SUPPLEMENTARY MATERIAL

Discovery of novel West Nile Virus protease inhibitor based on isobenzonafuranone and triazolic derivatives of eugenol and indan-1,3dione scaffolds

André S. de Oliveira ^{1,2¶}, Poliana Aparecida Rodrigues Gazolla^{2¶}, Ana Flávia C. da S. Oliveira^{1,2¶}, Wagner Luiz Pereira², Lívia Cristina de Souza Viol², Angélica Faleiros da Silva Maia², Edjon G. Santos¹, Ítalo Esposti P. da Silva¹, Tiago Antônio de Oliveira Mendes⁴, Adalberto Manoel da Silva³, Roberto Sousa Dias¹, Cynthia Canedo da Silva¹, Marcelo D. Polêto¹, Róbson R. Teixeira^{3*}, and Sergio O. de Paula^{*1}

¹ Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa-MG (Brazil).

² Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, S/N, Diamantina-MG (Brazil).

³ Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa-MG (Brazil).

⁴ Departamento de Bioquímica Biologia Molecular, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa-MG (Brazil).

⁵ Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Campus Araquari Rodovia BR 280, km 27 - Araquari-SC (Brazil).

* Corresponding authors depaula@ufv.br (SOP) robsonr.teixeira@ufv.br (RRT) [¶]These authors contributed equally.

CONTENTS

Page

Table A	. 3
Selected IR AND NMR SPECTRA	. 12
Figure S1	73

		Table A: Docking of the compounds 23	3 to 49 with	WNV pro	tease
Comp.	Ligation type	Ligation Description	Interacti on distance (Å)	аа	Docking/Ligation Energy
23	Hydrogen Bond	OH of the amino acid with the oxygen of the carbonic chain of the molecule	2,45	Thr ¹³²	EnergyEnergy: -2,318
24		No chemical interaction predicted			Energy: -1,081
25	Hydrogen Bond	NH2 of the amino acid with the oxygen of the carbonic chain of the molecule	1,92	Asn ⁸⁴	
25	Halogen Bond	OH of the amino acid with the chlorine of the molecule	3,26	Thr ¹³⁴	Le Sta
25	Halogen Bond	NH⁺ of the amino acid with the iodine of the molecule	2,62	Gly ¹³³	1000
25	Halogen Bond	NH⁺ of the amino acid with the iodine of the molecule	3,42	Thr ¹³⁴	Energy: +2.058
25	cation-π	NH⁺ of the amino acid ring with the phenyl ring of the molecule	6,39	His ⁵¹	0, /
25	π-π stacking	Amino acid ringwith the triazole ring of the molecule	4,11	His ⁵¹	

Table A: Docking of the compounds 23 to 49 with WNV protease						
Comp.	Ligation type	Ligation Description	Interacti on distance (Å)	aa	Docking/Ligation Energy	
26		No chemical interaction predicted			Energy: -0,429	
27	cation-π	NH ⁺ of the amino acid ring with the triazole ring of the molecule	5,43	His ⁵¹		
27	cation-π	NH⁺ of the amino acid ring with the phenyl ring of the molecule	6,20	His ⁵¹	STAR.	
27	π-π stacking	Amino acid ringwith the phenyl ring of the molecule	5,15	His ⁵¹	A A A A A A A A A A A A A A A A A A A	
27	Halogen Bond	NH ⁺ of the amino acid with the iodine of the molecule	2,43	Ser ¹³⁵	Energy: -0,055	
27	Halogen Bond	NH ⁺ of the amino acid with the iodine of the molecule	2,82	Thr ¹³⁴		
28	Hydrogen Bond	OH of the amino acid with the oxygen of the carbonic chain of the molecule	2,24	Thr ¹³²		
28	Hydrogen Bond	O^{-} of the amino acid with the NO ₂ H ₂ of the molecule	1,89	Asp ¹² 9	Se Sta	
28	Hydrogen Bond	O^{-} of the amino acid with the NO ₂ H ₂ of the molecule	2,07	Asp ¹² 9	1500 B	
28	Hydrogen Bond	NH⁺ of the amino acid with the nitrogen of triazole ring of the molecule	2,46	Ser ¹³⁵	Energy: -2,732	
28	π-π stacking	Amino acid ring with the phenyl ring of the molecule	4,39	Tyr ¹⁶¹		
29	Hydrogen Bond	NH ⁺ of the amino acid wit the OCH₃ of the phenyl ring in the molecule	1,98	Gly ¹³³	OPA DE	

		Table A: Docking of the compounds 2	3 to 49 with	WNV pro	tease
Comp.	Ligation type	Ligation Description	Interacti on distance (Å)	aa	Docking/Ligation Energy
29	cation-π	NH⁺ of the amino acid ring with the triazole ring of the molecule	6,13	His ⁵¹	Energy: -3,991
29	cation-π	NH⁺ of the amino acid ring with the triazole ring of the molecule	3,81	His ⁵¹	
29	π-π stacking	Amino acid ring with the phenyl ring of the molecule	5,04	His ⁵¹	
29	π-π stacking	Amino acid ring with the eugenol ring of the molecule	3,96	His ⁵¹	
30	Hydrogen Bond	NH ⁺ of the amino acid with the OF₃ of the phenyl ring of the molecule	1,96	Gly ¹³³	
30	Hydrogen Bond	NH ₂ of the amino acid with the OCH ₃ of the molecule	2,08	Asn ⁸⁴	and
30	cation-π	NH ⁺ of the amino acid ring with the phenyl ring of the molecule	6,01	His ⁵¹	Energy: -1.459
30	π-π stacking	Amino acid ringwith the phenyl ring of the molecule	4,93	His ⁵¹	
31	π-π stacking	Ring of the amino acid with the eugenol ring of the molecule	5,08	Tyr ¹⁶¹	Energy: +1,993

Energy: +2,136

32

No chemical interaction predicted

		Table A: Docking of the compounds 2	3 to 49 with	WNV pro	tease
Comp.	Ligation type	Ligation Description	Interacti on distance (Å)	аа	Docking/Ligation Energy
33	Hydrogen Bond	NH ⁺ of the amino acid with the OCH₃ of the eugenol of the molecule	1,80	lle ¹⁵⁵	A A
33	Halogen Bond	OH of the amino acid with the iodine of the molecule	2,68	Ser ¹³⁵	Contractor
33	π-π stacking	Ring of the amino acid with the phenyl ring of the molecule	3,80	Tyr ¹⁶¹	Energy: -1,473
34	Hydrogen Bond	NH2 of the amino acid with the oxygen of the carbonic chain of the molecule	1,84	Asn ⁸⁴	Energy: +1,863
35	cation-π	NH ⁺ of the amino acid ring with the triazole ring of the molecule	5,88	His ⁵¹	
35	π-π stacking	Amino acid ring with the triazole ring of the molecule	5,04	His ⁵¹	Softer
35	π-π stacking	Amino acid ring with the phenyl ring of the molecule	4,22	Tyr ¹⁶¹	A A T
35	Halogen Bond	OH of the amino acid with Bromo of the molecule	2,10	Ser ¹³⁵	Energy: -2 343
35	Halogen Bond	NH ⁺ do of the amino acid with Bromo of the molecule	3,25	Thr ¹³⁴	21101891 21010
36	Hydrogen Bond	NH ⁺ of the amino acid with the nitrogen of triazole ring of the molecule	2,70	Gly ¹⁵³	1 - 1 OKORA
36	π-π stacking	Amino acid ringwith the phenyl ring of the molecule	4,30	Tyr ¹⁶¹	AN CONTRACT
36	Halogen Bond	NH ⁺ of the amino acid with Bromo of the molecule	3,19	Gly ¹³³	the states
36	Halogen Bond	NH ⁺ of the amino acid with Bromo of the molecule	3,01	Thr ¹³⁴	Energy: +1.825
36	Halogen Bond	OH of the amino acid with Bromo of the molecule	2,56	Ser ¹³⁵	2

		Ligation			
Comp.	Ligation type	Description	Interacti on distance (Å)	аа	Docking/Ligation Energy
37	cation-π	NH₃⁺ do of the amino acid with the eugenol ring of the molecule	5,31	Lys ⁵⁴	Energy: +2,012
38	cation-π	NH₃⁺ of the amino acid with the eugenol ring of the molecule	4,79	Lys ⁵⁴	Energy: +1,608
39	Hydrogen Bond	OH of the amino acid with the OCH₃ of the eugenol of the molecule	2,32	Thr ¹³²	Q Str
39	cation-π	NH ⁺ of the amino acid ring with the triazole ring of the molecule	3,82	His ⁵¹	A A A A
39	π-π stacking	Amino acid ring with the triazole ring of the molecule	3,51	His ⁵¹	Energy: -2,863
40	Hydrogen Bond	NH ⁺ of the amino acid with the OCH₃ of the eugenol of the molecule	2,77	His ⁵¹	Energy: +1,347
41	Hydrogen Bond	NH ⁺ of the amino acid with the oxigênio da cadeia carbônica of the molecule	2,48	Gly ¹³³	No.
41	Hydrogen Bond	OH of the amino acid with the OCH₃ of the eugenol of the molecule	2,48	Thr ¹³²	Energy: -2,436
42	Hydrogen Bond	O^{-} of the amino acid with the NO ₂ H ₂ of the molecule	2,00	Asp ¹² 9	. ANA

Table A: Docking of the compounds 23 to 49 with WNV protease						
Comp.	Ligation type	Ligation Description	Interacti on distance (Å)	aa	Docking/Ligation Energy	
42	Hydrogen Bond	O^{-} of the amino acid with the NO_2H_2 of the molecule	1,79	Asp ¹² 9	Energy: +0,463	
42	cation-π	NH⁺ of the amino acid ring with the triazole ring of the molecule	4,49	His ⁵¹		
42	π-π stacking	Amino acid ringwith the triazole ring of the molecule	3,96	His ⁵¹		
43	Hydrogen Bond	NH ⁺ of the amino acid with the nitrogen of triazole ring of the molecule	2,26	Gly ¹³³	A A	
43	cation-π	NH⁺ of the amino acid ring with the triazole ring of the molecule	6,25	His ⁵¹	Chiller Chiller	
43	π-π stacking	Amino acid ringwith the triazole ring of the molecule	5,15	His ⁵¹	Energy: +0,304	
44	Hydrogen Bond	NH⁺ of the amino acid with the OF₃ of the molecule	2,07	Gly ¹³³		
44	Hydrogen Bond	NH ₂ of the amino acid with thexigênio da cadeia carbônica of the molecule	1,73	Asn ⁸⁴	Energy: +0,877	
45	Hydrogen Bond	NH⁺ of the amino acid with the nitrogênio da anel triazólico of the molecule	2,62	Gly ¹³³	Energy: +0,392	
46	Hydrogen Bond	NH⁺ of the amino acid with the oxygen of the carbonic chain of the molecule	2,63	Gly ¹³³	Energy: +2 811	

	Table A: Docking of the compounds 23 to 49 with WNV protease						
Comp.	Ligation type	Description	Interacti on distance (Å)	аа	Docking/Ligation Energy		
47	Hydrogen Bond	NH2 of the amino acid with the oxygen of the carbonic chain of the molecule	2,03	Asn ⁸⁴	- Store		
47	π-π stacking	Amino acid ring with the triazole ring of the molecule	3,64	His ⁵¹	Energy: -3,613		
48	cation-π	NH ⁺ of the amino acid ring with the triazole ring of the molecule	5,26	His ⁵¹	Contraction of the second		
48	Halogen Bond	OH of the amino acid with Bromo of the molecule	2,13	Ser ¹³⁵	Energy: +0,947		
49	π-π stacking	Amino acid ring with the phenyl ring of the molecule	4,11	Tyr ¹⁶¹	8 - 2 B		
49	Halogen Bond	OH of the amino acid with Bromo of the molecule	2,49	Ser ¹³⁵	1 ALAN		
49	Halogen Bond	NH ⁺ of the amino acid with Bromo of the molecule	3,41	Ser ¹³⁵	Energy: +0,969		

SELECTED IR AND NMR SPECTRA

Fig. A. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-benzyl-*1H*-1,2,3-triazole (**23**).

Fig. D. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-fluorobenzyl)-*1H*-1,2,3-triazole (**24**).

Fig. E. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-fluorobenzyl)-*1H*-1,2,3-triazole (**24**).

Fig. F. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-fluorobenzyl)-*1H*-1,2,3-triazole (**24**).

Fig. G. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-chlorobenzyl)-*1H*-1,2,3-triazole (**25**).

Fig. H. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-chlorobenzyl)-*1H*-1,2,3-triazole (**25**).

Fig. I. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-chlorobenzyl)-*1H*-1,2,3-triazole (**25**).

Fig. J. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-bromobenzyl)-*1H*-1,2,3-triazole (**26**).

Fig. K. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-bromobenzyl)-*1H*-1,2,3-triazole (**26**).

Fig. L. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-bromobenzyl)-*1H*-1,2,3-triazole (**26**).

Fig. M. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-iodobenzyl)-*1H*-1,2,3-triazole (**27**).

Fig. P. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-nitrobenzyl)-*1H*-1,2,3-triazole (**28**).

Fig. Q. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-nitrobenzyl)-*1H*-1,2,3-triazole (**28**).

Fig. S. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-methoxybenzyl)-*1H*-1,2,3-triazole (**29**).

Fig. T. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-methoxybenzyl)-*1H*-1,2,3-triazole (**29**).

Fig. V. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-(trifluoromethoxy)benzyl)-*1H*-1,2,3-triazole (**30**).

Fig. W. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-(trifluoromethoxy)benzyl)-*1H*-1,2,3-triazole (**30**).

Fig. Y. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-(trifluoromethyl)benzyl)-*1H*-1,2,3-triazole (**31**).

Fig. Z. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-(trifluoromethyl)benzyl)-*1H*-1,2,3-triazole (**31**).

Fig. AA. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-(trifluoromethyl)benzyl)-*1H*-1,2,3-triazole (**31**).

Fig. AB. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(3,4-difluorobenzyl)-*1H*-1,2,3-triazole (**32**).

Fig. AC. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(3,4-difluorobenzyl)-*1H*-1,2,3-triazole (**32**).

Fig. AD. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(3,4-difluorobenzyl)-*1H*-1,2,3-triazole (**32**).

Fig. AE. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(2,5-dichlorobenzyl)-*1H*-1,2,3-triazole (**33**).

Fig. AF. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(2,5-dichlorobenzyl)-*1H*-1,2,3-triazole (**33**).

Fig. AG. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(2,5-dichlorobenzyl)-*1H*-1,2,3-triazole (**33**).

Fig. AH. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-methylbenzyl)-*1H*-1,2,3-triazole (**34**).

Fig. AI. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-methylbenzyl)-*1H*-1,2,3-triazole (**34**).

Fig. AJ. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(4-methylbenzyl)-*1H*-1,2,3-triazole (**34**).

Fig. AK. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(2-bromobenzyl)-*1H*-1,2,3-triazole (**35**).

Fig. AL. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(2-bromobenzyl)-*1H*-1,2,3-triazole (**35**).

Fig. AM. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(2-bromobenzyl)-*1H*-1,2,3-triazole (**35**).

Fig. AN. IR spectrum (ATR) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(3-bromobenzyl)-*1H*-1,2,3-triazole (**36**).

Fig. AO. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(3-bromobenzyl)-*1H*-1,2,3-triazole (**36**).

Fig. AP. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-((4-allyl-2-methoxyphenoxy)methyl)-1-(3-bromobenzyl)-*1H*-1,2,3-triazole (**36**).

Fig. AQ. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-benzyl-*1H*-1,2,3-triazole (**37**).

Fig. AT. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-fluorobenzyl)-*1H*-1,2,3-triazole (**38**).

Fig. AU. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-fluorobenzyl)-*1H*-1,2,3-triazole (**38**).

Fig. AV. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-fluorobenzyl)-*1H*-1,2,3-triazole (**38**).

Fig. AX. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-chlorobenzyl)-*1H*-1,2,3-triazole (**39**).

Fig. AW. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-chlorobenzyl)-*1H*-1,2,3-triazole (**39**).

Fig. AZ. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-bromobenzyl)-*1H*-1,2,3-triazole (**40**).

Fig. BB. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-bromobenzyl)-*1H*-1,2,3-triazole (**40**).

Fig. BC. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-iodobenzyl)-*1H*-1,2,3-triazole (**41**).

methoxyphenoxy)propyl)-1-(4-iodobenzyl)-1H-1,2,3-triazole (41).

Fig. BF. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-nitrobenzyl)-*1H*-1,2,3-triazole (**42**).

methoxyphenoxy)propyl)-1-(4-nitrobenzyl)-1H-1,2,3-triazole (42).

Fig. BI. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-methoxybenzyl)-*1H*-1,2,3-triazole (**43**).

Fig. BJ. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-methoxybenzyl)-*1H*-1,2,3-triazole (**43**).

Fig. BL. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-(trifluoromethoxy)benzyl)-*1H*-1,2,3-triazole (**44**).

Fig. BO. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-(trifluoromethyl)benzyl)-*1H*-1,2,3-triazole (**45**).

methoxyphenoxy)propyl)-1-(4-(trifluoromethyl)benzyl)-*1H*-1,2,3-triazole (**45**).

Fig. BQ. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-(trifluoromethyl)benzyl)-*1H*-1,2,3-triazole (**45**).

Fig. BR. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(3,4-difluorobenzyl)-*1H*-1,2,3-triazole (**46**).

Fig. BS. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(3,4-difluorobenzyl)-*1H*-1,2,3-triazole (**46**).

Fig. BT. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(3,4-difluorobenzyl)-*1H*-1,2,3-triazole (**46**).

Fig. BU. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-methylbenzyl)-*1H*-1,2,3-triazole (**47**).

Fig. BV. ¹H NMR spectrum (300 MHz, CDCl₃) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-methylbenzyl)-*1H*-1,2,3-triazole (**47**).

Fig. BW. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(2-bromobenzyl)-*1H*-1,2,3-triazole (**48**).

Fig. BZ. ¹³C NMR spectrum (75 MHz, CDCl₃) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(2-bromobenzyl)-*1H*-1,2,3-triazole (**48**).

Fig. CA. IR spectrum (ATR) of 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(3-bromobenzyl)-*1H*-1,2,3-triazole (**49**).

Fig. CD. IR spectrum (ATR) of 2,2-*bis*((1-(4-bromobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**51**).

Fig. CE. ¹H NMR spectrum (300 MHz, CDCl₃) of 2,2-bis((1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indene-1,3(2H)-dione (**51**).

Fig. CF. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2,2-bis((1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indene-1,3(2H)-dione (51).

Fig. CG. IR spectrum (ATR) of 2,2-*bis*((1-(3-bromobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**52**).

Fig. CH. ¹H NMR spectrum (300 MHz, CDCl₃) of 2,2-*bis*((1-(3-bromobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**52**).

Fig. CI. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2,2-*bis*((1-(3-bromobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**52**).

Fig. CJ. IR spectrum (ATR) of 2,2-*bis*((1-(2-bromobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**53**).

Fig. CK. ¹H NMR spectrum (300 MHz, CDCl₃) of 2,2-bis((1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indene-1,3(2H)-dione (53).

Fig. CL. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2,2-*bis*((1-(2-bromobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**53**).

Fig. CM. IR spectrum (ATR) of 2,2-*bis*((1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**54**).

Fig. CN. ¹H NMR spectrum (300 MHz, CDCl₃) of 2,2-*bis*((1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**54**).

Fig. CO. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2,2-bis((1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indene-1,3(2H)-dione (54).

Fig. CP. IR spectrum (ATR) of 2,2-*bis*((1-(4-fluorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**55**).

Fig. CQ. ¹H NMR spectrum (300 MHz, CDCl₃) of 2,2-*bis*((1-(4-fluorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**55**).

Fig. CR. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2,2-*bis*((1-(4-fluorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**55**).

Fig. CS. IR spectrum (ATR) of 2,2-*bis*((1-(4-methoxybenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**56**).

Fig. CT. ¹H NMR spectrum (300 MHz, CDCl₃) of 2,2-*bis*((1-(4-methoxybenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**56**).

Fig. CU. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2,2-*bis*((1-(4-methoxybenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**56**).

Fig. CV. IR spectrum (ATR) of 2,2-*bis*((1-(4-(trifluoromethoxy)benzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**57**).

Fig. CX. ¹H NMR spectrum (300 MHz, CDCl₃) of 2,2-*bis*((1-(4-(trifluoromethoxy)benzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**57**).

Fig. CW. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2,2-*bis*((1-(4-(trifluoromethoxy)benzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**57**).

Fig. CY. IR spectrum (ATR) of 2,2-*bis*((1-(4-nitrobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**58**).

Fig. CZ. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2,2-*bis*((1-(4-nitrobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**58**).

Fig. DA. ¹³C NMR spectrum (75 MHz, DMSO- d_6) of 2,2-*bis*((1-(4-nitrobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**58**).

Fig. DB. IR spectrum (ATR) of 2,2-*bis*((1-(2,4-difluorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**59**).

Fig. DC. ¹H NMR spectrum (300 MHz, CDCl₃) of 2,2-*bis*((1-(2,4-difluorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**59**).

Fig. DD. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2,2-*bis*((1-(2,4-difluorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**59**).

Fig. DE. IR spectrum (ATR) of 2,2-*bis*((1-(4-iodobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**60**).

Fig. DF. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2,2-*bis*((1-(4-iodobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**60**).

Fig. DG. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 2,2-*bis*((1-(4-iodobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**60**).

Fig. DH. IR spectrum (ATR) of 2,2-*bis*((1-(2-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**61**).

Fig. DI. ¹H NMR spectrum (300 MHz, CDCl₃) of 2,2-*bis*((1-(2-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**61**).

Fig. DJ. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2,2-*bis*((1-(2-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**61**).

Fig. DK. IR spectrum (ATR) of 2,2-*bis*((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indene-1,3(2H)-dione (**62**).

Fig. DM. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2,2-*bis*((1-(4-(trifluoromethyl)benzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**62**).

Fig. DN. IR spectrum (ATR) of 2,2-*bis*((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1*H*-indene-1,3(2*H*)-dione (**63**).

Fig. DO. ¹H NMR spectrum (300 MHz, CDCl₃) of 2,2-bis((1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indene-1,3(2H)-dione (**63**).

