

FIG S1 (A) Schematic representation of the structure of IMP-1 in complex with MCR. The |Fo|-|Fc| omit map of MCR contoured at 3.0 σ (gray mesh) is shown. MCR is illustrated using green (carbon), red (oxygen), and yellow (sulfur) sticks. The amino acid Lys224 of IMP-1 is shown as yellow sticks. Zinc ions are illustrated as gray spheres. Gray and yellow dashed lines indicate hydrogen and coordination bonds, respectively.

		221 223
SMB-1	S.marcescens	GITWTWQSCEQGKCKDVVFADSLTAVSADSYRFSDHPEVVASLRGSF
AIM-1	P.aeruginosa	GTSWTWRSCEGDDCRQMVYAD <mark>SLT</mark> AISDDVFRYSDDAAHPGYLAAFRNTL
LMB-1	E.cloacae	ALSWQWSSCEAGQCQVLVYADSLSPVSSDSYRFSEHLTYLNAYRASL
POM-1	P.otitidis	SLSWTWTDRRDGKPLRIAYSDSLSAPGYSLWMNPRFPKIAEAFRSGF
L1	S.maltophilia	STAWTWTDTRDGKPVRIAYADSLSAPGYQLKDNPRYPRLIEDYKRTF
GOB-1	E.meningoseptica	SCSFIFETKDEKRKYRVLIANMPSVIVDKKFSEVTAYPNIQSDYAYTF

FIG S2 Amino acid alignments of B3 MBLs of human pathogenic bacteria. The GenBank accession numbers of the proteins are as follows: SMB-1 (BAL14456), AIM-1 (CAQ53840), LMB-1 (AMK49163), POM-1 (ADC79563), L1 (ABC02083), and GOB-1 (AAF04458).

No.	compounds	IC ₅₀ (μΜ)	No.	compounds	IC ₅₀ (μΜ)
1	HO F O SH	0.6	8	SH N N=N	N.D
2		15.0	9		N.D
3	HO-N-SH	15.6	10	HO O HS	N.D
4	NH OH	39.4	1a	HOUSH	0.2
5		54.2	1b	HOUSH	54.5
6	O OH HS	125.3	1c	SH	N.D
7	OHO O NH HS	272.7	1d	но	N.D

Table S1. IC_{50} values of 14 compounds for SMB-1

N.D.: no apparent deceleration of hydrolyzing velocity in the presence of 200 μM of the compounds.

Measurements were performed using 100 μ M nitrocefin as substrate.

strains	characteristics	sources
E. coli DH5α	strain for cloning β -lactamase gene and its expression	In house
E. coli BL21(DE3)	strain for overexpression of β -lactamases	In house
E. coli BL21(DE3)pLysS	strain for overexpression of β -lactamases	In house
E. coli ATCC 25922	strain for animal experiments	In house
plasmids		
pBC-IMP-1	pBCSK+ vector carrying <i>bla</i> IMP-1	this study
pBC-NDM-1	pBCSK+ vector carrying <i>bla</i> NDM-1	this study
pBC-VIM-2	pBCSK+ vector carrying <i>bla</i> VIM-2	this study
pBC-L1	pBCSK+ vector carrying <i>bla</i> L1	this study
pCL-SMB-1	pCL1920 vector carrying <i>bla</i> SMB-1	(1)
pBC-LMB-1	pBCSK+ vector carrying <i>bla</i> LMB-1	this study
pET9a-∆IMP-1	IMP-1 expression vector	(2)
pET-dNDM-1	NDM-1 expression vector	this study
pET-VIM-2	VIM-2 expression vector	this study
pET-L1	L1 expression vector	this study
pET-SMB-1	SMB-1 expression vector	(1)
pET-AIM-1	AIM-1 expression vector	this study
pET28a	Plasmid for protein expression	In house
pET29a	Plasmid for protein expression	In house
pBCSK(+)	Plasmid for cloning β -lactamase gene and its expression	In house

Table S2. Bacterial strains and plasmids used in this study

- Wachino J, Yoshida H, Yamane K, Suzuki S, Matsui M, Yamagishi T, Tsutsui A, Konda T, Shibayama K, Arakawa Y. 2011. SMB-1, a novel subclass B3 metallo-β-lactamase, associated with ISCR1 and a class 1 integron, from a carbapenem-resistant Serratia marcescens clinical isolate. Antimicrob Agents Chemother 55:5143-5149.
- Yamaguchi Y, Kuroki T, Yasuzawa H, Higashi T, Jin W, Kawanami A, Yamagata Y, Arakawa Y, Goto M, Kurosaki H. 2005. Probing the role of Asp-120(81) of metallo-β-lactamase (IMP-1) by site-directed mutagenesis, kinetic studies, and X-ray crystallography. J Biol Chem 280:20824-20832.

Table S3. Primers used in this study

Primer	Sequences ^a
IMP-SK-F	5'-CG <u>GGATCC</u> TGCCCCATTTCGCGCGGATG-3'
IMP-SK-R	5'-G <u>GAATTC</u> AAGTTGCGCGTTGTGGAATAC-3'
VIM2-SK-F	5'-CCG <u>GAATTC</u> CCGTGGGTCGATGGTTTGAT-3'
VIM2-SK-R	5'-CG <u>GGATCC</u> ATGCCTAACGCCGAAGTTCA-3'
VIM2-pET-F	5'-GGAATTC <u>CATATG</u> TTCAAACTTTTGAGTAAGTTATT-3'
VIM2-pET-R	5'-CG <u>GGATCC</u> CTACTCAACGACTGAGCGATTTGTGTG-3'
NDM1-SK-F	5'-CCG <u>GAATTC</u> ATGGCAGATTGGGGGTGAC-3'
NDM1-SK-R	5'-CG <u>GGATCC</u> CGCCCCATATTTTGCTACAGT-3'
NDM1-pET-F	5'-GGAATTC <u>CATATG</u> GGTGAAATCCGCCCGACGATTGGC-3'
NDM1-pET-R	5'-CCC <u>AAGCTT</u> TCAGCGCAGCTTGTCGGCCATGC-3'
LMB-SK-F	5'-CCG <u>GAATTC</u> AAACCGTAAACCCGGTAATTA-3'
LMB-SK-R	5'-CG <u>GGATCC</u> TTACCCGCTGGCCAAGTTGCGG-3'
L1-pET-F	5'-GGAATTC <u>CATATG</u> CGTTGTTCCCTGCTCGCCTTCG-3'
L1-pET-R	5'-CG <u>GGATCC</u> TCAGCGGTGTGCCGCAGTTTCCTTGGCC-3'
AIM1-pET-F	5'-GGAATTC <u>CATATG</u> AAACGCCGGTTTACCTTA-3'
AIM1-pET-R	5'-CCC <u>AAGCTT</u> TTACGGACGTGCACCTGACGA-3'

^aUnderlined text indicates the cleavage sites for restriction endonucleases.

	IMP-1–MCR	SMB-TSA	SMB-ASB
	complex	complex	complex
Data collection			
Beam line	NW-12A	BL2S1	BL-5A
_	(PF)	(AichiSR)	(PF)
Wavelength (Å)	1.00	1.12	1.00
Resolution range (Å)	56.82-1.57	40.61–1.39	50.00-1.17
_	(1.65–1.57)	(1.47–1.39)	(1.19–1.17
Space group	P212121	<i>P</i> 1	<i>P</i> 1
Cell dimensions			
a (A)	35.9	37.0	40.0
b (A)	56.8	41.6	41.7
c (Å)	101.1	45.6	45.7
α (°)	90.0	108.6	108.8
β (°)	90.0	102.8	102.8
γ (°)	90.0	106.1	105.9
No. of unique reflections	29943 (4256)	42083 (5988)	73794 (2884
Redundancy	11.3 (11.2)	3.7 (3.8)	3.5 (3.2)
Completeness (%)	100.0 (100.0)	90.3 (87.9)	93.1 (71.4
R _{merae} (%)	6.4 (35.4)	5.6 (7.7)	4.1 (8.7)
mean <i>I/σ</i> (<i>I</i>)	22.2 (6.4)	16.6 (12.2)	37.3 (16.3)
Refinement			
Rworking (%)	16.7	14.8	13.0
R _{free} (%)	20.0	17.0	15.1
Average <i>B</i> -factors (Å ²)			
Protein	21.6	9.5	8.9
Ligand/ion	29.7	16.2	15.0
Water	32.0	19.6	20.9
r.m.s.d.			
Bond lengths (Å)	0.008	0.008	0.009
Bond angles (°)	1.266	1.304	1.453

Supplementary methods

Purification of MBLs.

IMP-1 expression and purification. The recombinant plasmid (pET9a- Δ IMP-1) was introduced into Escherichia coli BL21(DE3). The transformants were grown at 37°C in Luria-Bertani (LB) broth until the OD_{610} was 0.6, at this point isopropyl β -D-1thiogalactopyranoside (IPTG) was added at a final concentration of 0.5 mM. After incubation for another 3 h at 37°C, bacterial cells were harvested, suspended in 50 mM Tris-HCl buffer (pH 7.5), and disrupted by sonication. The supernatant obtained after ultracentrifugation (100,000 x g, 1 h) was loaded onto a HiTrap SP HP column (GE Healthcare) and eluted using a linear gradient of 0 to 0.5 M NaCl in 50 mM Tris-HCl buffer (pH 7.5). The eluted protein was dialyzed against 50 mM Tris-HCl (pH 7.5) containing 0.3 M NaCl and 2.0 M ammonium sulfate, loaded onto a HiTrap Phenyl HP column (GE Healthcare), and eluted with 50 mM Tris-HCl (pH 7.5) containing 0.3 M NaCl. The protein was loaded onto a HiLoad 16/60 Superdex 200 pg column (GE Healthcare), and then eluted with 50 mM Tris-HCl (pH 7.5) containing 0.3 M NaCl. Lastly, the protein was buffer-exchanged into 20 mM 4-(2-hydroxyethyl)-1piperazineethanesulfonic acid (HEPES) buffer (pH 7.5). The purified protein was stored at -80°C until use. The concentration of the eluted protein was determined using a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) and its purity was estimated by sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) analysis and Coomassie Brilliant Blue staining.

NDM-1 expression and purification. The recombinant plasmid (pET-dNDM-1) was introduced into *E. coli* BL21(DE3). The transformants were grown at 37°C in LB broth until an OD₆₁₀ of 0.4 was achieved, at this point IPTG was added at a final concentration of 0.5 mM. After incubation at 25°C for another 24 h, bacterial cells were harvested, suspended in 50 mM Tris-HCl buffer [pH 8.0] containing 0.5 M NaCl, 20 mM imidazole, 10 mM β -mercaptoethanol, and 1 mM ZnCl₂ (buffer A), and disrupted. The supernatant obtained after ultracentrifugation was loaded onto a HisTrap HP column (GE Healthcare) and eluted using a linear imidazole gradient in the buffer A. The eluted protein was dialyzed against buffer A and digested with thrombin at 20°C for 24 h. The digested protein was loaded onto a HisTrap HP column, and unbounded fractions were collected. The protein was loaded onto a HisTrap Q HP column (GE Healthcare) and eluted using a linear in 20°C to 0.5 M NaCl in 20 mM Tris-HCl buffer (pH 8.0) containing 2

mM DTT. Finally, the eluted protein was loaded onto a HiLoad 16/60 Superdex 200 pg column and eluted with 20 mM of Tris-HCl (pH 8.0) containing 0.15 M NaCl and 2 mM DTT.

VIM-2 expression and purification. *E. coli* BL21(DE3) carrying pET-VIM-2 were cultured, suspended in 30 mM of Tris-HCl buffer (pH 7.6) containing 0.5 M NaCl, and disrupted. The supernatant after ultracentrifugation was dialyzed against 50 mM of HEPES-NaOH buffer (pH 7.5) containing 50 μ M ZnSO₄ (buffer B). The crude protein was loaded onto a HiTrap SP HP column and eluted using a linear gradient of 0 to 1.0 M NaCl in buffer B. The eluted protein was dialyzed against 50 mM Tris-HCl buffer containing 0.1 M NaCl, 1.2 M (NH₄)₂SO₄, and 50 μ M ZnSO₄ (buffer C), loaded onto a HiTrap Phenyl HP column, and eluted with buffer C that did not contain (NH₄)₂SO₄. The obtained protein was loaded onto a HiLoad 16/60 Superdex 200 pg column and then eluted with 20 mM Tris-HCl (pH 7.5) containing 0.2 M NaCl and 0.1 mM ZnCl₂. Finally, the protein was buffer-exchanged into 20 mM Tris-HCl (pH 7.5) buffer containing 0.1 mM ZnCl₂, and stored at -80°C until use.

L1 expression and purification. The pET-L1 plasmid was introduced into *E. coli* BL21(DE3). Transformants were grown at 37°C, harvested, and disrupted. The supernatant obtained by ultracentrifugation was loaded onto a HiTrap SP HP column (GE Healthcare) and eluted using a linear gradient of 0 to 0.5 M NaCl in 30 mM MES buffer. The eluted protein was buffer-exchanged against 50 mM HEPES (pH 7.5) containing 2.0 M ammonium sulfate, loaded onto a HiTrap Phenyl HP column, and eluted with 50 mM of HEPES (pH 7.5) buffer. Finally, the protein was loaded onto a HiLoad 16/60 Superdex 200 pg column and then eluted with 50 mM of HEPES-NaOH (pH 7.5) buffer containing 0.2 M NaCl.

AIM-1 expression and purification. pET-AIM-1 was introduced into *E. coli* BL21(DE3). The cells were grown, harvested, suspended with 20 mM Tris-HCl (pH 7.5) buffer, and disrupted by sonication. After ultracentrifugation, the supernatant was loaded onto a HiTrap Q HP column, and eluted with a gradient of 20 mM Tris-HCl (pH 7.5) buffer containing 0.5 M NaCl. The eluted proteins were buffer-exchanged to 20 mM Tris-HCl (pH 7.5) buffer containing 0.3 M NaCl and 1.5 M (NH₄)₂SO₄, loaded onto a HiTrap Phenyl HP column, and eluted with 20 mM Tris-HCl (pH 7.5) buffer containing 0.3 M NaCl and 1.5 M (NH₄)₂SO₄, loaded onto a HiTrap Phenyl HP column, and eluted with 20 mM Tris-HCl (pH 7.5) buffer containing 0.3 M NaCl and 1.5 M (NH₄)₂SO₄, loaded onto a HiTrap Phenyl HP column, and eluted with 20 mM Tris-HCl (pH 7.5) buffer containing 0.3 M NaCl. Finally, the collected proteins were subjected to size-exclusion chromatography using a Hiload 16/60 Superdex 200 pg column and eluted with 50 mM Tris-HCl (pH 7.5)

buffer containing 0.1 M NaCl.