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Supplementary Information 
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1. Raman spectroscopy  

In SFig. 1, we plot a typical Raman spectrum for our hBN specimens. The full width at half 

maximum (FWHM) of the in-plane (𝐸"#) phonon mode is 8.5	cm*+, attesting to the high quality 

of our samples. Note that this FWHM presumably includes some inhomogeneous broadening 
due to the soliton network, similar to the TO (𝐸",) phonon mode we studied by the s-SNOM.  

 
Supplementary Figure 1 | Raman spectrum of the hBN crystal. 

 

2. Local strain and the dislocation depth estimate 

Misfit dislocation networks have been studied extensively. Hexagonal networks 
resembling those that we observed in hBN generically appear at twist grain boundaries [S1]; 
References [S2, S3, S4] offer examples of experimental images for various materials. Such 
networks are also common in epitaxial films [S5, S6]. If the network period is large, the 
dislocations are far apart, and so in the first approximation we can consider each of them 
separately. The analysis is greatly simplified by the fact that hBN belongs to the class of 
hexagonal crystals, for which exact solutions for the strain distribution around single dislocations 
are available. Consider the case of a screw dislocation, which corresponds to a “shear” soliton 
[S7]. (For edge or mixed-type dislocations, the equations are more involved.) In an infinite 
crystal, a screw dislocation positioned on the 𝑦-axis produces the in-plane strain [S1] 

𝑢/01 𝑥, 𝑧 =
𝑏
4𝜋

𝜉𝑧
𝑥" + 𝜉"𝑧" 	 , 𝜉 = 𝐶<< 𝐶==	.	 (S1) 
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Equation S1 implies that the strain is concentrated in two regions shaped as elliptic cylinders, 
which are located above and below the dislocation line (Fig. 3a of the main text). We find the 
anisotropy parameter 𝜉 ∼ 7 using the hBN elastic constants 𝐶<< = 𝐶++ − 𝐶+" 2 = 320	GPa 
and 𝐶== ∼ 7	GPa	from the literature [S8, S9]. Since 𝜉 ≫ 1, the strain has a much wider spread 
along 𝑥 (in-plane) than along 𝑧	(out-of-plane). This is a consequence of the weak interlayer 
coupling in hBN. In a crystal of finite thickness, the strain produced by a dislocation buried at 
depth 𝑑 below the top surface (𝑧 = 0), can be found using the method of images, 𝑢/0 𝑥, 𝑧 =
𝑢/01 𝑥, 𝑧 + 𝑑 + 𝑢/01 𝑥, 𝑧 − 𝑑 +⋯ . Here we showed explicitly only the two terms that 
dominate the strain distribution near the top surface. The characteristic width 𝑤 of the strained 
region at the surface is 𝑤 = 𝜉𝑑. Assuming it corresponds to the width ∼ 90	nm of the minima 
seen in the AFM topography (SFig. 2, SFig. 3 & SFig. 4), we get the estimate of the dislocations 
depth 𝑑 = 𝑤 𝜉 ∼ 15	nm given in the main text. A more refined modeling of the strain 
(including buckling effects [S12, S13]) is a challenging task we leave for future work. 
 
We observed different superlattice patterns in a large variety of hBN microcrystals (at least 
dozen). Therefore, the effects reported in our work are highly reproducible. In SFig. 2, 3&4 we 
display additional representative examples of both AFM topography and nano-IR images 
obtained at different frequencies. The relatively large height variations in SFig. 3 could originate 
from several factors (Refs. [S10, S11]). For example, collective multilayer effects, such as 
buckling are known to produce large high variations (Refs. [S12, S13]). It is also possible that 
the AFM does not measure the true height because the deformable nature of thin hBN flakes. 
However, we would like to emphasize that the height determination in SFig. 3 does not enter into 
inferences of our strain map studies. In our strain analysis, we focused on the planar distortions, 
which captures the key experimental results. Hence, given the imperfections of the height 
determination, our conclusions are still valid. 
 
We also observed of wrinkles and folds in hBN microcrystals. Wrinkling and folding structures 
are a product of a high temperature (>1000 ºC) annealing process. The wrinkles are likely to 
form due to the mismatch of the thermal expansion coefficient between the hBN (-3 x 10-6 /K) 
and the underlying quartz substrate (5.5 x 10-7 /K). Consequently, a local strain would be 
expected near the wrinkling structures in hBN [ref. 37]. 
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Supplementary Figure 2 | AFM topography images of hBN crystals with different pattern 
structures. 

 

 
Supplementary Figure 3 | AFM topography profiles. Panels a-d are topography images and 
the corresponding line-cuts across the images shown in, respectively. 
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Supplementary Figure 4 | Representative nano-IR images of soliton superlattices in hBN. 
Panel A: Topography image. Panel B-E: nano-IR images at selected frequencies. These images 
were taken at the same as area as Panel A. Panel F: Topography line-profile across a moiré unit 
cell; Panel G: Phonon contrast across the same moiré unit cell as Panel F. 
 

3. Coarse-grained strain and the Plateau law of dislocation networks 

The coarse-grained in-plane strain tensor 𝑢NO	and the twist angle 𝜃 of the domain 

pattern (Fig. 2 of the main text) have been calculated according to the formulas 

	
𝑢NO =

1
4𝜋 𝑏Q,N𝐺Q,O +

"

QS+

𝑏Q,O𝐺Q,N	, 𝜃 =
1
4𝜋 𝐆Q×𝐛Q W

"

QS+

	,	 (S2)	

where	𝐆Q is the reciprocal vector conjugate to the real-space period 𝚲Q. These equations have 
been derived by noticing that whenever the observation point is shifted by either of the two 
primitive periods,	𝐫 → 𝐫 + 𝚲Q , the interlayer displacement gets incremented by the Burgers 
vector	𝐛Q of a corresponding soliton (SFig. 5a). Given the domain shape, domain size, and the 
orientation of the crystal lattice that defines the directions of the Burgers vectors 𝐛Q , the 
calculation of 𝑢NO and 𝜃 is straightforward. Conversely, explaining why the observed domains 
have such shapes and sizes presents a theoretical problem. Below we show that the location of 
the soliton junction 𝐑 within the unit cell of the network is fixed by the simple rule: the arms of 
each junction are separated by 120∘	angles. This rule resembles the Plateau law (PL) obeyed by 
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foam films [S14]. Note that due to the simple parallelogram geometry of the unit cell, this 
position 𝐑]^ is unique and independent of the Burgers vectors 𝐛Q unknown in our experiment. 

 
 

Supplementary Figure 5 | Vectors determining the domain shape (a) Domain wall 
configuration over many unit cells. (b) Within a unit cell, the domain wall directions 𝐰Q are 
characterized by the Burgers vectors 𝐛Q, the normal vectors 𝐧Q, and the location 𝐑 of the 
domain-wall junction. 

The PL can be derived as follows. The coarse-grained strain that causes the formation of 
the network originates from a misfit atomic plane boundary in the crystal. This misfit can be 
considered an external strain imposed on the system. We define the corresponding external stress 

𝜎NO = 𝐶NObc𝑢bc where 𝐶NObc is the (in-plane part) of the elastic constants tensor. If the system 

is in equilibrium, the size and shape of the solitons must provide the lowest total energy of the 
system under such stress. Neglecting the soliton-soliton interactions and the curvature of the 
soliton lines, the energy of each soliton has two parts. One part is the self-energy 𝐸sol =
𝛾 𝜙 |𝐰|, where	|𝐰| is the length of the soliton and 𝛾 is the line tension, i.e., the soliton energy 
per unit length. The latter in general depends on the angle 𝜙 between the Burgers vector 𝐛 and 
the normal vector 𝐧 = 𝐰×𝐳 of the wall. The other part of the energy, 

	 𝐸ext = − 𝐰 𝜎NO𝑏N𝑛O = −𝜎NO𝑏N 𝐰×𝐳 O	,	 (S3)	

represents coupling of the soliton to the external stress. To find the position 𝐑 of the junction, 
we need to minimize the total energy per unit cell, 

	
𝐸tot = 2 𝐸sol+𝐸ext

i

QS+

	,	 (S4)	

where the factor of two appears because there are two junctions in each cell. A virtual 
displacement of 𝐑 by Δ𝐑 modifies all three 𝐰Q ’s by the same amount Δ𝐰 = −Δ𝐑. The 
corresponding change to 𝐸ext vanishes, 

	 Δ𝐸ext = Δ𝐑×𝐳 O𝜎NO 𝑏Q,N
Q

= 0, (S5)	

because the Burgers vectors 𝐛Q  add up to zero. This means that the “external energy” is 
independent of 𝐑. We only need to minimize the soliton self-energy. Taking the derivative of the 
self-energy with respect to 𝐑, we get, after some algebra, Eq. (19-2) of [S1]: 
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	 𝛾 𝜙Q 𝐰Q + 𝐳×𝐰Q 𝛾k 𝜙Q
j

= 0	.	 (S6)	

For the special case 𝐑 = 𝐑]^ where the three solitons are oriented 120° apart, all three 𝜙Q’s 

are equal since 𝐛Q’s are also oriented 120° apart. Additionally, 𝐰Qj = 0, and so Eq. (S6) is 

satisfied. Hence, 𝐑]^ is the extremum of the self-energy. We verified numerically that this 
extremum is indeed the global minimum. This establishes the PL. In foams [S14], the PL follows 
immediately from Eq. (S6) because the surface tension 𝛾  is a constant. In our system, 
𝛾	depends on the soliton direction. However, the PL is saved by the three-fold rotational 
symmetry of the hBN atomic plane. Note that the AFM images shown in Fig. 2c-e & f-h of the 
main text indicate some deviations from the PL, which may be because of the approximations 
made in the model or because of dislocation pinning by residual defects, which prevents the 
system from reaching full equilibrium. 

4. Fitting of the nano-IR contrast 

To simulate sd(ω)/ssol(ω) spectra, we employed the electromagnetic solver developed 
previously [S15, S16]. It requires as an input the infrared reflectivity of the sample, which we 
calculated by accounting all the layers (air/hBN/quartz) present in the system. For hBN we used 
the Lorentzian permittivity model, Eq. (1) of the main text. SFigure 6 shows the calculated 
sd(ω)/ssol(ω) spectra for different choices of two adjustable parameters: the damping Γ⊥ and the 
optical phonon frequency 𝜔pq,r. Specifically, the sd(ω) spectra can be fitted with the parameters 
𝜔TO,⊥ = 1365.5	cm*+ and Γ⊥ = 6.5	cm*+, which is consistent with previous work [S17, S18, 
S19]. The best fit to the ssol(ω) spectra is obtained with 𝜔TO,⊥ = 1365.8	cm*+  and Γ⊥ =
7.35	cm*+. 

 
 
Supplementary Figure 6 | sd(ω)/ssol(ω) spectra fitting. a: sd(ω)/ssol(ω) spectra at different Γr. b: 
sd(ω)/ssol(ω) spectra at different 𝜔pq,r. 

5. Phonon frequency shift due to strain 

The frequencies of the two-fold degenerate 𝐸", phonon mode are the eigenvalues of a certain 
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2×2 dynamical matrix 𝐷NO. The perturbative effect of a weak strain on this matrix is described 

by the second-order elastic tensor 𝐺NObc. If we restrict attention to the in-plane coordinates, the 

hexagonal symmetry of the hBN planes implies that this fourth-rank tensor has only three 
linearly independent nonzero elements, e.g., 𝐴 = 𝐺////, 𝐵 = 𝐺//00, and 𝐶 = 𝐺/0/0. Therefore, 
the strain produces the perturbation of the form  

	 Δ𝐷NO = 𝐺NObc𝑢bc =
𝐴𝑢// + 𝐵𝑢00 𝐶𝑢/0

𝐶𝑢/0 𝐵𝑢// + 𝐴𝑢00
	 (S7)	

Diagonalizing this matrix, we obtain Eq. (2) of the main text. 
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