

1 Figure S1 Structural analysis of lipid A from *P. aeruginosa*. (A) The structure of WT lipid A (m/z 1445) represents a bisphosphorylated, penta-acylated lipid A molecule on 2 the fatty acyl chain. (B) Different lipid A component modifications, including 3 dephosphorylation (-PO3), deacylation (-3-OH C10), acylation (+3-OH C10), 4 palmitoylation (+C16), dehydroxylation (-OH), hydroxylation (+OH) 5 and glycosylation (+L-Ara4N). 6

1 10	ine sit primero usea in tino stady.	Amplicon							
Gene	Sequence $(5' \rightarrow 3')$	size (bn)	Reference						
Devices and	for acquancing	5120 (0p)	Reference						
Primers for sequencing									
pmrAB	F: TCACTGAAACGAGGCTGCCATGAG	2138	This study						
	R: CCAATGCGCAGGCTATCAGATATGT	60 D							
phoP	F: CGCCATATGAAACTGCTGGTAGTGGAA	690	This study						
	R: CGCCTCGAGCCGGCAGCGCTCGGTGAA								
phoQ	F: CGGCATATGATCCGTTCCCTGCGCATC	1359	This study						
	R: CGGCTCGAGGACTGTAGCGAAACGTATG								
oprH	F: CGGCATATGAAAGCACTCAAGACTCTC	615	This study						
	R: CGGCTCGAGGAACTTGTAGTTGGCGCC								
parR	F: GCATATAATGCCAGCCGATT	1055	(1)						
	R: ACCACCAGCAGGTTCTTGTC								
parS	F: CTATTCGCTGGTGGAAAAGC	1162	(1)						
	R: GTTAAGCCTCCGCTGTCAAC								
cprR	F: CGCAGTATCCGAAGGAAGAA	1154	(1)						
	R: CCCTTCCTCTTCCATCATCA								
cprS-1	F: TCTGATCCATACCCTGCACA	1002	(1)						
	R: CTGTTCCTCGAGCAGTTCCT								
cprS-2	F: ACCTGGATCGTCACCCTGT	1044	(1)						
	R: TCTTCTCGGCGATCAAGTTC								
colR	F: GCGAAGGAGTGGGACATGCGA	710	This study						
	R: CGAGGCTCTGCTTATACTCC								
colS	F: CTTGCTGCATACGGTGCATG	1307	This study						
	R: TGAATTTTTCGTCAAGCAAC								
Primers for qRT-PCR									
rspL	F: GTGGTGAAGGTCACAACCTG	135	(2)						
	R: CCTGCTTACGGTCTTTGACA								
pmrA	F: CACCAGGTGACCCTGTCC	124	(2)						
	R: CGTAGAGGCTCTGCTCCAGT								
phoP	F: TCTACCGGGTCAGCGAATAC	122	(2)						
	R: GATCAGGATCGGGAAGGACT								
pmrH	F: GTTCGTCAGCGACGACAGT	129	(2)						
	R: AAACCGGGCTCGATAACTTC								
parR	F: AGAATGGTCTGCAGGTGTGC	134	(2)						
	R: CGGCTTGATCACGTAGTCGT								
cprR	F: CGCCTGGAAGATCCTTGAGT	115	(2)						
	R: CACGTTGAGGGTGTTGCTTT								

Table S1. primers used in this study.

														WT	WT
		WT						WT		WT	WT	WT		+2-OH	+3-OH
		-30H C10	WT	WT	WT		WT	-PO3	WT	+4-OH	+3-OH	+2-OH	WT	C10	C10
		-PO3	-30H C10	-PO3	-OH	WT	+OH	+Ara4N	+Ara4N	C10	C10	C10	+C16	+Ara4N	+Ara4N
~ .		<i>m/z</i> 1195	<i>m/z</i> 1274	<i>m/z</i> 1366	<i>m/z</i> 1429	<i>m/z</i> 1445	<i>m/z</i> 1461	<i>m/z</i> 1496	<i>m/z</i> 1576	<i>m/z</i> 1600	<i>m/z</i> 1616	<i>m/z</i> 1632	<i>m/z</i> 1684	<i>m/z</i> 1731	<i>m/z</i> 1747
Strai	n	,	,	10 6 9 0	20 4 4 4	100.00		,	,	,		,	,	,	,
PAO1		/	/	10.6 ± 2.8	20.6±4.4	100±0.0	8.4±2.3	/	/	/	14.4±2.2	/	/	/	/
CST-FR															
TL1671		/	/	14.2±3.1	23.4±3.6	100±0.0	14.9 ± 1.1	30±0.5	14.9 ± 2.2	9.0±1.7	31.0±2.8	6.1 ± 0.4	/	/	3.5±0.2
TL2204		/	/	18.3 ± 7.8	42.5±1.5	100±0.0	10.0±0.7	5.4±1.7	/	4.0 ± 0.8	14.3±2.2	/	/	/	/
CST-HR															
TI 1700	SP	3.7±2.9	/	6.4±2.5	20.8 ± 1.8	100±0.0	6.73±4.3	/	/	/	7.3±0.8	/	/	/	/
RSF	RSP	/	/	5.0±0.1	10.5 ± 1.5	100±0.0	$10.4{\pm}1.2$	8.5±1.6	15.9 ± 3.7	11.5 ± 2.4	8.3±1.8	/	5.1±0.8	8.0 ± 0.5	/
TI 1726	SP	/	/	21.3±1.1	49.7 ± 4.4	100±0.0	10.2±0.4	/	/	2.8±0.1	15.8 ± 0.2	1.6 ± 0.0	2.2±0.1	/	/
IL1/30	RSP	/	/	3.8±0.8	16.6±0.9	100±0.0	7.7±0.7	9.3±2.7	10.3±2.4	/	26.8 ± 2.4	5.3±1.9	/	/	3.0±0.6
TT 1744	SP	/	/	10.3±1.9	10.3 ± 2.5	100±0.0	6.5±2.3	/	/	/	3.5±0.6	/	2.5±0.1	/	/
1L1/44	RSP	/	/	8.9±1.6	27.4±3.1	100±0.0	7.9 ± 0.8	/	/	/	6.4±1.4	/	/	5.4 ± 1.2	/
TI 2204	SP	/	/	/	15.5 ± 1.9	100±0.0	9.3±1.1	/	/	8.6±3.2	7.2±0.3	/	/	/	/
1L2294 RS	RSP	10.2 ± 1.8	11.0±0.7	3.7±5.2	22.7±2.2	100 ± 0.0	10.9±0.1	/	13.3±1.1	8.8 ± 1.0	80.1±17.5	11.2±2.0	/	5.9 ± 2.0	3.5 ± 0.8
TL2314 R	SP	/	/	$10.4{\pm}1.0$	24.5±1.6	100±0.0	7.5 ± 0.8	/	/	/	21.7±0.4	/	/	/	/
	RSP	/	/	/	7.0±0.2	100±0.0	9.5±0.2	3.9±0.9	10.6±0.3	$1.9{\pm}1.7$	25.9±0.9	3.1±0.7	/	/	2.6±0.6
TI 2017	SP	11.7±0.2	6.5±0.3	8.5±1.0	36.0±0.4	100±0.0	11.8±0.5	/	/	/	10.8 ± 0.9	/	/	/	/
11291/	RSP	/	/	/	23.9±2.5	100±0.0	8.6±2.7	11.1±1.7	5.7±1.6	/	12.8±0.4	/	/	/	2.8±0.9

Table S2. Lipid A species detected for the colistin resistant strains (n=2) and hetero-resistant strains (n=9)

TL2967	SP	/	/	3.5±0.3	41.5±0.9	100±0.0	15.5±0.2	/	/	3.5±0.3	18.4±0.6	2.5±0.3	/	/	/
	RSP	/	/	/	8.0±4.2	100±0.0	19.7±1.9	/	20.2±3.0	/	17.6±1.0	/	/	/	/
TL3008	SP	/	4.9 ± 1.1	14.6±0.8	27.1±0.8	100±0.0	15.6±0.4	/	/	5.4 ± 0.5	32.4±3.6	22.4±23.7	/	/	/
	RSP	/	/	/	9.5±0.1	100±0.0	29.6±0.6	/	19.7±2.4	/	31.3±2.6	9.8±0.6	/	/	5.2±0.9
TL3086	SP	/	2.3±0.9	13.8±5.1	25.1±0.0	100±0.0	17.3±0.4	/	/	2.3±0.1	23.7±0.5	3.6±0.2	/	/	/
	RSP	/	/	/	10.2±1.2	100±0.0	30.6±1.7	/	$14.0{\pm}1.4$	/	29.8 ± 2.6	11.8±2.0	/	/	6.2 ± 1.0

10 Values represent mean \pm SD of the relative peak intensities. Every strain was conducted in triplicate by MALDI-TOF MS;

11 CST-FR, colistin fully-resistant isolates; CST-HR, colistin hetero-resistant isolates; SP, susceptible populations; HSP, hetero-resistant

12 subpopulations.

13 ^a "/" represents ion relative intensity <1.0 or not detected.

Isolates	Frequencies of mutation to rifampicin (300 µg/ml) resistance	Mutator phenotype ^a
PAO1	1.44×10 ⁻¹⁰	/
TL1671	2.41×10 ⁻¹⁰	-
TL2204	1.05×10^{-10}	-
TL1722	2.30×10 ⁻¹⁰	-
TL1736	1.52×10 ⁻⁶	+
TL1744	2.00×10 ⁻⁹	-
TL2294	7.20×10 ⁻¹⁰	-
TL2314	2.20×10 ⁻⁶	+
TL2917	7.78×10 ⁻⁶	+
TL2967	1.67×10 ⁻⁸	+
TL3008	9.10×10 ⁻⁹	+
TL3086	1.25×10 ⁻⁹	-

14 Table S3 Frequencies of mutations in two colistin-resistant and nine colistin-hetero-

15 resistant *P. aeruginosa*.

^a The strain was considered a mutator phenotype when the mutation frequency
conferring rifampicin resistance was at least 20-fold higher than that observed for the
wild-type strain PAO1.

19

20 **References**

Lee JY, Chung ES, Na IY, Kim H, Shin D, Ko KS. 2014. Development
 of colistin resistance in *pmrA-*, *phoP-*, *parR-* and *cprR-*inactivated mutants

- of *Pseudomonas aeruginosa*. J Antimicrob Chemother 69:2966-2971.
- 24 2. Lee JY, Ko KS. 2014. Mutations and expression of PmrAB and PhoPQ
- ²⁵ related with colistin resistance in *Pseudomonas aeruginosa* clinical isolates.
- 26 Diagn Microbiol Infect Dis 78:271-276.