
Supplementary methods 

Death rate and length of stay and settings 

We assume a constant death rate 𝜔 (per day) for all patients, and that the length of stay of live-discharge patients is 

governed by a distribution with cumulative distribution function 𝐹(𝑡) and probability density function 𝑓(𝑡). We are 

given the fraction of stays ending in death, 𝑝𝑑: 

𝑝𝑑 = ∫ 𝜔𝑒−𝜔𝑡(1 − 𝐹(𝑡))𝑑𝑡
∞

0

 

Using integration by parts we can rewrite this as 

𝑝𝑑 = 1 −∫ 𝑒−𝜔𝑡𝑓(𝑡)𝑑𝑡
∞

0

= 1 −𝑀(−𝜔) 

Where 𝑀 is the moment-generating function of the live-discharge length of stay distribution. 

We are also given the mean and 25th, 50th, and 75th percentiles of the overall length of stay distribution (𝜇, 

𝑙25, 𝑙50, 𝑙75), which encompasses stays ending in either death or live discharge. Under the above assumptions we 

have the following cumulative distribution function 𝐹all for overall length of stay: 

𝐹all(𝑡) = ∫ (𝜔𝑒−𝜔𝜏(1 − 𝐹(𝜏)) + 𝑒−𝜔𝜏𝑓(𝜏))
𝑡

0

𝑑𝜏 

Using integration by parts we get 

𝐹all(𝑡) = 1 − 𝑒
−𝜔𝑡(1 − 𝐹(𝑡)) 

The mean is therefore: 

𝜇 = ∫ (1 − 𝐹all(𝑡))𝑑𝑡
∞

0

= ∫ 𝑒−𝜔𝑡(1 − 𝐹(𝑡))𝑑𝑡
∞

0

=
1 − ∫ 𝑒−𝜔𝑡𝑓(𝑡)𝑑𝑡

∞

0

𝜔
=
1 −𝑀(−𝜔)

𝜔
 

Noting the result above that 𝑝𝑑 = 1 −𝑀(−𝜔), we can solve for 𝜔 independently of the live-discharge stay 

distribution: 

𝜔 =
𝑝𝑑
𝜇

 

Then we have four equations constraining the live-discharge stay distribution: 

𝜇 =
1 − 𝑀(−𝜔)

𝜔
 

0.25 = 1 − 𝑒−𝜔𝑙25(1 − 𝐹(𝑙25)) 

0.5 = 1 − 𝑒−𝜔𝑙50(1 − 𝐹(𝑙50)) 

0.75 = 1 − 𝑒−𝜔𝑙75(1 − 𝐹(𝑙75)) 

We assume a mixed exponential-gamma distribution for the live-discharge stay distribution, with a portion 𝑝𝑥 of 

patients following an exponential distribution with mean 𝜇𝑥 and the rest following a gamma distribution with mean 

𝜇𝑔 and shape parameter 𝑘. For this distribution: 

𝑀(𝑥) = 𝑝𝑥(1 − 𝜇𝑥𝑥)
−1 + (1 − 𝑝𝑥)(1 − 𝜇𝑔𝑥 𝑘⁄ )

−𝑘
 



𝐹(𝑡) = 𝑝𝑥(1 − 𝑒
−𝑡 𝜇𝑥⁄ ) + (1 − 𝑝𝑥)

1

Γ(𝑘)
∫ 𝜏𝑘−1𝑒−𝜏𝑑𝜏
𝑘𝑡 𝜇𝑔⁄

0

 

We apply these two functions to the four equations above and numerically solve for the four unknown parameters 

𝑝𝑥, 𝜇𝑥, 𝜇𝑔, and k. 

Pre-intervention, we have 𝑝𝑑 = 0.215, 𝜇 = 33.8 days, 𝑙25 = 16 days, 𝑙50 = 28 days, and 𝑙75 = 43 days, which leads 

to: 

𝜔 = 0.006361503, 𝑝𝑥 = 0.4626888, 𝜇𝑥 = 49.8726425, 𝜇𝑔 = 34.3445429, and 𝑘 = 5.3106238 

Post-intervention, we have 𝑝𝑑 = 0.176, 𝜇 = 30.5 days, 𝑙25 = 16 days, 𝑙50 = 26 days, and 𝑙75 = 39 days, which leads 

to: 

𝜔 = 0.005767406, 𝑝𝑥 = 0.1800357, 𝜇𝑥 = 53.7929745, 𝜇𝑔 = 31.5245810, and 𝑘 = 3.7254548 

Patient state dynamics 

Given a system 

𝑑𝐱

𝑑𝑡
= 𝐖𝑡, 𝐱(0) = 𝐱a 

Where 𝐖 governs during-stay state transitions and death rates, 𝐱a is the distribution of states at admission, and the 

live-discharge length of stay distribution has cumulative distribution function 𝐹(𝑡), the equilibrium cross-sectional 

state distribution 𝐱∗ is: 

𝐱∗ =
(∫ 𝑒𝐖𝑡(1 − 𝐹(𝑡))𝑑𝑡
∞

0
)𝐱a

𝟏T(∫ 𝑒𝐖𝑡(1 − 𝐹(𝑡))𝑑𝑡
∞

0
)𝐱a

 

To evaluate the integral in this expression, we must consider the integral ∫ 𝜑𝑖(𝑡)(1 − 𝐹(𝑡))𝑑𝑡
∞

0
 for the 

eigenfunctions 𝜑 that comprise the elements of the matrix exponential 𝑒𝐖𝑡. Assuming the death hazard for any 

patient is nonzero, the eigenvalues 𝜆𝑖 of W are negative and real, so the eigenfunctions take the form 𝜑𝑖(𝑡) = 𝑒
𝜆𝑖𝑡. 

We use integration by parts: 

∫ 𝑒𝜆𝑖𝑡(1 − 𝐹(𝑡))𝑑𝑡
∞

0

=
1

𝜆𝑖
[(1 − 𝐹(𝑡))𝑒𝜆𝑖𝑡]

0

∞
+
1

𝜆𝑖
∫ 𝑒𝜆𝑖𝑡𝑓(𝑡)𝑑𝑡
∞

0

=
1

𝜆𝑖
(0 − 1) +

1

𝜆𝑖
𝑀(𝜆𝑖) =

𝑀(𝜆𝑖) − 1

𝜆𝑖
 

Here, 𝑓 and 𝑀 are the probability density function and moment-generating function of the live-discharge length of 

stay distribution, respectively. 

Pre-intervention dynamics: 

𝑑𝑆

𝑑𝑡
= −(𝛼 + 𝜔)𝑆 + 𝛾𝐶, 𝑆(0) = 1 − 𝑝a 

𝑑𝐶

𝑑𝑡
= 𝛼𝑆 − (𝛿c + 𝛿b + 𝛾 + 𝜔)𝐶, 𝐶(0) = 𝑝a 

𝑑𝐶cd
𝑑𝑡

= 𝛿c𝐶 − (𝛿b + 𝜔)𝐶cd, 𝐶cd(0) = 0 

𝑑𝐶b
𝑑𝑡

= 𝛿b𝐶 + 𝛿b𝐶cd −𝜔𝐶b, 𝐶b(0) = 0 



𝐖pre = (

−𝛼 − 𝜔 𝛾 0 0
𝛼 −𝛿c − 𝛿b − 𝛾 − 𝜔 0 0
0 𝛿c −𝛿b −𝜔 0
0 𝛿b 𝛿b −𝜔

) , 𝐱a = (

1 − 𝑝a
𝑝a
0
0

) 

𝛼 = 𝛽(𝐶∗ + (1 − 𝜀)(𝐶cd
∗ + 𝐶b

∗)) 

Our constraints are 

𝐶∗ + 𝐶cd
∗ + 𝐶b

∗ = 𝑝pre 

(𝛿c + 𝛿b)𝐶
∗ = 𝑑pre 

𝛿b(𝐶
∗ + 𝐶cd

∗ ) = 𝑏pre 

In the above equations, the values of 𝑝a, 𝑝, 𝑑, and 𝑏 are fixed from the pre-intervention results from the reported 

data (Table 1 main text), with 𝑝a and 𝑝 scaled by an assumed surveillance test sensitivity (Table 2 main text). The 

values of 𝛾 and 𝜀 are assumed (Table 2 main text). The value of the death rate 𝜔 and the length of stay distribution 

formula F are fixed at the pre-intervention values described above. Then we solve for 𝛼, 𝛿c, 𝛿b, and the equilibrium 

𝐱∗ = (𝑆∗, 𝐶∗, 𝐶cd
∗ , 𝐶b

∗) by simultaneously solving the above equation 𝐱∗ with 𝐖 = 𝐖pre and the three above 

constraint equations. Finally, we solve for 𝛽 using the remaining equation above for 𝛼. 

 

Post-intervention dynamics: 

𝑑𝑆

𝑑𝑡
= −(𝛼 + 𝜔)𝑆 + 𝛾𝐶, 𝑆(0) = 1 − 𝑝a 

𝑑𝑆sd
𝑑𝑡

= −((1 − 𝜀)𝛼 + 𝜔)𝑆sd + 𝛾𝐶sd, 𝑆sd(0) = 0 

𝑑𝐶

𝑑𝑡
= 𝛼𝑆 − (𝛿s + 𝛿c + 𝛿b + 𝛾 + 𝜔)𝐶, 𝐶(0) = (1 − 𝜋a)𝑝a 

𝑑𝐶sd
𝑑𝑡

= 𝜀𝛼𝑆sd + 𝛿s𝐶 − (𝛿c + 𝛿b + 𝛾 + 𝜔)𝐶sd, 𝐶(0) = 𝜋a𝑝a 

𝑑𝐶cd
𝑑𝑡

= 𝛿c𝐶 + 𝛿c𝐶sd − (𝛿b + 𝜔)𝐶cd, 𝐶cd(0) = 0 

𝑑𝐶b
𝑑𝑡

= 𝛿b𝐶 + 𝛿b𝐶sd + 𝛿b𝐶cd − 𝜔𝐶b, 𝐶b(0) = 0 

𝐖post =

(

 
 
 

−𝛼 − 𝜔 0 𝛾 0 0 0

0 −(1 − 𝜀)𝛼 − 𝜔 0 𝛾 0 0
𝛼 0 −𝛿s − 𝛿c − 𝛿b − 𝛾 − 𝜔 0 0 0
0 𝜀𝛼 𝛿s −𝛿c − 𝛿b − 𝛾 − 𝜔 0 0
0 0 𝛿c 𝛿c −𝛿b − 𝜔 0
0 0 𝛿b 𝛿b 𝛿b −𝜔)

 
 
 

,   

𝐱a =

(

 
 
 

1 − 𝑝a
0

(1 − 𝜋a)𝑝a
𝜋a𝑝a
0
0 )

 
 
 

 



𝛼 = 𝛽(𝐶∗ + (1 − 𝜀)(𝐶sd
∗ + 𝐶cd

∗ + 𝐶b
∗)) 

Our constraints are 

𝐶∗ + 𝐶sd
∗ + 𝐶cd

∗ + 𝐶b
∗ = 𝑝post 

(𝛿c + 𝛿b)(𝐶
∗ + 𝐶sd

∗ ) = 𝑑post 

𝛿b(𝐶
∗ + 𝐶sd

∗ + 𝐶cd
∗ ) = 𝑏post 

In the above equations, the values of 𝑝a, 𝑝, 𝑑, 𝑏, 𝜋a, and 𝛿s are fixed from the post-intervention results from the 

reported data (Table 1 main text), with 𝑝a, 𝑝, 𝜋a, and 𝛿s scaled by an assumed surveillance test sensitivity (Table 2 

main text). The values of 𝛾 and 𝜀 are assumed (Table 2 main text). The value of the death rate 𝜔 and the length of 

stay distribution formula F are fixed at the post-intervention values described above. Then we solve for 𝛼, 𝛿c, 𝛿b, 

and the equilibrium 𝐱∗ = (𝑆∗, 𝑆sd
∗ , 𝐶∗, 𝐶sd

∗ , 𝐶cd
∗ , 𝐶b

∗) by simultaneously solving the above equation 𝐱∗ with 𝐖 = 𝐖post 

and the three above constraint equations. Finally, we solve for 𝛽 using the remaining equation above for 𝛼. 

  



 

Supplementary Figure 1 - Effect of assumptions on bacteremia progression rate results. 

Vertical axis is the % change from pre- to post-intervention of the result for 𝛿b, the per-capita progression rate to bacteremia for CPE carriers. 

Panels show the sensitivity of this result to changes in single parameters from the default (default is the middle value in each panel). Circles: 

mean results; vertical lines: 95% confidence intervals. Panel A: effectiveness of contact precautions is 𝜀, so the per-capita acquisition rate of non-

isolated susceptible patients is 𝛽pre(𝐶 + (1 − 𝜀)(𝐶cd + 𝐶b)) pre-intervention and 𝛽post(𝐶 + (1 − 𝜀)(𝐶sd + 𝐶cd + 𝐶b)) post-intervention. Panel 

B: mean time to clearance is 1 𝛾⁄  days, where 𝛾 is the rate at which non-clinically infected CPE carriers clear colonization and become 

susceptible to re-acquisition. Panel C: surveillance test sensitivity is 1 minus the probability that CPE carriers falsely test negative at surveillance. 

  



 

Supplementary Figure 2 – Effect of assumptions on non-bacteremia clinical detection rate results. 

Vertical axis is the % change from pre- to post-intervention of the result for 𝛿c, the per-capita progression rate to non-bacteremia clinical 

detection for CPE carriers. Panels show the sensitivity of this result to changes in single parameters from the default (default is the middle value 

in each panel). Circles: mean results; vertical lines: 95% confidence intervals. Panel A: effectiveness of contact precautions is 𝜀, so the per-capita 

acquisition rate of non-isolated susceptible patients is 𝛽pre(𝐶 + (1 − 𝜀)(𝐶cd + 𝐶b)) pre-intervention and 𝛽post(𝐶 + (1 − 𝜀)(𝐶sd + 𝐶cd + 𝐶b)) 

post-intervention. Panel B: mean time to clearance is 1 𝛾⁄  days, where 𝛾 is the rate at which non-clinically infected CPE carriers clear 

colonization and become susceptible to re-acquisition. Panel C: surveillance test sensitivity is 1 minus the probability that CPE carriers falsely 

test negative at surveillance. 

 

 

 

 

 

 


