
Figure	S1,	refers	to	figure	1.	Coalescent	simulations.	A.	Demographic	model	 for	simulations	 is	
shown.	The	 base	 demographic	model	 for	 the	 simulation	 framework	 is	 depicted	with	 the	 grid	 of	
parameters	used.	Text	in	red	indicates	effective	population	sizes	in	the	introgressed	population.	B.	
Likelihoods	 for	 each	of	 the	36	demographic	models	 tested	 is	depicted	 for	 each	population.	 Color	
corresponds	 to	 the	 likelihoods,	 with	more	 likely	models	 shown	 in	 lighter	 colors.	 The	maximum	
likelihood	model	used	 in	subsequent	simulations	and	FDR	 is	highlighted	with	a	black	box.	C.	The	
maximum	likelihood	selection	coefficient	is	depicted	for	all	frequencies	of	introgressed	haplotypes	
in	 each	 of	 the	 four	 populations	 studied.	 Frequencies	 in	which	 the	maximum	 likelihood	 selection	
coefficient	is	a	significantly	better	fit	than	the	mildly	deleterious	model	are	shown	in	red.			
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Figure	 S2,	 refers	 to	 figure	 2.	 A	 region	with	 both	 Neandertal	 and	Denisovan	 ancestry.	 A.	A	
schematic	 of	 the	 region	 harboring	 4	 high	 frequency	 Melanesian	 regions	 that	 segregate	 both	
Neandertal	 and	 Denisovan	 sequence.	 The	 bars	 indicate	 the	 distinct	 regions,	 and	 the	 grey	 bar	
indicates	the	region	that	is	further	characterized	in	the	next	panels.	B.	The	distribution	of	absolute	
genetic	 distances	 from	 Neandertal	 (left	 column)	 and	 Denisovan	 (right	 column)	 are	 shown	 for	
Africans	 (top	 row)	 and	 Melanesians	 (bottom	 row).	 C.	 A	 neighbor-joining	 tree	 constructed	 with	
sequence	from	Melanesians,	Densiovan,	and	Neandertal	is	shown.	



Figure	S3.	refers	to	figure	3.	Neandertal	haplotype	association	with	OAS1/OAS2	exon	
expression.	A.	Gene	expression	for	each	exon	of	OAS1	is	shown	stratified	by	the	number	of	
Neandertal	alleles	each	sample	has.	Data	is	from	Geuvadis	project	LCLs.	B.	Schematics	of	observed	
OAS1	isoforms	are	shown.	Boxes	indicate	which	exons	are	included	in	each	transcript.	C.	Gene	
expression	for	each	exon	of	OAS2	is	shown	stratified	by	the	number	of	Neandertal	alleles	each	
sample	has.	Data	is	from	Geuvadis	project	LCLs.	D.	Schematics	of	observed	OAS2	isoforms	are	
shown.	Boxes	indicate	which	exons	are	included	in	each	transcript.	
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Figure	 S4,	 refers	 to	 figure	 4.	 Neandertal	 haplotype	 encompassing	 TlR1/6/10	 is	 associated	
with	gene	expression	and	cellular	response	to	Pam3CSK4.	A.	Gene	expression	for	TLR10/1/6	is	
shown	stratified	by	the	number	of	Neandertal	alleles	each	sample	has.	Rows	consist	of	data	from	a	
single	 cell	 type.	 P	 values	 are	 indicated	 for	 each	 plot.	B.	The	 –log10(p	 value)	 of	 association	with	
interleukin	 response	 to	 TLR1	 stimulation	 by	 PAM3CSK4	 is	 shown	 for	 all	 variants	 on	 the	 TLR	
haplotype.	On	the	bottom,	allele	frequency	in	East	Asians	of	each	variant	is	shown.	They	grey	box	
highlights	the	region	of	maximal	p	value	and	allele	frequency.	
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Supplemental	Experimental	Procedures	

Coalescent	simulations	

We	began	by	simulating	introgression	at	a	single	locus	with	MSMS	[S1]	given	a	base	

demographic	model	 [S2]	 as	 follows:	 a)	Ancestral	Ne	 of	 10000,	 b)	 splitting	 of	 archaic	 and	

modern	human	lineages	700,000	years	ago,	with	an	archaic	Ne	of	1500,	and	modern	human	

Ne	of	10000,	c)	Splitting	of	Africans	and	non-Africans	at	95,000	years	ago,	d)	a	single	500	

year	pulse	of	archaic	admixture	in	to	the	out-of-Africa	population,	e)	population	growth	in	

the	out	of	African	population	starting	at	23,000	years	ago	to	an	Ne	of	10000	at	5,115	years	

ago,	f)	exponential	population	growth	starting	at	5,115	years	ago	to	a	final	Ne	of	700,000	in	

the	out	of	Africa	population,	and	424,000	in	the	African	population.	Within	this	base	model	

we	varied	several	parameters	as	follows:	a)	The	out	of	Africa	Ne	ranged	across	a	grid	of	Ne	=	

[2000,	4000,	6000,	8000,	10000,	12000],	b)	The	time	of	introgression	ranged	across	a	grid	

TI	=	[40kya,	50kya,	60kya,	70kya,	80kya,	90kya],	c)	The	archaic	migration	rate	in	to	modern	

humans	varied	for	each	population,	with	0.00095	for	East	Asians,	0.000867	for	Europeans,	

0.00214	for	Melanesians,	and	0.000867	for	South	Asians,	d)	The	number	of	chromosomes	

sampled	 for	each	population	matched	 the	number	of	 chromosomes	sampled	 in	empirical	

data:	 1008	 for	 East	 Asians,	 1006	 for	 Europeans,	 54	 for	 Melanesians,	 and	 978	 for	 South	

Asians	 e)	The	 archaic	population	harbored	 a	mildly	deleterious	 (s=-0.000021)	 variant	 at	

the	 time	 of	 introgression.	 The	 negative	 selection	 coefficient	 was	 determined	 based	 on	

estimates	 of	 the	 average	 deleteriousness	 of	 introgressed	 alleles	 [S3].	 Briefly,	 we	

conservatively	use	-3x10-8	as	the	strength	of	selection	per	introgressed	exonic	base,	70kb	

as	the	length	of	the	average	introgressed	haplotype,	and	1%	as	the	fraction	of	exonic	bases	

in	the	genome.	Then	the	average	selection	against	an	introgressed	haplotype	is:	

3×10!! × 70000 × 0.01 = 2.1×10!!	
The	 frequency	 of	 this	 variant	 in	 the	 archaic	 population	 is	 described	 at	 the	 end	 of	 this	

section.	 This	 base	 demographic	 model	 is	 depicted	 in	 Figure	 S1A.	 We	 ran	 5	 million	

simulations	for	each	of	the	36	distinct	demographic	models	and	recorded	the	frequency	of	

introgressed	chromosomes	 in	 the	 final	Out-of-Africa	population,	removing	all	simulations	

where	the	introgressed	frequency	is	zero.	We	then	identified	the	model	with	the	best	fit	to	

the	observed	data	by	maximizing	the	following	equation:	



𝑃 𝐷 𝑋 =  𝑃(𝐷!

!

!

|𝑋)	

Here	𝑃(𝐷!|𝑋)	is	 simply	 the	 proportion	 of	 simulations	 from	 a	 particular	 model	 X	 at	 the	

frequency	of	the	ith	haplotype	in	the	observed	data	(D),	where	there	are	N	total	haplotypes.	

We	noticed	that	the	observed	data	contains	an	excess	of	 low	frequency	haplotypes,	 likely	

due	to	the	difficulties	of	aggregating	low	frequency	tag	SNPs	into	coherent	haplotypes.	We	

thus	 conservatively	 exclude	 all	 haplotypes	 below	 2%	 frequency	 from	 our	 calculations.	

Importantly,	we	note	that	the	chosen	parameters	may	not	represent	the	true	demographic	

history	of	each	population,	but	are	instead	the	best	model	given	the	biases	inherent	to	our	

dataset,	 thus	 allowing	 us	 to	 simulate	 data	 that	 most	 closely	 resembles	 our	 dataset.	

Likelihoods	for	each	of	the	36	models	are	depicted	for	each	population	in	Figure	S1B.	We	

then	used	 the	simulations	 from	the	maximum	 likelihood	demographic	model	 to	 calculate	

false	discovery	rates	in	the	observed	data	for	a	given	haplotype	frequency	threshold,	using	

the	equation:	

𝐹𝐷𝑅 =  
𝑆(𝑁!𝑁!

)

𝑂
Where	NO	is	the	total	number	of	observed	haplotypes,	NS	 is	the	total	number	of	simulated	

haplotypes,	 and	 S	 and	O	 are	 the	 number	 of	 simulated	 and	 observed	 haplotypes	 above	 a	

given	frequency	threshold,	respectively.	 	

In	 the	 second	 step,	 we	 run	 additional	 simulations	 using	 the	maximum	 likelihood	

demographic	 model,	 while	 varying	 the	 selection	 coefficient	 in	 across	 a	 grid	 of	 s	 =	 [-

0.000021,	0,	0.0005,	0.00075,	0.001,	0.0015,	0.002,	0.003,	0.004,	0.005].	Information	on	the	

frequency	of	the	selected	allele	at	the	time	of	introgression	can	be	found	in	the	note	at	the	

bottom	of	 this	section.	We	ran	25	million	simulations	 for	each	selection	coefficient,	again	

removing	replicates	where	the	introgression	frequency	is	zero	in	the	final	population.	We	

next	constructed	a	likelihood	landscape	for	each	possible	allele	frequency	by	determining	

the	proportion	of	 simulations	 at	 that	 frequency	 for	 each	 selection	 coefficient.	 Finally,	we	

conducted	 a	 likelihood	 ratio	 test	 between	 a	 model	 with	 the	 selection	 coefficient	 at	 the	

highest	 likelihood	 and	 the	 “null”	 model	 of	 a	 mildly	 deleterious	 selection	 coefficient	 (s=-



0.000021).	To	determine	which	tests	were	significant,	we	compared	test	statistics	to	a	chi-

square	null	distribution	with	one	degree	of	freedom.		

Note,	 in	 order	 to	 accurately	 simulate	 the	 frequency	 of	 the	 selected	 allele	 in	 the	

archaic	population	at	 the	time	of	 introgression,	we	ran	an	 initial	set	of	simulations	 in	the	

archaic	 population	 in	 which	 a	 selected	 allele	 arose	 at	 a	 frequency	 of	 1/Ne,	 randomly	

between	 the	 time	 of	 introgression	 and	 500kya.	 We	 then	 recorded	 the	 frequency	 of	 the	

selected	allele	at	the	time	of	 introgression,	discarding	simulations	in	which	the	frequency	

went	 to	zero.	For	subsequent	simulations,	we	randomly	sampled	the	starting	 frequencies	

from	these	distributions.	

Estimates	of	true	positives	are	robust	to	FDR	threshold	

At	a	FDR	threshold	of	50%,	our	simulations	suggest	the	number	of	true	positives	is	

on	the	order	of	10-20	per	population.	This	estimate	is	generally	robust	to	varying	the	FDR	

threshold.	For	example,	at	a	FDR	threshold	of	30%,	there	are	6,	29,	7,	and	19	loci	significant	

and	thus	4,	19,	5,	and	13	true	positives	in	EAS,	EUR,	MEL,	and	SAS,	respectively.	Similarly,	at	

a	FDR	threshold	of	70%,	there	are	86,	181,	112	AND	107	loci	significant	and	thus	26,	56,	35,	

and	32	true	positives	in	EAS,	EUR,	MEL,	and	SAS,	respectively.		

Robustness	 of	 inferences	 to	 assumptions	 of	 purifying	 selection	 on	 introgressed	

sequences	

In	 addition	 to	 simulations	 where	 introgressed	 sequence	 are	 assumed	 to	 be	 on	

average	mildly	 deleterious,	 we	 also	 repeated	 all	 analyses	 assuming	 introgressed	 archaic	

sequences	 were	 strictly	 neutral	 (s	 =	 0).	Of	 the	 126	 putative	 archaic	 haplotypes	 deemed	

significant	 in	 simulations	 with	 purifying	 selection,	 121	 were	 also	 called	 significant	 in	

simulations	where	s	=	0.		

Gene	Ontology	Enrichments	

To	 obtain	 a	 list	 of	 genes	 proximal	 to,	 or	 encompassed	 by,	 all	 high	 frequency	

introgressed	haplotypes,	we	downloaded	 the	 complete	 set	 of	UCSC	 genes	 from	 the	UCSC	

genome	browser	[S4]	(https://genome.ucsc.edu/)	on	10/14/2014	and	took	the	unique	set	

of	the	nearest	gene	to	each	SNP	on	a	haplotype.	We	input	this	list	as	the	“foreground”	set	of	



genes	 on	 the	 WebGestalt	 gene	 ontology	 browser	 [S5]	

(http://bioinfo.vanderbilt.edu/webgestalt/),	 with	 the	 following	 parameters:	 Enrichment	

Analysis:	 GO	 Analysis;	 Reference	 set:	 hsapiens_genome;	 Statistical	 Method:	

Hypergeometric;	Multiple	Test	Adjustment:	BH;	Significance	Level:	0.05;	Minimum	Number	

of	Genes:	10.		

Coalescent	approach	to	estimate	probability	of	ILS	

To	 provide	 additional	 confidence	 that	 an	 archaic	 haplotype	 was	 the	 result	 of	

introgression	 and	 not	 incomplete	 lineage	 sorting	 (ILS)	 we	 developed	 a	 coalescent	

likelihood	model.	Specifically,	assume	a	haplotype	spans	L	bases	and	contains	K	mutations	

relative	 to	 the	 archaic	 reference	 sequence.	 In	 the	 following	 description,	we	 focus	 on	 ILS	

with	respect	to	Neandertals	given	that	most	putative	adaptively	introgressed	sequences	are	

Neandertal	in	origin.	To	compute	the	joint	probability	of	L	and	K,	condition	on	the	fragment	

coalescing	with	Neandertal	time	T	=	t	(in	coalescent	time	units).	Then,	the	distribution	of	L	

is	exponential	with	rate	𝜌𝑡,	where	𝜌 = 4𝑁𝑟,	N	is	 the	effective	population	size	and	r	is	 the	

per-base	 pair	 recombination	 rate.	 Given	 the	 length	L	=	 l,	 the	 number	 of	 differences	K	 is	

Poisson	 distributed	 with	 mean	𝜃𝑙𝑡,	 where	𝜃 = 4𝑁𝜇,	 and	𝜇	is	 the	 per-base	 pair	 mutation	

rate.	Thus,	given	T	=	t,	the	joint	distribution	of	K	and	L	is	

𝑓!,!|! 𝑘, 𝑙 𝑡 =  
(𝜃𝑙𝑡)!

𝑘! 𝑒!!"#𝜌𝑡𝑒!!"# .

Next,	we	 integrate	over	 the	distribution	of	 coalescence	 times.	Assuming	 that	 coalescence	

can	begin	at	some	time	t*	(e.g.	the	time	of	introgression,	or	the	population	split	time),	the	

distribution	of	 coalescence	 times	 is	 simply	a	 shifted	exponential	distribution	with	 rate	1.	

Therefore,	

𝑓!,! 𝑘, 𝑙; 𝑡∗ =  𝑓!,!|! 𝑘, 𝑙 𝑡 𝑒! !!!∗ 𝑑𝑡
!

!∗

=  
(𝜃𝑙)!

𝑘!
𝜌Γ(2+ 𝑘, 1+ 𝑙 𝜌 + 𝜃 𝑡∗)

(1+ 𝑙 𝜌 + 𝜃 )!!! 𝑒!∗ . 



We	now	use	Bayes’	theorem	to	compute	the	probability	that	a	fragment	is	introgressed	by	

supposing	that	the	introgression	proportion	is	p,	and	that	introgression	happened	at	time	

𝑡!" 	in	the	past	while	population	divergence	occurred	at	time	𝑡! .	Implicitly,	𝑡!" < 𝑡! .	So,	

𝑃 𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑒𝑑  𝐾, 𝐿) =  
𝑓!,! !,!;!!" !

𝑓!,! !,!;!!" ! +  𝑓!,! !,!;!! (!!!)
.	

We	 used	 this	 equation	 to	 calculate	𝑃 𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑒𝑑  11,29747)	for	 the	 OCA2	 locus.	 To	

ensure	that	our	estimate	is	robust	to	different	demographic	models	and	mutation	rates,	we	

randomly	 sampled	 parameters	 to	 obtain	 100	 distinct	 parameters	 sets	 and	 calculated	

𝑃 𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑒𝑑  11,29747) with	 each	 set.	 Sampling	 was	 from	 the	 following	 uniform	

distributions:	 N=[1000-10000];	 𝜇 =[5x10-9-5x10-8];	 𝑡!" =[40kya-80kya];	 𝑡! =[400kya-

600kya],	with	fixed	r=3.19x10-8	(the	average	recombination	rate	in	the	region	[S4]).	

RNA-seq	normalization	

For	GTEx	data,	we	began	with	un-normalized	gene	 read	counts	provided	with	 the	

version	4	of	GTEx	pilot	data	and	applied	a	processing	pipeline	similar	to	that	of	the	GTEx	

Project.	We	removed	all	samples	with	<10,000,000	mapped	reads	and	summed	expression	

values	for	technical	replicates.	We	removed	32	individuals	identified	as	non-Europeans	by	

examining	a	PCA	plot	of	sample	genotypes.	We	removed	any	genes	in	which	fewer	than	10	

individuals	had	at	least	5	reads.	We	also	removed	samples	that	were	two	or	more	standard	

deviations	 below	 the	mean	D	 statistic	 [S6],	 a	measure	 of	 overall	 expression	 similarity	 to	

other	 samples.	We	 then	 used	 the	 R	 DESeq	 package	 [S7]	 to	 normalize	 samples	 based	 on	

library	 size,	 and	 log2	 transformed	 these	 data.	 Finally,	we	 performed	 outlier	 detection	 by	

mapping	 expression	 values	 for	 each	 gene	 to	 a	 standard	 normal	 distribution.	 We	 ran	

PEER[8]	with	 these	 normalized	 data,	 using	 the	 first	 two	 genotype	 principal	 components	

and	sex	as	covariates	in	order	to	identify	hidden	sources	of	expression	heterogeneity.	We	

used	the	first	15	PEER	factors	and	known	covariates	in	a	linear	model	with	the	expression	

data	using	the	 lm()	 function	 in	R	[S9],	and	used	the	residual	expression	data	as	 input	 for	

association	testing.		

For	 the	 Geuvadis	 Project	 data,	 we	 downloaded	 pre-normalized	 gene	 RPKM	

expression	 data	 from	 http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-



1/analysis_results/GD462.GeneQuantRPKM.50FN.samplename.resk10.norm.txt.gz.	 These	

data	were	pre-normalized	based	on	library	size	and	learned	PEER	factors,	and	contain	only	

expressed	genes.	We	kept	only	samples	of	European	origin.	

eQTL	analyses	

We	performed	eQTL	tests	using	GTEx	and	Geuvadis	data	 for	haplotypes	 in	 the	top	

99th	percentile	for	any	population	studied.	Because	these	data	sets	contain	only	European	

samples,	 we	 only	 tested	 haplotypes	 that	 reach	 a	 frequency	 of	 ≥15%	 in	 Europeans.	

Importantly,	 because	 SNP	 content	 can	 vary	 somewhat	 between	 the	 same	 haplotype	 in	

different	populations,	we	also	only	tested	SNPs	that	were	shared	between	the	introgressed	

haplotypes	 in	Europeans	and	the	population	being	tested.	For	GTEx	data,	we	also	 limited	

analyses	to	tissues	with	60	or	more	samples,	which	included	subcutaneous	adipose,	aorta,	

tibial	 artery,	 transformed	 fibroblasts,	 esophagus	 mucosa,	 esophagus	 muscle,	 left	 heart	

ventricle,	 lung,	 skeletal	muscle,	 tibial	 nerve,	 sun	 exposed	 skin,	 thyroid,	 and	whole	 blood.	

Finally,	 for	 power	 considerations,	 we	 only	 ran	 tests	 in	 which	 there	 were	 at	 least	 three	

samples	homozygous	for	each	allele.	

For	 each	haplotype,	we	 tested	 for	 eQTLs	 across	 all	 combinations	 of	 SNPs,	 tissues,	

and	genes	within	500kb	of	the	haplotype	by	building	linear	models	using	the	lm()	function	

in	R	[S9].	We	retained	the	minimum	P	value	from	all	SNPs	tested	as	the	single	test	statistic	

for	each	tissue-gene	combination.	Then,	to	determine	which	tests	were	significant,	we	ran	

permutations	by	shuffling	genotypes	1000	times	and	repeating	tests.	Using	these	data,	we	

chose	the	maximum	P-value	cutoff	that	gave	an	FDR	≤	0.05;	which	is	the	cutoff	at	which	the	

ratio	of	 the	number	of	 significant	permutation	 tests	 to	 the	number	of	 significant	 tests	on	

the	 true	 data	 is	 ≤	 0.05.	 Importantly,	 we	 calculated	 a	 single	 cutoff	 across	 all	 haplotypes,	

rather	than	controlling	for	FDR	on	a	per	haplotype	basis.	

Analysis	of	B	Cell	eQTLs	from	Fairfax	et	al	2012	

We	normalized	raw	array	expression	data	using	the	R	packages	Lumi,	Limma,	and	a	

variance	 stabilizing	 transformation.	 We	 mitigated	 potential	 batch	 effects	 with	 SVA	 and	

removed	a	single	sample	that	was	an	outlier	in	a	principal	component	analysis	performed	

on	the	genotype	data.	We	then	tested	expression	probes	for	each	TLR	gene	(one	probe	for	



TLR1,	one	for	TLR6,	and	two	from	TLR10)	for	association	with	each	of	the	three	SNPs	on	the	

Neandertal	haplotype	that	were	genotyped	in	the	study,	and	retained	the	most	significant	

association	for	each	gene.	Tests	were	performed	using	standard	 linear	regression	models	

from	the	lm()	function	in	R	[S9].	

Analysis	of	whole	blood	LPS	stimulation	cohort	

We	recruited	healthy	volunteers	 from	 the	Seattle	metropolitan	area.	Exclusions	 to	

enrollment	 were	 active	 smoking,	 recent	 antibiotic	 use,	 symptoms	 consistent	 with	 an	

infection,	a	history	of	autoimmune	disease,	immunodeficiency,	cancer,	pregnancy,	or	use	of	

immunosuppressive	 medications.	 Volunteers	 ranged	 from	 18-65	 years	 old	 and	 had	 a	

58%/42%	gender	balance.	Additional	cohort	details	have	been	described	previously	[S10].	

The	study	was	approved	by	the	Human	Subjects	committee	at	the	University	of	Washington.	

We	isolated	genomic	DNA	and	genotyped	subjects	using	the	Illumina	Human	1M	Beadchip	

array	(San	Diego,	CA).	We	imputed	genotypes	using	EUR	genotypes	from	1000	Genomes	as	

a	reference	population	using	the	BEAGLE	software	and	poorly	imputed	SNPs	(BEAGLE	R2	<	

0.90)	 were	 removed	 from	 further	 analysis.	 From	 the	 same	 subjects,	 whole	 blood	 was	

stimulated	 with	 ultrapure	 LPS	 from	 Salmonella	 minnesota	 R595	 (List	 Biological	

Laboratories,	Inc.,	Campbell,	CA).	RNA	extraction	was	done	with	the	AB	6100	Nucleic	Acid	

Prep	Station	(ABI/Life	Technologies,	Foster	City,	CA),	and	RNA	quality	was	analyzed	with	

Experion	Automated	Electrophoresis	System	(Bio-Rad,	Hercules,	CA).	Gene	expression	was	

quantified	using	the	Illumina	HumanRef-8	v3.0	Gene	Expression	BeadChip	array	(Illumina,	

San	 Diego,	 CA).	 	 Expression	 data	 quality	 control	 was	 performed	 using	 GenomeStudio	

(Illumina).	Duplicate	arrays	were	removed	and	data	were	log2	transformed	in	BASE	[11].	

For	this	study,	252	subjects	were	used	for	the	analyses,	which	were	limited	to	expression	

for	probes	specific	to	TLR	1,TLR10	and	TLR6.	

We	built	standard	linear	regression	models	using	the	lm()	function	in	R	[9]	to	test	

for	association	between	all	SNPs	on	the	TLR	haplotype	that	were	genotyped	(81	SNPs)	and	

all	normalized	TLR	expression	probes	(two	for	TLR6	and	TLR10,	and	one	 for	TLR1),	both	

before	 and	 after	 stimulation	with	 LPS.	We	 used	 age,	 sex,	 and	 the	 first	 three	 genotyping	

principal	components	as	covariates.			



Roadmap	Epigenomics	Data	

We	downloaded	H3K27ac,	H3K4ME1,	and	DNaseI	narrowPeak	calls	for	consolidated	

melanocyte	epigenomes	E059	and	E061	from	the	Roadmap	Epigenomics	project	[S12]:	

	http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/	

	and	 used	 bedops[13]	 to	 determine	 which	 variants	 on	 the	 OCA2	 haplotype	 overlapped	

melanocyte	regulatory	elements.		
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