,

𝑑[𝑀𝑅]
𝑑𝑡 = 𝑘�V�*

[𝑀𝐶]
𝐾�V�* + [𝑀𝐶]

+
𝑘�V�|[𝐸𝐹𝑝]
𝐾�V�| + [𝐸𝐹𝑝]

− 𝑑�V[MR]	,

	 (12)	

 103 

where  [𝑆] is the growth signals (e.g. serum); [𝑀𝐶],  [𝐸𝐹𝑚], [𝐸𝐹𝑝], [𝐶𝐷], [𝐶𝐸], [𝑅𝐵], [𝑅𝑃], 104 

[𝐴𝐹] , [𝑀𝑅]  are the concentrations of Myc, E2F mRNA, E2F protein, CycD, CycE, Rb and 105 

Phosphorylated Rb, ARF and miRNA. [𝑅𝐸] is the concentration of RB-E2F complex. 106 

Initial conditions:  107 

[RB]=[RE]=[M]=[E]=[CD]=[CE]=[RP]=0µM. 108 

Parameters are defined in Supplementary Table 5. 109 

The above is the deterministic ODE model of the system. To capture stochastic aspect of the 110 

Rb-E2F signaling pathway, we adopt the Chemical Langevin Formulation (CLF)9. We adjust the units 111 
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of the molecule concentrations and the parameters so that the molecules are expressed in molecular 112 

numbers.  113 

𝑑𝑋l(𝑡)
𝑑𝑡 =£𝑣¥l𝑎¥[𝑋(𝑡)] +£𝑣¥l𝑎

Q
R¥[𝑋(𝑡)]Γ¥(𝑡) + 𝜔l(𝑡)

�

¥©Q

�

¥©Q

 (13) 

𝑋l(𝑡) represents the number of molecules of a molecular species I (i=1,…, N) at time t, and 114 

𝑋(𝑡) = (𝑋Q(𝑡), … , 𝑋5(𝑡)) is the state of the entire system at time t. The mean molecule number for 115 

E2F would be approximately 1,000. X(t) evolves over time at the rate of 𝑎¥[𝑋(𝑡)] (j= 1, …, M), and 116 

the corresponding change in the number of individual molecules is described in 𝑣¥l . 𝛤¥(𝑡) and 𝜔l(𝑡) 117 

are temporally uncorrelated, statistically independent Gaussian noises. This formulation retains the 118 

deterministic framework (the first term), and intrinsic noise (reaction-dependent) and extrinsic noise 119 

(reaction-independent). We assumed a mean of 0 and variance of 5 for 𝛤¥(𝑡), and a mean of 0 and 120 

variance of 50 for 𝜔l(𝑡). The resulting stochastic differential equations (SDEs) were implemented 121 

and solved in Matlab. Serum concentration is fixed at [𝑆] = 1%. 122 

Twenty-four parameters of the SDE model are generated randomly (Supplementary Table 5). 123 

The ranges cover almost all the possible rates that can be found in vivo. For each of the generated 124 

combination of parameters, we sample 10q stochastic simulations and collect the final values of all 10 125 

variables. We split the values into 100 bins to construct a histogram for each variable. Since the large 126 

number of simulations, the histograms are almost continuous. We create a kernel distribution object 127 

by using MATLAB function fitdist(). Then we use Matlab function pdf() to get the probability density 128 

function of the distribution object, evaluated at the values in each of the discretized intervals (Each of 129 

the variables are discretized into 1,000 intervals for this model). 130 

  131 
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III.Supplemental Deep Learning Methods 132 

Deep learning through the training of artificial neural networks has made immense 133 

contributions in various fields, such as computer vision10-12, speech recognition13-16, and beating the 134 

world champion at the game of Go17-19. This is a result of fast GPUs, high availability of data, and also 135 

the advancements of the algorithms for training deep neural networks. Over the last decade, deep 136 

learning is also becoming increasingly important for diverse biological researches20-27. Among all the 137 

applications, a predictive model was developed based on statistical associations among features of a 138 

given dataset. The learned model can then be used to predict desired outputs, such as binary responses 139 

(e.g., pathogenic or non-pathogenic, toxic or non-toxic), categorical labels (e.g., bacteria strains, stages 140 

of diseases), values (e.g., growth rate, drug doses) or sequences (e.g., time/spatial series, probability 141 

density functions). 142 

Several previous studies have demonstrated how to adopt neural networks to facilitate 143 

numerically solving differential equations28-37. The massive acceleration enables extensive exploration 144 

of the system dynamics that is impossible by solely dependent on the mechanistic model. In our study, 145 

we use LSTM network, a type of recurrent neural network (RNN), for prediction of the normalized 146 

distribution. 147 

 148 

Recurrent neural networks 149 

RNNs are a family of deep neural networks for processing sequential data38-40. Different from 150 

a feedforward neural network, a recurrent neural network has connections pointing backward. It will 151 

send the predicted output back to itself. Supplementary Figure 2A is a demonstration of a recurrent 152 

neuron (the simplest RNN, composed of only one neuron receiving inputs, producing outputs, and 153 

sending the outputs back to itself). At each sequential step (also called a frame), this recurrent neuron 154 

receives input 𝑥¬  as well as its own output from previous sequential step 𝑦¬®Q). By unrolling the 155 

network against the sequential inputs, we can see that each member of the output is a function of the 156 

previous output, and is produced using the same update rule applied to the previous outputs, which 157 

results in the sharing of parameters through a very deep computational graph.  158 

𝑦¬ = ℎ(𝑦¬®Q; 𝑥¬; 𝜃) = ℎ(ℎ(𝑦¬®R; 𝑥¬®Q; 𝜃); 𝑥¬; 𝜃) = ℎ(ℎ(ℎ(𝑦¬®p; 𝑥¬®R; 𝜃); 𝑥¬®Q; 𝜃); 𝑥¬; 𝜃) 159 
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Since the output of a recurrent neuron at step 𝑠 is a function of all the inputs from previous steps, 160 

it seems to have a form of memory. However, the ordinary RNN cannot be used on long-sequence 161 

data. The memory of the first inputs gradually fades away due to the transformations that the data 162 

goes through when traversing an RNN, some information is lost after each step. After a while, the 163 

RNN state contains virtually no trace of the first inputs41. To solve this problem, various types of cells 164 

with long-term memory have been introduced and the most successful/popular one is the long short-165 

term memory (LSTM) network. 166 

LSTM network 167 

The LSTM network was proposed in 1997 by Sepp Hochreiter and Jurgen Schmidhuber42, and 168 

it was gradually improved over the years by Alex Graves43, Wojciech Zaremba44, and many more. 169 

Supplementary Figure 2B showed the architecture of an LSTM cell. An internal recurrence (a self-170 

loop, shown in red) is added on top of the outer recurrence of the RNN (shown in orange). This self-171 

loop is responsible for memorizing long-term dependencies40. LSTM also has more parameters and a 172 

system of gating units to control the flow of information. The state unit, which has the linear self-173 

loop, is the most important component and its weight is controlled by a forget gate unit (The weight 174 

can be a value between 0 and 1 via a sigmoid unit).  175 

In order to use LSTM network to predict the distribution, we need to discretize the distribution 176 

into a sequence of n consecutive values (n=501 for the first example). Each value is associated with 177 

an LSTM module. So there are 501 LSTM modules in our deep LSTM network for predicting the 178 

synthetic patterns. For each of the LSTM module, the inputs consist both the outputs from fully 179 

connected layer and outputs of the previous m neighboring LSTM modules (m=16 in Supplementary 180 

Figure 2C demonstration). The output of each LSTM module (𝐿𝑆𝑇𝑀l) is a single value corresponding 181 

to the ith value among the n consecutive values.  182 

Supplementary Figure 2D demonstrates the structure of the employed deep LSTM network, 183 

which consists of an input layer with inputs to be the parameters of mechanism-based model, a fully 184 

connected layer (with l nodes), LSTM arrays (consist of n LSTM modules), and two output layers, one 185 

for predicting peak values of distributions, one for predicting the normalized distributions. First, the 186 

parameters of differential equations are connected to the neural network through a fully connected 187 

layer. Fully connected layer means all the inputs are connected to all the neurons in that layer. The 188 

activation function is ELU (Exponential Linear Unit) and the connection weight is initialized 189 
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randomly using He initialization method45. It is then connected to another fully connected layer with 190 

1 neuron for peak value prediction. The output of the first fully connected layer is also connected to 191 

a sequence of LSTM modules for predicting distributions. We use Adam optimization algorithm (the 192 

momentum decay hyperparameter 𝛽Q = 0.5 , the scaling decay hyperparameter 𝛽R = 0.999 ) to 193 

adaptive moment estimation and gradient clipping to prevent exploding gradients. 194 

To predict the patterns from PDE model demonstrated in this paper, we use l=64, n=501, 195 

m=16. To predict the probability distribution from SDE model demonstrated in this paper, we use 196 

l=256, n=1000, m=64. The initial learning rate is 10®q. 197 

The learning process itself refers to finding the optimal set of network parameters that translate 198 

the features in the input data into accurate predictions of the labels. The parameters are found through 199 

a series of back and forth steps (a.k.a. backpropagation), where parameters are estimated, the model 200 

performance is evaluated, errors are identified and corrected, and then the process repeats, until the 201 

model performance cannot be improved upon, which is assessed by the minimization of the model 202 

error. Once the optimal parameters are identified, the network can be used to make predictions using 203 

new data. 204 

  205 
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Supplementary Tables 206 

Supplementary Table 1. Definitions and the values of parameters used in the PDE model 207 

• To generate the training/test datasets, the values of 13 parameters were randomly picked from 208 
prespecified ranges (bold) and other parameters were fixed. 209 

• The values of parameters mentioned in the main text are normalized to be between 0 and 1 with 210 
the following formulation: normalized parameter value = (parameter value-min)/(max-min). 211 

 212 

Parameter Description Defined value 
or search range Base Unit 

𝑘Q Combination rate of T-Lys complex6 400	 molecule-1h-1·cell 

𝑘R Dissociation rate of T-Lys complex6 10800	 h-1 

𝑘� (= 𝑘Q/
𝑘R) 

Equilibrium association constant of T7-lysozyme 
complex6 0.037	 molecule-1·cell 

𝜿𝑪 Cellular diffusion coefficient (depend on agar 
density)46 0.001-0.005	 cm2·h-1 

𝜶𝑪 Cell growth rate on agar 0.2-2	 h-1 

𝛼5 Nutrient depletion rate (Fit with experiments) 155	 molecule·h-1·cell-1 

𝜶𝑨 AHL synthesis rate47 20-	𝟐. 𝟎 × 𝟏𝟎𝟓	 molecule·h-1·cell-1 

𝜶𝑳 Synthesis rate of T7 lysozyme 90	-	𝟗 × 𝟏𝟎𝟑	 molecule·h-1·cell-1 

𝜶𝑻 Synthesis rate of T7RNAP 80	-	𝟖 × 𝟏𝟎𝟑	 molecule·h-1·cell-1 

𝒅𝑨 AHL degradation rate47 0.05-2	 h-1 

𝑑N Degradation rate of T7 lysozyme1 0.0144	 h-1 

𝑑D  Degradation rate of T7RNAP1 0.3	 h-1 

𝐾C Concentration threshold of AHL to half-maximum 
of the pLuxI promoter48 20	 nM 

𝐾5 Half-saturation for nutrient uptake (Fit with 
experiments) 20	 nM 

𝑲𝑻 Half activation constant of T7RNAP 50	-	𝟓 × 𝟏𝟎𝟑	 molecule·cell-1 

𝑲𝑷 Half inhibition of T-Lys complex 50	-	𝟓 × 𝟏𝟎𝟑	 molecule·cell-1 

𝑲𝝋 Half activation distance for gene expression 0	-	10	 cm 

𝜶Ë Inhibition factor of T7RNAP on Growth 0	-	5	  

𝜷g Inhibition factor of T7 lysozyme on Growth 0	-	𝟐 × 𝟏𝟎𝟑	  

𝑚 Hill coefficient of AHL mediated gene expression1 2	  
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𝒏 Hill coefficient for distance-dependent gene 
expression capacity 0	-	𝟓	  

𝐶̅ Cell carrying capacity (Fit with experiments) 3×105	 cells·ml-1 

ℒ Non-dimensionalized factor for space (Fit with 
experiments) 0.18898	 cm 

𝑁h Initial nutrient concentration (Fit with experiments) 66.67	 nM 

|𝛺|h Normalization factor for domains (Fit with 
experiments) 1.69× 10®u	 cm2 

𝐃(= |𝜴|
|𝜴|𝟎

) Non-dimensionalized domain radius 1.0-3.0	  

  213 
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Supplementary Table 2. Expressions and values of parameters in non-dimensional model 214 

 215 

* * By comparing the experiment colony expansion with Fisher-KPP’s traveling wave solution with 216 
wave speed 49, we can estimate that ℒ =0.18898 cm=1889.8 µm. 217 

  218 

Non-dimensionalized 

parameter 
Expression Value 

𝐺Q 
𝜅*
𝛼*ℒR

 28 ×
𝜅*
𝛼*

∗
 

𝐺R 
𝐾5
𝑁h

 0.3 

𝐺p 
𝛼5𝐶̅
𝛼*𝑁h

ℒp

|𝛺|
1

10®q𝑐𝑚 0.0046 ×
1

𝛼*𝐷R
∗

 

𝐺q 
𝛼C𝐶̅
𝛼*𝐾C

ℒp

|𝛺|
1

10®q𝑐𝑚 9.95 × 10®r ×
𝛼C
𝛼*𝐷R

∗
 

𝐺r 
𝑑C
𝛼*

 
𝑑C
𝛼*

 

𝐺s 
𝑑N
𝛼*

 
0.0144
𝛼*

 

𝐺t 
𝑑N
𝛼*

 
0.0144
𝛼*

 

𝐺u 
𝑑D
𝛼*

 
0.3
𝛼*

 

𝐺v 
𝛼D
𝛼*𝐾D

 
𝛼D
𝛼*𝐾D

 

𝐺Qh 
𝐾D𝑑N
𝛼N

 
0.0144 × 𝐾D

𝛼N
 

𝐺QQ 
𝑑N
𝛼N𝑘�

 
0.3892
𝛼N

 

𝐺QR 
𝐾E𝑑N
𝛼N

 
0.0144 × 𝐾E

𝛼N
 

𝐺O*xyzz{ 
1
𝛼*

 
1
𝛼*

 

𝐺*|E 
1
𝛼*

 
1
𝛼*
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Supplementary Table 3. Using the mechanism-based model to validate 3-ring patterns 219 
generated from LSTM networks. We use an ensemble of trained deep LSTM networks to screen 220 
through the parameter space. It takes around 12 days to screen through 𝟏𝟎𝟖  combinations of 221 
parameter sets, which would need thousands of years if we could generate these by using PDE 222 
simulations. We find 1284 three-ring pattern distributions, including novel patterns not present in the 223 
training sets. We then use their parameter combinations as inputs to generate numerical simulations 224 
from the PDE model and compare the distributions generated from LSTM network and from 225 
numerical simulations, we find most of the distributions from numerical simulations are consistent 226 
with that from network predictions. The mean value of the root mean squared errors (RMSEs) 227 
between NN predicted distributions and PDE simulations is 0.079 and the standard deviation is 0.008. 228 
If setting the threshold of RMSE between distributions generated by the neural network and the 229 
distributions generated by numerical simulations to be 0.1, there are 1203 found distributions with 230 
RMSE<0.1 and only 81 with RMSE>0.1. 231 

Total RMSE<0.1 RMSE>0.1 

1284 1203 81 

  232 
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Supplementary Table 4. Accuracy analysis of the test dataset for the PDE model. We calculate 233 
the averaged values of RMSEs and L2 norms between predicted distributions from neural network(s) 234 
𝒑 and that from numerical simulations 𝒒 for test dataset (20,000 samples). The network prediction 235 
can be from one neural network, or an ensemble of neural networks (4 ensembles are chosen for 236 
comparison in this table). Since the final prediction of an ensemble of neural networks is based on the 237 
disagreement of distributional values, we can see ensemble neural networks have better accuracy on 238 
predicting distributional value than, and almost the same accuracy on predicting peak value as, single 239 
neural network. 240 

 

RMSE L2 norm 

no ring 1 ring 2 rings and 
more no ring 1 ring 2 rings 

and more 

single NN 

peak value 0.35 0.19 0.14 0.35 0.19 0.14 

distributional 
value 0.0097 0.013 0.019 0.22 0.30 0.42 

ensemble 
NNs (4 

ensembles) 

peak value 0.35 0.20 0.16 0.35 0.20 0.16 

distributional 
value 0.0049 0.0085 0.014 0.11 0.19 0.31 

*RMSE =Õ𝟏
𝒏
∑ (𝒑𝒊 − 𝒒𝒊)𝟐𝒏
𝒊©𝟏 , n=501 for distributions and n=1 for peak value. 241 

*L2-norm=�∑ (𝑝l − 𝑞l)R]
l©Q , n=501 for distributions and n=1 for peak value. 242 

*when n=1, the values of RMSE and L2-norm are the same. 243 

244 



17 
 

Supplementary Table 5. Parameters for the SDE model.  245 

To generate the training/test datasets, the values of 24 parameters were randomly picked from 246 
prespecified ranges (bold) and other parameters were fixed. 247 

Constant Value Description and source 

	 0.2-5 µM/h MYC synthesis rate 

	 0.05 µM/h EFm synthesis rate (serum) (Arbitrary value adjusted to match 
experimental observations presented here and 50,51) 

	 0.08-2.0 µM/h  EFm synthesis rate 

	 0.03-0.75 µM/h EFp-independent EFm synthesis rate (serum) 

	 0.08-2.0 /h E2F translation rate 

	 0.01-0.1 µM/h CYCD synthesis rate (MYC)  

	 0.1-2.0 µM/h CYCD synthesis rate (serum) 

	 0.07-1.5 µM/h CYCE synthesis rate 

	 0.05-0.9 µM/h RB synthesis rate 

	 36-360 /(µM*h) RB-E2F formation rate 

∗ 𝑘�E	 3.6 µM/h RB dephosphorylation rate52 

∗ 𝑘�Q	 18 /h RB phosphorylation rate mediated by CYCD52 

∗ 𝑘�R	 18 /h RB phosphorylation rate mediated by CYCE52 

	 0.007 µM/h Basal ARF synthesis rate (Arbitrary value - included based on role in 
nucleolar integrity in absence of oncogenic stress) 53 

	 0.003-0.075 µM/h Synthesis rate of ARF by EFp  

	

0.002-0.05 µM/h Synthesis rate of ARF by MYC  

	
0.16-4.0 µM/h Synthesis rate of miRNA by EFp  

	

0.04-1.0 µM/h Synthesis rate of miRNA by MYC  

	

0.2-5.0 µM Half-maximal MYC concentration (ARF synthesis) 

	
0.1-2.5 µM Half-maximal EFp concentration (ARF synthesis) 

	 0.05-1.25 µM Half-maximal MYC concentration (miRNA synthesis) 

	 0.05-1.25 µM Half-maximal EFp concentration (miRNA synthesis) 

	 0.03-0.75 µM Half-maximal MYC concentration (EFm autoregulation) 

	 0.5-12.5 µM Half-maximal MYC concentration (EFp-independent EFm 
regulation)  

MCk

Sk

EFmk

bk

EFpk

CDk

CDSk

CEk

RBk

REk

AFbk

AFEFk

AFMCk

MREFk

MREFk

MRMCk

AFMCK

AFEFK

AFEFK

MRMCK

MREFK

MCK

MC1K
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	 0.1%-2.5% Half-maximal serum concentration   

	 0.03-0.75 µM Half-maximal EFp concentration (E2F autoregulation)  

	 20-200 µM Half-maximal repression of EFm by MYC (Adjusted to match 
observations from this study) 

	 0.6 µM Half-maximal miRNA concentration (EFp repression) (Adjusted 
according to experimental observations 54) 

	 0.002-0.05 /µM A constant to account for ARF-mediated EFp decay 55 

	 0.002-0.05 µM Michaelis-Menten constant for constitutive dephosphorylation52 

	 0.92 µM Half-maximal CYCD concentration (RB phosphorylation)56,57 

	 0.92 µM Half-maximal CYCE concentration (RB phosphorylation)56,57 

	 0.15 µM Half-maximal MYC concentration (CYCD synthesis)58 

	 0.25 /h EFm decay constant 59,60 

	 0.35 /h EFp decay constant 61 

	 1.5 /h CYCD decay constant62,63 

	 1.5 /h CYCE decay constant64,65 

	 0.06 /h RB decay constant66 

	 0.06 /h Phospho-RB decay constant66 (assume to be the same as ) 

	 0.03 /h RB-E2F decay constant67 

	 0.7 /h MYC decay constant68-70  

	 0.12 /h ARF decay constant 71-74 

	 2.8 /h miR-17-92 cluster miRNA decay constant75 
  248 

SK

EFK

RK

MRK

AFRK

RPK

CDK

CEK

MCCDK

EFmd

EFpd

CDd

CEd

RBd

RPd RBd

REd

MCd

AFd

MRd
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Supplementary Table 6. Accuracy analysis for deep LSTM network prediction system. We 249 

used different evaluation methods to evaluate the agreement between predicted distribution by neural 250 

network and the distribution generated by numerical simulation. The test sample size is s (=10,000). 251 

For each of the distribution, there are 1,000 discrete points representing space segregation. 252 

 R2 L2 norm *K-S distance 

Myc 0.998 0.1294 0.0134 

E2Fm 0.993 0.2610 0.0433 

E2Fp 0.989 0.4909 0.0544 

CD 0.998 0.1814 0.0173 

RB 0.925 2.2244 0.1162 

CE 0.994 0.3405 0.0432 

RP 0.990 0.5080 0.0447 

RE 0.986 0.6303 0.0486 

AF 0.996 0.3677 0.0360 

MR 0.995 0.3009 0.0306 

*The Kolmogorov–Smirnov statistic quantifies a distance between the empirical distribution 253 

function of the sample and the cumulative distribution function of the reference distribution, or 254 

between the empirical distribution functions of two samples. It is a non-parametric test that compares 255 

2 cumulative distributions. Kolmogorov-Smirnov (K-S) distance is the supremum (greatest) distance 256 

between 2 cumulative distributions. Its value is between 0 and 1. A small distance between two 257 

distributions will result in a high similarity value between those distributions.  258 
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Supplemental Figures 259 

 260 

Supplementary Figure 1: PDE model description 261 

A. A pattern-formation circuit. The circuit consists of a T7 RNA polymerase that activates its own 262 
expression as well as the expression of LuxR and LuxI. Upon activation by T7RNAP (T7), LuxI 263 
mediates synthesis of AHL (orange dots), which can diffuse across the cell membrane. When the 264 
global AHL concentration surpasses a threshold, intracellular AHL binds to LuxR (R) to activate 265 
the synthesis of T7 lysozyme (lys). Lysozyme then binds to the T7RNAP and forms a T7-lysozyme 266 
complex, therefore inhibiting the T7RNAP binding to the T7 promoter. This complex also 267 
inhibits T7RNAP transcription. 268 

B. A schematic plot showing that the 1D concentration along a radius line is sufficient to 269 
represent the spherical geometry of the 2D pattern. We choose hot colormap in Matlab and 270 
normalized the maximum concentration to be 1 for the plot. The 1D curves are used as ground 271 
truth of our model.  272 
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 273 
Supplementary Figure 2: Introduction to the concept of deep LSTM networks and the 274 

structure of the employed deep LSTM network. 275 

A. A recurrent neuron. A recurrent neuron receives a sequential input x, produces an output and 276 
sends that output back to itself. At each sequential step s, this recurrent neuron receives input 𝑥¬ 277 
as well as its own output from previous sequential step 𝑦¬®Q. The blue block indicates a delay of 278 
a single sequential step. This neuron (left) is the same as the unrolling computational graph (right), 279 
where each node is now associated with one particular sequential instance. 280 

B. A typical LSTM neural network unit. In TensorFlow, LSTM cells can be simply implemented 281 
by using tf.contrib.rnn.BasicLSTMCell built-in function without needing to know the cell 282 
structure. In short, LSTM cells manage two state vectors, one is responsible for short-term 283 
memory and one is responsible for long-term memory. For each step, it adds some memories to 284 
long-term memories (controlled by input gate), drop some memories (controlled by the forget 285 
gate) and decide which parts of the long-term memories should be read and output at this step 286 
(controlled by the output gate). More details can be found at the referenced books40,76. 287 

C. A training instance. We discretize the x-axis into 501 points, so the entire pattern becomes a 288 
continuous pattern distribution series and is what we want to predict (blue line). Each point is 289 
associated with an LSTM module. There are 501 LSTM modules in total. For each module, the 290 
target output is a single value (green star), and the inputs are outputs of the previous m (m=16 in 291 
the figure demonstration, red dots) neighboring LSTM modules. Red line and the small figure 292 
window represent a training instance from that series for one LSTM module.  293 
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D. The structure of the employed deep LSTM network. The employed deep LSTM network 294 
consists of an input layer with inputs to be the parameters of mechanism-based model, a fully 295 
connected layer, LSTM arrays, and 2 output layers, one for predicting peak value of the 296 
distribution, one for predicting the normalized distribution.  297 

  298 
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 299 

Supplementary Figure 3: Comparison between predicted distributions generated by neural 300 

network and distributions generated by mechanism-based model. These examples are randomly 301 

selected from the training dataset. 302 

  303 
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 304 
Supplementary Figure 4: Comparison between predicted distribution generated by neural 305 

network and distribution generated by mechanism-based model. These are randomly selected 306 

from the test dataset, i.e., the dataset generated by mechanism-based model, however, never been used 307 

to train the neural networks.  308 

  309 
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 310 
Supplementary Figure 5: Analysis of the training data acquired from simulation.  311 

A. Peak value distribution. The total training data size is 10r. The peak value for all the training 312 
data can be as low as 10®Rh, or as high as 10r. The peak value for data with pattern (one or more 313 
than one ring) is more concentrated at the higher end.  314 

B. Data pattern structure. The training dataset consists of 42897 sets of data with no ring, 55594 315 
sets of data with 1 ring, 1508 sets of data with 2 rings and only 1 set of data with 3 rings. 316 

317 
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 318 
Supplementary Figure 6: Ensemble prediction analysis 319 

A. Comparison of trainable variables (weights, bias) between 2 trained neural networks. The 320 

difference in parameterization is due to random initialization and the properties of 321 

backpropagation.  322 

B. The increased disagreement in prediction is positively correlated with the increased error 323 

in predictions. We test the positive correlation between logarithm value of disagreement in 324 

prediction and logarithm value of error of final prediction using 3, 4, 5 ensembles of LSTM 325 

networks. We do not find significant differences while using different number of LSTM ensembles. 326 

We used 4 ensembles of LSTM networks in the main text for analysis. 327 

  328 
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 329 

Supplementary Figure 7: Relationship of parameters to generate 3-ring patterns. We screened 330 

through 10u  combinations of parameter sets using the ensemble prediction method, where we 331 

discarded predictions with disagreement in predictions larger than 0.1. For each of the screening, we 332 

vary two parameters of interest and fixed the rest and we only plot the parameter combinations that 333 

can generate 3-rings. These NN predictions reveal the general criterion for generating 3-ring patterns.  334 

A. Negative relationship between cell growth rate on agar (𝜶𝑪) and half activation constant 335 
of T7RNAP (𝑲𝑻). If approximating that they are inversely proportional, we can get the fitting 336 
with 𝑅R = 0.94.  Other parameters are fixed with constant values: 𝛼C = 0.5 , α = 0.5 , β =337 
0.5,	𝐾∅ = 0.3,	𝑛 = 0.5,	𝛼D = 0.8,	𝛼N = 0.3,	𝐾* = 0.5,	𝐾E = 0.5,	𝑑C = 0.5, 𝐷 = 1.0. 338 

B. Linear correlation between half activation constant of T7RNAP (𝑲𝑻), and synthesis rate 339 

of T7RNAP (𝜶𝑻) in order to generate 3-ring patterns. 𝑅R = 0.996. Other parameters are 340 

fixed with constant values: 𝛼C = 0.5 , α = 0.5 , β = 0.5 , 	𝐾∅ = 0.3 , 	𝑛 = 0.5 , 	𝛼* = 0.5 , 	𝛼N =341 

0.3,	𝐾* = 0.5,	𝐾E = 0.5,	𝑑C = 0.5, 𝐷 = 1.0.   342 
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 343 
Supplementary Figure 8: Stochastic Myc-E2F pathway in cell-cycle progression. This model is 344 

from Jeffrey Wong, et al77. 345 

A. Diagram of a concrete mechanism-based SDE model example. E2F functions as the output 346 

of the Rb-E2F signaling pathway and is involved in multiple positive-feedback loops (Fig. 1a). In 347 

quiescent cells, E2F is bound to and repressed by Rb. With sufficient growth stimulation, 348 

phosphorylation by Myc-induced cyclin D (CycD) - Cdk4,6 removes Rb repression; Myc also 349 

induces E2F transcription. Subsequently, E2F activates the transcription of CycE, which forms a 350 

complex with Cdk2 to further remove Rb repression by phosphorylation, establishing a positive-351 

feedback loop. E2F also activates its own transcription, constituting another positive-feedback 352 

loop.  353 

B. Histogram of stochastic simulations. 10q stochastic simulations are used to make this plot. 354 

We split the data into 100 bins and plot the histogram with no gap between bars. With a sufficiently 355 

large number of simulations, this distribution converges to an approximately continuous curve. 356 

The red dotted curve is the kernel fitting using Matlab function fitdist(), which will be used as the 357 

ground truth to train the neural network. 358 

359 
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 360 
Supplementary Figure 9: Neural network performance and sample prediction. 361 

A. Accuracy analysis for deep LSTM network prediction system. We plot the predicted 362 

distributions by neural network against the distribution generated by numerical simulation. Perfect 363 

alignment corresponds to the y = x line. We calculated the R-square to measure how close they 364 

are. The test sample size is s (=10,000). For each of the distribution, there are 1,000 discrete points 365 

representing space segregation. The predictions of Rb distribution are not as good as others, we 366 
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speculate that the worse performance in predicting RB is likely due to the high sensitivity of RB 367 

distributions at certain parametric space.  368 

B. Representative distributional samples predicted by neural network. Blue lines are the 369 

predicted distributions generated by trained neural network, red dashed lines are the distributions 370 

generated by numerical simulations. 371 

  372 
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