3	ROR1-Specific Cirmtuzumab Blocks ROR1-dependent Activation Of NF-KB And
4	Thereby Suppresses STAT3 Stimulation In Chronic Lymphocytic Leukemia
5	
6	Yun Chen ^{1,2*} , Liguang Chen ^{1*} , Jian Yu ¹ , Emanuela M. Ghia ¹ , Michael Y. Choi ¹ , Ling Zhang ¹ ,
7	Suping Zhang ^{1,3} , Elsa Sanchez-Lopez ⁴ , George F. Widhopf II ¹ , Karen Messer ¹ , Laura Z. Rassenti ¹ ,
8	Catriona Jamieson ^{1,5} and Thomas J. Kipps ^{1,3#}
9	¹ Moores Cancer Center, University of California, San Diego; 3855 Health Sciences Dr., La Jolla,
10	CA 92093-0820, USA
11	² Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The
12	Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong, China.
13	³ Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of
14	Pharmacology, International Cancer Center, Shenzhen University Health Science Center,
15	Shenzhen, 518060 Guangdong, China.
16	⁴ Departments of Pharmacology and Pathology, School of Medicine, University of California, San
17	Diego
18	⁵ Division of Regenerative Medicine, University of California, San Diego
19	*Correspondence: Moores Cancer Center, University of California, San Diego; 3855 Health
20	Sciences Drive, Room 4307, La Jolla CA 92093-0820, USA. Phone: (858) 534-5400. Fax: (858)
21	534-5620. E-mail: tkipps@ucsd.edu
22	*These authors contributed equally to this work.
23	Running title: Targeting WNT5A/ROR1-Activation Of NF-kB In CLL
24	

25 Supplementary methods

26 *Materials*

- 27 Human recombinant IL-6 (7270-IL), IL-8 (208-IL), CCL2 (279-MC), CCL3 (270-LD), CCL4
- 28 (271-BME), and CXCL1 (453-KC) were from R&D Systems (MN, USA). Anti-human IL6R
- 29 (561696) and isotype control (555749) were from BD biosciences (CA, USA).

30 **Tissue culture**

- 31 MEC1 was maintained in DMSO with 20% fetal bovine serum (FBS) in a humidified
- atmosphere at 37 °C with 5% CO₂.

33 Knockout of IL6R in MEC1-ROR1

- 34 Crispr/Cas9-mediated knockout was performed according to our previous publication.¹
- 35 gRNA sequence was GGAGGAAGCATGCTGGCCGTCGG on exon 1 of human *IL6R*.
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43

Supplemental Figure 2

Supplemental Figure 3

Supplemental Figure 4

pSTAT3(Y705)

Supplemental Figure 6

Supplemental Figure 10

Supplemental Table S1

)0)1

	ROR1(ΔMFI) phospho-stat3 (ΔMFI)		tat3 (∆MFI)	phospho-p65 (ΔMFI)	
	Sample ID	IGHV status	CD5highCXCR4dim	CD5dim CXCR4hiah	CD5highCXCR4dim	CD5dim CXCR4hiah	CD5hiahCXCR4dim	CD5dimCXCR4hiah
	Patient 1	Unmutated	40	25	79	52	16	21
	Patient 2	Unmutated	49	33	15	12	70	47
	Patient 3	Unmutated	59	47	39	28	83	54
	Patient 4	Mutated	51	35	25	19	88	68
	Patient 5	Unmutated	51	35	27	18	70	57
	Patient 6	Mutated	54	42	31	17	68	42
RURT	Patient 7	Mutated	69	56	27	16	33	19
	Patient 8	Mutated	65	43	45	28	23	12
	Patient 9	Unmutated	42	33	25	14	70	17
	Patient 10	Mutated	61	44	29	19	95	66
	Patient 11	Mutated	66	52	42	22	72	59
	Patient 12	Mutated	64	38	29	14	78	54
	Patient 13	Unmutated	26	24	14	11	43	32
	Patient 14	Unmutated	7	8	14	7	40	26
	Patient 15	Unmutated	8	9	14	8	52	46
	Patient 16	Unmutated	9	6	17	9	35	21
	Patient 17	Unmutated	8	8	10	8	39	23
	Patient 18	Unmutated	22	10	15	8	24	22
NONT	Patient 19	Unmutated	8	10	17	8	50	28
	Patient 20	Mutated	5	8	11	5	32	17
	Patient 21	Mutated	8	8	17	8	47	22
	Patient 22	Mutated	26	12	8	5	21	15
	Patient 23	Mutated	12	9	15	9	33	22
	Patient 24	Mutated	22	11	16	10	31	22

)2

Supplemental Table S2

The plasma levels of IL-6 in patients treated by cirmtuzumab

			T 1 1	P
Patient Pre-treatment		Post-treatment	Ireatment	sampling
	of IL-6 (pa/ml)	of IL-6 (pa/ml)		
	e: := e (pg,)	e: := e (pg;)		
Patient #08	77	0.2	60 <u>- 240 ua/ka</u>	Two weeks after the 3 rd infusion
1 attent $#00$	1.1	0.2	$00 = 240 \mu\text{g/kg}$	
Dationt #11	20.0	26.2		One week often the only infusion
Patient #11	32.3	20.2	∠ mg/kg	One week alter the only infusion
			a "	
Patient #04	5.7	0.1	2 mg/kg	One week after the 2 nd infusion
			8 8	
Patient #24	82	11	20 ma/ka	Two weeks after the 3 rd infusion
	0.2		20 mg/ng	
Patient #28	27.2	8.0	20 mg/kg	Two wooks after the 2 rd infusion
Fallent #20	27.5	0.0	20 mg/kg	Two weeks aller the 5 initiation

111 Supplementary Figure Legends

112

Supplemental Figure 1 Wnt5a Induces Phosphorylation Of STAT3 Via ROR1 In CLL Cells. The lysates of ROR1-positive or ROR1-negative CLL cells cultured overnight without or with Wnt5a (200 ng/ml) were examined by immunoblot analysis probed with anti-pSTAT3 (Y705) or anti-STAT3.

117

Supplemental Figure 2 Wnt5a Induces Upregulation Of ROR1 In ROR1-positive CLL
Cells. The expression level of ROR1 was analyzed by flow cytometry in ROR1-positive
or ROR1-negative CLL cells with or without treatment of Wnt5a (200 ng/ml) for 16 hours.
Bar histograms represent ROR1 intensity. Error bars indicate standard deviation about
the mean (n = 3).

123

Supplemental Figure 3 The Conditioned Medium Harvested From CLL-cell Cultured With Wnt5a Induced Upregulation Of ROR1 Via Wnt5a/ROR1 In CLL Cells. The expression level of ROR1 was analyzed by flow cytometry in CLL cells cultured with or without NLC in the presence of control IgG, anti-Wnt5a, or tocilizumab for 16 hours. Bars depict ROR1 intensities on each of the treated cell populations. Error bars provide the standard deviation about the mean (n = 3).

130

Supplemental Figure 4 Exogenous Factors Can Induce STAT3 Activation In CLL Cells.
 CLL cells were treated for 30 minutes with Wnt5a (200 ng/ml), IL-6, IL-8, CCL2, CCL3,
 CCL4, or CXCL1 (each at 20 ng/ml). Phosphorylation of STAT3 was analyzed by

immunoblot analyses of lysates from treated CLL cells and probed with anti-pSTAT3 (top
row) (Y705) or anti-STAT3 (bottom).

136

Supplemental Figure 5 IL-6 Induces Phosphorylation Of STAT3 Independent Of ROR1
 In CLL Cells. Cell lysates of ROR1-positive or ROR1-negative CLL cells with or without
 treatment of IL-6 (20 ng/ml) for 30 minutes were examined by immunoblot analysis using
 anti-pSTAT3 (Y705) or anti-STAT3.

141

Supplemental Figure 6 IL-6 Induced Upregulation Of ROR1 In ROR1-positive CLL Cells. The expression level of ROR1 was analyzed by flow cytometry in ROR1-positive or ROR1-negative CLL cells with or without treatment of IL-6 (20 ng/ml) for 16 hours. Bars represent the intensity of ROR1 staining for each of the treatment groups. Error bars indicate the standard deviation (n = 3).

147

Supplemental Figure 7 NF- κ B was activated in CLL cells co-cultured with NLC through Wnt5a/ROR1. Bar figures represent the intensity of phospho-p65 staining of CLL cells from ROR1^{high} (n = 6) and ROR1^{low} (n = 6) patients co-cultured with or without NLC for 16 hours in the presence of control IgG, anti-Wnt5a, or cirmtuzumab. Error bars denote standard deviation.

153

Supplemental Figure 8 The production of IL-6 was upregulated in CLL cells co-cultured with NLC through Wnt5a/ROR1. Bar figures represent the concentration of IL-6 in media of CLL cells from ROR1^{high} (n = 6) and ROR1^{low} (n = 6) patients co-cultured with or without

NLC for 16 hours in the presence of control IgG, anti-Wnt5a, or cirmtuzumab. Error barsdenote standard deviation.

159

Supplemental Figure 9 STAT3 was activated in MEC1-ROR1 by the autocrine of IL-6.
 A. Immunoblot of lysates of MEC1 and MEC1-ROR1 with anti-Wnt5a, ROR1, pSTAT3,
 tSTAT3, pp65 or tp65 antibodies. B. ELISA of IL-6 in medium culturing MEC1 and MEC1 ROR1. Error bars denote standard deviation (n = 3). C. Flow cytometry analysis of MEC1 ROR1 and MEC1-ROR1-ΔIL6R with anti-IL6R-PE antibody. D. Immunoblot of lysates of
 MEC1-ROR1 and MEC1-ROR1-ΔIL6R with anti-pSTAT3 and tSTAT3.

166

Supplemental Figure 10 Wnt5a-induced ROR1-signaling Contributes To The Protective 167 Effects Of NLC For CLL Cells In Vitro. A. Contour plots of CD5+CD19+ CLL cells stained 168 with Annexin V and propidium iodide (PI) following culture with or without NLC control 169 IgG, cirmtuzumab, or neutralizing antibody to Wnt5a, as indicated on top of the panel for 170 data on CLL cells from 3 patients. The proportion of viable CLL cells that do not stain 171 with Annexin V or PI is indicated in each panel. B. The mean percentages of viable CLL 172 cells for all patient samples (N=3) cultured in each condition are provided by the histogram. 173 The conditions are indicated at the bottom of the histograms. Error bars indicate the 174 standard deviation about the mean. Statistical differences using Student T test with 175 176 Bonferroni correction are indicated by the brackets.

177

178 **References**

- 179 1 Yu, J. et al. Wnt5a induces ROR1 to associate with 14-3-3zeta for enhanced
- chemotaxis and proliferation of chronic lymphocytic leukemia cells. *Leukemia* **31**,
- 181 2608-2614, doi:10.1038/leu.2017.132 (2017).