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Supplementary Materials include tables describing the data transformations and dis-
similarities, a proof that unweighted paired UniFrac is a proper distance, a counter-example
demonstrating that generalized paired UniFrac is not a proper distance due to failure of the
triangle inequality, and additional simulation results.

1 Summary of Data Transformations

In this section, we briefly summarize the binary and quantitative transformations for paired
and longitudinal data (Table 1). The key difference between the paired version and the
longitudinal version, even with q = 2 time points, is that the paired version takes direction
of change into account (i.e., losses and gains of taxon presence or abundance are treated
differently), whereas the longitudinal version looks only at magnitude of change between
time points (a measure of variability of each taxon in the microbiota over time). Hence in
the paired version, when comparing two subjects, if a taxon is lost between time points in one
subject and gained in the other, that is the maximum difference possible between subjects
for that taxon. In contrast, in the longitudinal version with q = 2, there is no difference
between subjects with respect to the variability of that taxon because in each case, it was
present at one time point and absent at the other.

For the longitudinal transformations, the time points (t1, ..., tq) may vary between sub-
jects in both value and quantity, so a more accurate representation would be (tA1 , ..., t

A
qA

). For
clarity this notation has been suppressed. The range of the longitudinally transformed data
depends on the assumptions on tk. For example, if we assume that (tk − tk−1) ≥ 1 for all
subjects and time points (i.e., the unit of time is at least as small as the two measurements
closest in time), then the transformed data lie in [0, 1] for both binary and quantitative
versions.

Note that in the quantitative case, the normalized measures of change dXk only consider
relative changes, e.g., a 50% decrease in relative abundance, not absolute changes in relative
abundance, e.g., a decrease of 0.02 in relative abundance. The unnormalized measures of
change consider absolute changes in relative abundance.

The centered log-ratio (CLR) transformation accounts for the compositionality of the
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Table 1: Basic data transformations. “Norm” indicates whether the change in abundance
is normalized to overall abundance of that taxon, and “CLR” indicates whether the CLR
transformation is applied.

Times Type Norm? CLR? Transformation
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[
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data. For taxon proportion pAk for subject A, clr(pAk ) is defined as

clr(pAk ) = log

(
pAk

gm(pA)

)
where gm(pA) is the geometric mean of all abundances for that subject. The log transforma-
tion requires that all taxon proportions be nonzero. A variety of methods exist to account
for zeros; replacing zeros with a small constant called a pseudocount is a common approach
and the method used here. The differences clr(p

(A,t2)
k ) - clr(p

(A,t1)
k ) can be understood as

log-ratios of (normalized) abundances,

clr(p
(A,t2)
k )− clr(p

(A,t1)
k ) = log

(
p

(A,t2)
k

gm(p(A,t2))

)
− log

(
p

(A,t1)
k

gm(p(A,t1))

)

= log

(
p

(A,t2)
k /gm(p(A,t2)

p
(A,t1)
k /gm(p(A,t1)

)
.
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2 Summary of Distances and Dissimilarities

In this section, we summarize and compare several distances and dissimilarities for single
timepoint (S), paired (P), and longitudinal (L) samples (Table 2).

In binary versions of each metric, |A| and |B| are the numbers of species in compared
sites (hence |A∩B| is the number of species in both sites and |A∪B| is the number at either
site). The total number of OTUs (columns) is m.

In quantitative versions of the metrics, pAk refers to the proportion of taxon k for subject
A, p̄Ak is the average proportion of taxon k for subject A across time points, and dAk is
the transformed data using the appropriate transformation from Table 1. Many of the
metrics are traditionally calculated on raw counts rather than proportions, but because the
data transformations are defined for proportions, we have used proportions throughout for
consistency (and simplified the metrics accordingly when possible).

For the UniFrac family, “Binary” corresponds to unweighted UniFrac and “Quantita-
tive” corresponds to generalized UniFrac. We are disregarding weighted UniFrac. Unlike
the single timepoint UniFrac metrics, longitudinal generalized UniFrac with γ = 1 is not in
general equivalent to longitudinal weighted UniFrac because the abundance weights depend
on p̄Xk and the measures of change on dXk . Specifically, longitudinal generalized UniFrac is

D
(γ)
AB =

∑
i bi(p̄

A
i + p̄Bi )γ|dAi − dBi |∑
i bi(p̄

A
i + p̄Bi )γ

whereas the longitudinal version of weighted UniFrac would be

DAB =

∑
i bi
∣∣dAi − dBi ∣∣∑

i bi(d
A
i + dBi )

in which the denominator depends on the changes in composition di rather than the average
taxon abundance p̄i.

Unless otherwise specified, the
∑

k notation is shorthand for
∑m

k=1 (summing over
OTUs/taxa).

∑
i is used instead for the UniFrac metrics because the sum is over branches,

not tips (OTUs).
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3 Proofs of Distance

Unweighted Paired UniFrac is a Distance

To prove that the unweighted paired UniFrac measure is a true distance metric, we need to
show that:

1. DXY ≥ 0 (nonnegativity)

2. DXY = 0 iff X = Y (identity of indiscernables)

3. DXY = DY X (symmetry)

4. DXZ ≤ DXY +DY Z (triangle inequality)

Nonnegativity: By definition, branch lengths bk > 0. The remaining term in the metric is

an absolute value term (|dXk − dYk | ≥ 0). Therefore, DXY ≥ 0.
Identity: In order to demonstrate this item, we must first define what we mean by “indis-
cernables.”

Let X and Y be two microbial communities measured at two time points each, so we
have X(t1) and X(t2), and similarly, Y (t1) and Y (t2). The mapping from Xk(t1) and Xk(t2)
to dXk is not 1-1. However, the quantity of interest for this metric is not the microbial
community itself, it is changes in microbial communities. Therefore, in this case the relevant
“indiscernables” are dX and dY rather than X and Y . That is, we must demonstrate that
DXY = 0 iff dX = dY , regardless of the original communities X(t1), X(t2), Y (t1), and Y (t2),

Suppose dXk = dYk for all taxa k. Then dXk − dYk = 0∀k, and so
∑p

k=1 bk|dXk − dYk |/2 = 0.
Therefore X = Y =⇒ DXY = 0.

Now suppose DXY = 0. Because each term is nonnegative and branch lengths bk are
strictly positive (bk > 0 ∀k), this implies that |dXk −dYk |= 0∀k. This only holds if dXk = dYk ∀k.
Therefore DXY = 0 =⇒ dX = dY .
Symmetry: Here, we note that

DXY =

∑p
k=1 bk|dXk − dYk |/2∑p

k=1 bk
=

∑p
k=1 bk|(−1)× (dXk − dYk )|/2∑p

k=1 bk

=

∑p
k=1 bk|dYk − dXk |/2∑p

k=1 bk
= DY X
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Triangle Inequality: Using the triangle inequality for the absolute value (|x+ y|≤ |x|+|y|):

2

p∑
k=1

bk × (DXY +DY Z) =

p∑
k=1

bk|dXk − dYk |+
p∑

k=1

bk|dYk − dZk |

=

p∑
k=1

bk
[
|dXk − dYk |+|dYk − dZk |

]
≥

p∑
k=1

bk
(
|dXk − dYk + dYk − dZk |

)
= 2

p∑
k=1

bk ×DXZ

that is, DXY +DY Z ≥ DXZ .

Generalized Paired UniFrac is Not a Distance

While the generalized paired UniFrac dissimilarity trivially satisfies nonnegativity, iden-
tity of indistinguishable elements, and symmetry, it does not satisfy the triangle inequality.
We demonstrate this by counterexample. Consider a phylogenetic tree with three taxa,
as displayed in Figure 1. Suppose the relative abundance of these three taxa has been
observed for three subjects at two time points each, as shown in Table 3. The result-
ing weighted paired UniFrac dissimilarity matrix is shown in Table 4. From the table,
D12 + D23 = 0.108 + 0.132 = 0.239 < 0.278 = D13. That is, this dissimilarity does not
satisfy the triangle inequality because it does not hold that DAB + DBC ≥ DAC for every
combination of subjects A,B,C. Therefore, the generalized paired UniFrac dissimilarity is
not a proper distance.

OTU1

OTU2

OTU3

3

4

4

7

Figure 1: Simple phylogenetic tree with three taxa. Numbers indicate branch lengths.
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Table 3: Relative abundances of taxa in counterexample.
Subject Time OTU1 OTU2 OTU3
Subj1 1 0.40 0.10 0.50
Subj1 2 0.05 0.65 0.30
Subj2 1 0.30 0.05 0.65
Subj2 2 0.25 0.25 0.5
Subj3 1 0.55 0.2 0.25
Subj3 2 0.45 0.15 0.4

Table 4: Generalized paired UniFrac dissimilarity for taxon abundances in Table 3.
Subj1 Subj2 Subj3

Subj1 0 0.108 0.278
Subj2 0.108 0 0.132
Subj3 0.278 0.132 0

4 Additional Simulation Results

Tables 5 and 6 provide empirical Type 1 errors for kernels based on each new distance
or dissimilarity. Since kernel choice does not affect the size of kernel machine regression-
based tests, these results serve mainly as a basic check that none of the new kernels are
systematically exhibiting concerning behavior.

Figures 2-7 show results from additional power simulations with n = 100. Figure 2 is
similar to the figure in the main text, but includes more dissimilarities and is in color for
ease of reading and comparison to the other figures. The figures are:

2. Continuous outcome, 2 time points.

3. Continuous outcome, 4 time points.

4. Dichotomous outcome, 2 time points.

5. Dichotomous outcome, 4 time points.

6. Time-to-event outcome, 2 time points.

7. Time-to-event outcome, 4 time points.

In each plot, the kernels are:

• Komni: omnibus test

• K1: generalized paired/longitudinal UniFrac kernel with γ = 1

• K0.5: generalized paired/longitudinal UniFrac kernel with γ = 0.5

• KU : unweighted paired/longitudinal UniFrac kernel

• KJQ: quantitative paired/longitudinal Jaccard kernel

8



• KJB: binary paired/longitudinal Jaccard kernel

• KJC : quantitative paired/longitudinal Jaccard kernel with CLR-transformed data

• K1C : generalized paired/longitudinal UniFrac kernel with γ = 1 and CLR-transformed
data

• K0.5C : generalized paired/longitudinal UniFrac kernel with γ = 0.5 and CLR-transformed
data

In each figure, the outcome is associated with:

• Panel A: Change in presence of a rare cluster.

• Panel B: Change in presence of 60 randomly selected taxa.

• Panel C: Change in abundance of a moderately common cluster.

• Panel D: Change in abundance of the 10 most abundant taxa.

• Panel E: Change in CLR-transformed abundance of a moderately common cluster.

• Panel F: Change in CLR-transformed abundance of the 10 most abundant taxa.

The same general pattern of relative performance holds across outcome types, although
power is highest for continuous outcomes (in the plots, notice that the range of true effect sizes
considered is smaller for continuous outcomes). For the paired settings in Panel D (change
in abundance of top 10), the quantitative Jaccard kernel has highest power; in contrast,
for longitudinal settings in Panel D, the weighted UniFrac kernel has highest power. This
is likely because the formulation of the weighted UniFrac kernel allows the weight for each
OTU to depend on its abundance, and so by choosing γ = 1, the most common OTUs are
very highly weighted in the distance metric.

Figures 8 and 9 display power based on each nonphylogenetic kernel for the two nonphy-
logenetic settings. Panel A displays power for detecting changes in presence of 60 randomly
selected taxa, Panel B displays power for detecting changes in abundance of the 10 most
common taxa, and Panel C displays power for detecting changes in CLR-transformed abun-
dance of the 10 most common taxa. As expected, generally tests based on the binary metrics
(dashed lines) have higher power when changes in presence of rare taxa are associated with
the outcome (Panel A); tests based on the quantitative metrics (solid lines) tend to have
higher power when changes in abundance of common taxa are associated with the outcome
(Panel B); and tests based on the CLR-transformed metrics (dotted lines) have higher poewr
when changes in CLR-transformed abundance are associated with the outcome. The differ-
ences in power across nonphylogenetic metrics is smallest in Panel A of the longitudinal
setting (changes in rare taxon presence) and largest in Panels B and C of the longitudi-
nal setting (changes in abundance). The differences in how metrics measure dissimilarity is
most notable in the latter setting (and in particular, metrics such as the quantitative Gower
distance divide changes for each taxon by the maximum change in that taxon across all sub-
jects, so changes in abundant taxa for each subject tend to be similar across subjects after

9



dividing by max - min for each taxon. While different metrics have highest power in dif-
ferent situations, the Bray-Curtis family (quantitative, binary, and CLR-transformed) tend
to perform quite well across settings, as does the quantitative Jaccard metric across quan-
titative settings. Interestingly, CLR-transformed Jaccard tends to have lower power than
quantitative Jaccard even when the true association is with CLR-transformed abundances.
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Figure 2: Continuous outcome, 2 time points.
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Figure 3: Continuous outcome, 4 time points.
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Figure 4: Dichotomous outcome, 2 time points.
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Figure 5: Dichotomous outcome, 4 time points.
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Figure 6: Time-to-event outcome, 2 time points.
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Figure 7: Time-to-event outcome, 4 time points.
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Figure 8: Continuous outcome, all nonphylogenetic distances, 2 time points.
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Figure 9: Continuous outcome, all nonphylogenetic distances, 4 time points.
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