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Supplementary Figure 1: Stability analysis of K, the number of neighbors in the cell-cell

similarity graph. We performed stability analysis by comparing signature consistency scores for

the default value of K (dsqrt(N)e) and a range of other K values, from 1 to 200. For this analysis,

we used a subset of the AML dataset presented in the paper [1], consisting of 7, 780 monocyte

and monocyte-like cells. (a) We assessed the rank correlation of the consistency scores of those

signatures identified as significant with K = dsqrt(N)e = 89 neighbors as K was changed. Notably,

the same signature set were used throughout - namely, those found with an adjusted p-value of

less than 0.05 in the default analysis (see Methods). (b) The Jaccard Index is reported for varying

K, comparing the set of signatures found to be significant for varying K to the set of signatures

found to be significant with K = 89 (see Methods). (c) Correlation of signature consistency scores

for K = log(N) = 12 and K = 89.
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Supplementary Figure 2: Supplemental figure for Interferon-Stimulated Lupus data. A)

Signature autocorrelation scores (center panel) are compared within the CD4 T cell stimulated

vs. unstimulated subsets for a collection of 1057 signatures from MSIGDB[2], KEGG[3], and

[4]. Among signatures whose C’ coefficients differ greatly between the samples, an Inteferon Beta

stimulation signature (from [4]) is clearly distinguished as driving variation within the stimulated

cell but not the unstimulated controls. In comparison, a Naive vs. Memory signature (MSIGDB,

derived from [5]), has high autocorrelation in both sets of T cells. B) (Left) Stimulated CD4 cells

(tSNE) colored by donor ID. (Middle) per-donor distributions of IFNb signature scores (From A).

Box-plot elements as follows: center line, median; box limits, lower and upper quartiles; whiskers,

1.5x interquartile range; points, outliers. (Right) Histogram of autocorrelation scores computed

under 1000 within-donor permutations of the IFNb signature scores are compared with the observed

signature autocorrelation. C) An antigen-processing signature (from KEGG [3]) exhibits a distinct

pattern of expression among stimulated CD4 T cells. This signature consists of MHC class 1 and

class 2 genes with HLA-DPA1 expression shown as an example.
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Supplementary Figure 3: Supplemental figure for AML data.(a) Disease status of monocytes,

indicating whether or not a cell came from an AML patient or healthy bone marrow (Cramer’s

V = 0.75, p < 2.7 × 10−3). (b) Patient ID, indicating which patient a cell came from (V =

0.52, p < 2.7 × 10−3). (c-d) Signatures highligting the axes of transcriptional variation in the

monocyte population: (c) GSE25088 WT vs STAT6 KO Macropihage IL4 Stim (C ′ = 0.7, p <

2.7 × 10−3) and (d) Eppert Progenitor (C ′ = 0.49, p < 2.7 × 10−4). (e) Differential signature

analysis between disease and healthy patients for Stearman Tumor Field Effect, GSE25088 WT vs

Stat6 KO Macrohpage IL4 Stim, and Eppert Progenitor. Significance is calculated using Vision’s

differential signature test (Methods). Box-plot elements as follows: center line, median; box limits,

lower and upper quartiles (25th and 75th); whiskers, 1.5x interquartile range; points, outliers.
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Supplementary Figure 4: Cell-type specific signatures differentiate branches of an inferred

hematopoietic trajectory. (A) Trajectory representation of cells undergoing hematopoiesis, col-

ored by the cell type’s inferred by Tusi et al. [6] in the original study. Hallmark Heme Metabolism,

a cell-type signature for the erythrocytic lineage, aligns well with where erythrocytes are found in

the trajectory. Lian Neutrophil Granule Constituents, a cell-type signature for the granulocytic

lineage, aligns well with where granulocytes are found in trajectory. (B) Cell level meta-data can

be used as a data-driven signature; in this case, the number of UMIs and cell detection ratio (CDR;

the ratio of detectable genes per cell) are strikingly localized to the granulocyte arm likely due to

their increased diameter (16 µm vs ∼ 8µm) compared to other white blood cells and erythrocytes.
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Signatures are grouped by similarity

Browse the genes within a signature

Select individual genes for 
plotting in the main panel

Rank genes by their individual
contribution to the signature score

Signature sort-order can be adjusted
by clicking column headers

Additional columns show result
of 1 vs. All di�erential signature
tests for the selected grouping
variable.

Cells are colored based on AUC.
Numeric values available on hover.

Changes the grouping variable
for the 1 vs. All columns

Clicking in a row plots the signature scores
in the main visualization panel

Signature-Centric

Gene-Centric

Search and select genes
to visualize across cells

First column (Score) shows Autocorrelation: 
1-Geary’s C (continuous values) or 
Cramer’s V (discrete)

* VISION Web-Report

Supplementary Figure 5: Elements of the output report interface
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Once cells have been selected, 
selection-speci�c information is 
displayed in the lower-left panel 

Cells can be selected in the main panel,
either by using the lasso tool or clicking 
the legend (when plotting a categorical 

variable such as cluster ID)

Dynamically create selections

Export selections back to R for 
downstream analyses

Cell-Centric

Summary statistics for
numeric meta-data

Within-selection proportions
for categorical meta-data

Signature score distributions 
(for selection and remainder)

VISION Web-Report

Supplementary Figure 5: Elements of the output report interface - continued.
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In “Autocorrelation” mode, signatures and meta-data are 
scored and ranked by their local autocorrelation (C’) in
the latent space.  The scatter plot visualizes the latent space 
through the use of tSNE, UMAP, or user-supplied coordinates.

In “LC Annotator” mode, signatures are instead 
compared with each component of the latent space
and can be ranked by the correlation with individual
components.  The scatter plot remains the same as in
the Autocorrelation mode. 

In “Trajectories” mode, the inferred trajectory
is used both for visualization and for ranking
signatures.  Autocorrelation scores are
computed using the cell-cell geodesic
distances in the inferred trajectory.  The 
scatter plot visualizes the trajectory using 
a variety of graph layout algorithms such as
Davidson-Harel (shown here).

VISION Web-Report

3 Display Modes

Supplementary Figure 5: Elements of the output report interface - continued.
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Supplementary Figure 6: Micro-pooling allows Vision analysis to comfortably scale to

very large cell counts. a) Sample runtime for the full pipeline (10 cores). b) To confirm that

similar cells were being clustered, we used 9,000 Cord Blood Mononuclear Cells (CBMCs) whose

mRNA and protein abundances were profiled simultaneously with the Cite-seq protocol [7]. We

find that the cells in each micro-cluster are biologically coherent - specifically, the variation in

measured surface protein abundance within micro-clusters is much less than the variation within

randomly partitioned micro-clusters. Box-plot elements as follows: center line, median; box limits,

lower and upper quartiles (25th and 75th); whiskers, 1.5x interquartile range; points, outliers. c)

The signature autocorrelation scores are compared before and after micro-pooling.
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Supplementary Figure 7: Comparison of signature scores and signature rankings between

Vision and PAGODA. A) Stimulated CD4 cells naturally divide into two main clusters, which

likely represent naive and memory phenotypes (CCR7 and S100A4 shown). B) Three different

naive vs. memory signatures are used (from MSIGDB[2]). For each, the scores computed by

Vision more clearly distinguish the two clusters than those derived from PAGODA on the same

signatures. C) Comparison of the signature rankings produced by Vision (local autocorrelation),

PAGODA (over-dispersion), f-scLVM (signature importance). The IFNb response signature (from

[4] and MSigDB) are more distinguished within the stimulated CD4 cells (when compared with

unstimulated) when using the local autocorrelation as a metric.
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Supplementary Figure 8: Comparing Vision to latent variable models. f-scLVM, an existing

latent-variable model for scRNA-seq data, was run on the interferon beta stimulated CD4 T cells

from [8] using the Hallmark signature library from MSigDB[2]. A) The factor relevance of the

Interferon Alpha Response signature is compared both when running f-scLVM with the full Hall-

mark set and when excluding the similar Interferon Gamma Response signature. Values shown are

relative to the sum of all signature relevance scores within the run. B) For the same comparison

as in (A), the per-cell signature loadings for the Interferon Alpha Response signature are plotted.

These results demonstrate that both the factor relevance scores and the individual per-cell signa-

ture loadings can be greatly affected by the presence of signatures which capture similar biological

signals. C) The runtime of Vision and f-scLVM analysis is compared as the number of signatures

varies. Results shown are computed on 4773 cells using 28 cores. This demonstrates that f-scLVM

is less suitable for analyses using both a large number of cells and a large number of signatures.
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Supplementary Table 1: Feature-wise comparison on Vision to existing tools. Vision has

several important properties that distinguish it from other software packages for automated anno-

tation and for visualization and exploration of single cell data. First, Vision has a comprehensive

set of data analysis capabilities. Some of these capabilities (e.g., annotating trajectories or adding

meta data to the analysis) are unique to Vision; other properties are only partially present in other

packages (e.g., performing cluster-based, but not cluster-free analysis).
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