Supporting Information ©Wiley-VCH 2016 69451 Weinheim, Germany

Diketopiperazine Formation in Fungi via Dedicated Cyclization and Thiolation Domains

Joshua A. Baccile^{[a]†}, Henry H. Le^[a], Brandon T. Pfannenstiel^[b], Jin Woo Bok^[b], Christian Gomez^[a], Eileen Brandenburger^[c], Dirk Hoffmeister^[c], Nancy P. Keller^{[b]*}, Frank C. Schroeder^{[a]*}

Abstract: Cyclization of linear dipeptidyl precursors derived from nonribosomal peptide synthetases (NRPSs) into 2,5-diketopiperazines (DKPs) is a crucial step in the biosynthesis of a large number of bioactive natural products. However, the mechanism of DKP formation in fungi has remained unclear, despite extensive studies of their biosyntheses. Here we show that DKP formation *en route* to the fungal virulence factor gliotoxin requires a seemingly extraneous couplet of condensation (C) and thiolation (T) domains in the NRPS GliP. *In vivo* truncation of GliP to remove the CT couplet or just the T domain abrogated production of gliotoxin and all other *gli* pathway metabolites. Point mutation of conserved active sites in the C and T domains diminished cyclization activity of GliP *in vitro* and abolished gliotoxin biosynthesis *in vivo*. Verified NRPSs of other fungal DKPs terminate with similar CT domain couplets, suggesting a conserved strategy for DKP biosynthesis by fungal NRPSs.

DOI: 10.1002/anie.2016XXXXX

Table of Contents

1	Supporting Methods	1
1.1	Strains, media, and growth conditions	1
1.2	Gene cloning, plasmid construction, and genetic manipulations	1
1.3	Nucleic acid analysis	2
1.4	Northern analysis	2
1.5	Fermentation and metabolome extraction	3
1.6	Analytic methods and equipment overview	3
1.7	Heterologous protein production	4
1.8	GliP product formation assays	4
1.9	GliP T_3 -pantetheine detection	5
1.10	Compound 5 cyclization assay	5
1.11	ATP-[³² P]pyrophosphate exchange assays	5
1.12	Synthesis of N-acetylcystamine-L-Phe-L-Ser (5)	6
1.13	Mining for putative DKP producing fungal NRPSs	6
1.14	Gene sequences for WT and mutant GliP proteins	7
2	Supporting Figures	13
3	Supporting Tables	21
4	Supporting References	33

1 Supporting Methods

1.1 Strains, media, and growth conditions

The fungal strains used in this study are listed in **Table S3**. Unless otherwise noted, all strains were grown at 30 °C on glucose minimal medium (GMM^[1]) and, when appropriate, were supplemented with 0.56 g uracil L⁻¹, 1.26 g uridine L⁻¹, 1.0 g arginine L⁻¹ and maintained as glycerol stocks at -80 °C. *Escherichia coli* strain DH5 α was propagated in LB medium with appropriate antibiotics for plasmid DNA.

1.2 Gene cloning, plasmid construction, and genetic manipulations

(a) *A. fumigatus* GliP truncation and complement strains: The *gliP* C_TT₃ or T₃ domain deletion strain (TJW139 or TJW140 respectively) was created in strain Af293.1 by replacing the C_TT₃ or T₃ domain with *A. fumigatus pyrG* using modified double joint PCR^[2] consisting of the following: 1 kb DNA fragment upstream of the C_TT₃ or T₃ domain, a 1.9 kb DNA fragment of *A. fumigatus pyrG* with glutathione gene terminator (primers glutapyrGF and glutapyrGR),^[1,3] and a 1 kb DNA fragment downstream of the C_TT₃ or T₃ domain. 30 µL of Sephadex® G-50 purified third round PCR product was used for fungal transformation. Polyethylene glycol based fungal transformation was done as previously described.^[2,4] C_TT₃ or T₃ domain deletants were confirmed by PCR and Southern blot (**Figure S11a**) and the correct transformants, TJW139.30 and TJW140.16, were used for subsequent analysis.

For $\Delta C_T T_3$ complementation, pJW162 was created by inserting a 3.6 kb PCR product with *gpdA* promoter using the primer pair gliPgpdF/CTglipR and cloning the subsequent product into *BamHl/Hind*III sites of pUCH2-8.^[5] This plasmid was used to transform TJW139.30 to complement a deletion of $\Delta C_T T_3$. The resulting strain was called TJW178 and was confirmed by PCR and Southern blotting (**Figure S11b**). All fungal strains used in this study are listed in **Table S3**, and primers are listed in **Table S4**.

(b) *A. fumigatus* GliP point mutation: To introduce the histidine-to-alanine amino acid substitution in *A. fumigatus*, we first fully deleted *gliP* in a strain with a deleted *akuA* gene (TFYL44.1) to increase the rate of homologous recombination and decrease the amount of transformants that need to be screened to obtain the desired strain. The open reading frame of *gliP* was replaced with a copy of *pyrG* from *A. parasiticus* to complement the *pyrG* auxotrophy. To generate a construct to delete *gliP*, the flanking regions of the *gliP* open reading frame were amplified (gliP3'-F & gliP3' R, and gliP5'-F & gliP5'-R) as well as the *A. parasiticus pyrG* gene (Ap-pyrGF & Ap-pyrGR). These PCR products were fused using double joint PCR and used to transform TFYL44.1 to create strain TBTP12.02 which was confirmed by Southern blot analysis (**Figure S12**).^[6] Two plasmids were then generated, one which included a full length copy of *gliP* (pBTP12), and one that contained a H1754A copy of *gliP* (pBTP13), both targeted to the *akuA* locus. The pBTP12 plasmid was assembled by amplifying *akuA* flanks (KU5'-F & KU5'-R, and KU3'-F & KU 3'-R), *gliP* (gliP-F & gliP-R), and

A. fumigatus argB as the selectable marker (AFU argB fwd & AFU argB rev). These PCR fragments were combined with a plasmid backbone amplified from a yeast shuttle vector (YS F/YS R) in a yeast transformation to allow for homologous recombination to assemble the fragments into a full plasmid. pBTP13 was assembled using the same fragments and method, except that the H1754A substitution was introduced by using primers containing the mutation and amplifying *gliP* in two separate PCR reactions (gliP-F & gliP-H1754A-R, and gliP-H1754A-F & gliP-R). TBTP12.02 was then transformed with pBTP12 and pBTP13 to generate TBTP99 and TBTP100 respectively, which were confirmed by Southern blot analysis (**Figure S13**). TBTP12.02 was taken to prototrophy by amplifying *argB* (AFU argB fwd &AFU argB rev2) from *A. fumigatus* and selecting prototrophic transformants generating TBTP94.

(c) Heterologous *gliP* expression vectors: pET24b GliP was a gift from Robert A. Cramer, Jr. (Durham, NC), which was constructed as described.^[7] Truncations were made by PCR and reinstalled into pET24b with the previously utilized Ndel/XhoI restriction sites. All *gliP* mutants were constructed by applying PCR sitedirected mutagenesis on the original pET24 *gliP* as template using primers listed in **Table S4**. Competent *E. coli* NEB® 5-alpha (New England Biolabs) was transformed with the PCR reactions, which were sequenced to confirm accurate amplification.

(d) *A. fumigatus* GliP point mutation at amino acid 2095 (ser->ala) : To replace serine (TCG) to alanine (GCG) at 2095 amino acid position, we first created a single point mutation $(T\rightarrow G)$ using jont PCR. This mutated template was fused to a 1.9 kb DNA fragment of *A. fumigatus pyrG* with glutathione gene terminator (primers DgPT5'F and DgPCT3R) by joint PCR^[1,3]. The fused 3kb PCR amplicon with the point mutation was used for transformation to Af293.1. Transformants were confirmed by Southern blotting (**Figure S14**) and sequeincing (data not shown) to obtain TJW201.38 for the subsequent experiments.

1.3 Nucleic acid analysis

Plasmid preparation, digestion with restriction enzyme, gel electrophoresis, blotting, hybridization, and probe preparation were performed by standard methods.^[8] *Aspergillus* DNA for diagnostic PCR was isolated using the previously described method.^[9] Sequence data were analyzed using the LASERGENE software package from DNASTAR.

1.4 Northern analysis

Strains were grown in liquid GMM at a concentration of 1.0x10⁶ spores per milliliter shaking at 225 rpm at 30 °C for 24 hours, then 25 °C for an additional 48 h or after 24 Gliotoxin (1), was added at 25 µg/mL followed

by an additional 24 h of cultivation. Mycelia were harvested by filtering through Miracloth (CalBioChem), lyophilized, and total RNA was then isolated using Trizol (Invitrogen). The probe for *gliG* was prepared by PCR amplification of genomic DNA, and labeled with dCTP α P.³²

1.5 Fermentation and metabolome extraction

A. *fumigatus* strains were inoculated (1.0×10⁶ spores/mL) into 25 mL GMM in 125 mL Erlenmeyer flasks at 30 °C with shaking at 220 rpm. After 5 days, liquid fungal cultures including fungal tissue and media were frozen using a dry ice-acetone bath and lyophilized. The lyophilized residues were extracted with 12.5 mL of a mixture of acetonitrile, ethyl acetate, and water (80:15:5) for 0.5 h with vigorously stirring. Extracts were filtered over cotton, evaporated to dryness, and stored in 8 mL vials. Crude extracts were suspended in 1.0 mL of extraction solvent and centrifuged to remove insoluble materials, and the supernatant was subjected to LC-HRMS analysis.

1.6 Analytical methods and equipment overview

(a) NMR spectroscopy: NMR spectroscopic instrumentation: a Bruker Avance^{III} HD (800 MHz ¹H reference frequency, 201 MHz for ¹³C) equipped with a 5 mm CPTCL ¹H-¹³C/¹⁵N cryo probe. Non-gradient phase-cycled dqfCOSY spectra were acquired using the following parameters: 0.6 s acquisition time, 400-600 complex increments, 8, 16 or 32 scans per increment. Non-gradient HSQC, HMQC, and HMBC spectra were acquired with these parameters: 0.25 s acquisition time, 200-500 complex increments, 8-64 scans per increment. ¹H, ¹³C-HMBC spectra were optimized for J_{H,C} = 6 Hz. HSQC spectra were usually acquired without decoupling. NMR spectra were processed and baseline corrected using MestreLabs MNOVA software packages. (b) Mass spectrometry: LC-HRMS was performed on a Thermo Scientific-Dionex Ultimate3000 UHPLC system equipped with a diode array detector and connected to a Thermo Scientific Q-Exactive Orbitrap operated in electrospray positive (ESI⁺) or electrospray negative (ESI⁻) ionization mode. Low-resolution HPLC-MS was performed on an Agilent 1100 series HPLC system equipped with a diode array detector and connected to a Quattro II mass spectrometer (Micromass/Waters) operated in ESI⁺ or ESI⁻ mode. Data acquisition and processing for the LC-HRMS was controlled by Thermo Scientific Xcalibur software. Data acquisition and processing for the HPLC-MS was controlled by Waters MassLynx software. (c) Chromatography: flash chromatography was performed using a Teledyne ISCO CombiFlash system. For

semi-preparative HPLC Agilent Zorbax Eclipse XDB-C18 or -C8 columns (25 cm x 10 mm, 5 µm particle diameter) were used. An Agilent Zorbax Eclipse XDB-C18 column (4.6 x 250 mm, 5 µm particle diameter) was used in the HPLC-MS analyses of in vitro protein activity assays. For semi-preparative and analytical HPLC acetonitrile (organic phase) and 0.1 % acetic acid in water (aqueous phase) were used as solvents at a flow rate of 3.20 mL/min or 1.0 mL/min, respectively. A solvent gradient scheme was used, starting at 5% organic for 3 min, followed by a linear increase to 100% organic over 25 min, holding at 100% organic for 8 min, then decreasing back to 5% organic for 1 min and holding at 5% organic for the final 6 min, a total of 40 min. An Agilent Zorbax RRHD Eclipse XDB-C18 column (2.1 x 100 mm, 1.8 µm particle diameter) heated to 40 °C was used in the LC-HRMS A. fumigatus mutant profiling analysis with acetonitrile (organic phase) and water (aqueous phase) with 0.1 % acetic acid used as solvents at a flow rate of 0.5 mL/min. For data displayed in Figure 2 a solvent gradient scheme was used, starting at 5% organic with an immediate linear increase to 100% organic over 10.5 min, holding at 100% organic for 4 min, then decreasing back to 5% organic in 0.1 min and holding for the final 1.5 min, for a total of 16 min. For data displayed in Figure 4 a solvent gradient scheme was used, starting at 5% organic for 5 min, then a linear increase to 100% organic over 15 min, holding at 100% organic for 5 min, then decreasing back to 5% organic in 0.1 min and holding for the final 2.9 min, for a total of 28 min.

1.7 Heterologous protein production

All C-terminal hexahistidine-tagged GliP mutants, and truncation expression constructs were used to transform *E. coli* BL21(DE3) (New England Biolabs), which was grown in Terrific Broth (TB) supplemented with 10 mM MgCl₂ and selected with 100 μ g/mL ampicillin. 10 mL overnight cultures were diluted into 1 L of TB in a 4 L flask and shaken at 200 RPM at 37 °C to an OD of approximately 0.75, cooled to 16 °C and further grown to an OD of roughly 1.0-1.2 and induced with 100 μ M IPTG. Cultures were maintained at 16 °C at 200 RPM for an additional 24 hours before harvesting at 5,000 x g (4 °C for 10 min) and stored at -80 °C until purification. All further steps occurred at 4 °C unless otherwise noted. 20 g of frozen pellets were resuspended in 150 mL of 25 mM Tris pH 8.0, 500 mM NaCl, and sonicated. Lysed cells were spun at 20,000 x g for 20 min, and the supernatant was collected and gently stirred with 1 mL HisPur Ni-NTA Resin (Thermo Fisher Scientific) for 30 min. During incubation, 5 μ L of Benzonase (EMD Millipore) was added along with 1 mM MgCl₂. The slurry was loaded and passed through a column and the resin was washed with 20 column volumes of fresh lysis buffer. The protein was then eluted with 30 mL lysis buffer containing 150 mM imidazole and 10% glycerol. The elution was concentrated with an Amicon Ultra-15 30 kDa spin filter (EMD Millipore), flash frozen over liquid nitrogen and stored at -80 °C until further purification. FPLC purification of proteins were performed using a HiLoad 16/600 Superdex 200 preparatory grade column run

SUPPORTING INFORMATION

on a Amersham Biosciences P-920 pump equipped with a UPC-900 detector and a Frac-950 fraction collector (GE Healthcare) with a running buffer of 20 mM Tris, pH 8.0, 50 mM NaCl, 2 mM MgCl₂, and 1 mM DTT. Fractions containing the protein of interest were combined and concentrated with an Amicon Ultra-15 30 kDa spin filter and flash frozen over liquid nitrogen and stored at -80 °C until further analysis was required.

1.8 GliP product formations assays

GliP assays were first pantetheinylated in 75 mM Tris pH 8.0, 5 mM MgCl₂, 300 μ M coenzyme A, 1 μ M Sfp synthase (New England Biolabs), and 1 μ M GliP (or GliP mutant) in 100 μ L reactions at 25 °C for 1 hour. Following Sfp incubation, an additional 100 μ L solution of 10 mM ATP, 800 μ M phenylalanine, and 800 μ M serine was added to initiate catalysis. Reactions were monitored with low-resolution HPLC-MS, as described above.

1.9 GliP T₃-pantetheine detection

1 μ M GliP in 100 μ L was incubated with 75 mM Tris pH 8.0, 5 mM MgCl₂, 300 μ M coenzyme A, 1 μ M Sfp synthase at 25 °C. After 1 hour, proteins were digested with 1.5 μ g of sequencing grade chymotrypsin (Promega) for 12 hours. Peptides were then reduced with 5 mM DTT for 20 minutes at 50 °C, and thiols were capped with 15 mM iodoacetamide. Formic acid was added to 1 % (v/v), and peptides were prepared with 100- μ I Pierce C18 Tips (Thermo Scientific) per the manufacturer's protocol using 100 μ L of the elution solution. Peptides were identified via LC-HRMS, as described above.

1.10 Compound 5 cyclization assay

1 μ M GliP_S555A_S1582A in 100 μ L was incubated with 50 mM Tris pH 7.5, 5 mM MgCl₂, 100 μ M coenzyme A, 1 μ M Sfp synthase at 25 °C for 30 min. Catalysis was initiated with 1 μ L of 100 mM **5**, and after 10 minutes the reaction was quenched with 100 μ L acetonitrile and immediately frozen over liquid nitrogen. Samples were thawed only immediately before HPLC analysis. Analysis was performed with low-resolution HPLC-MS, as described above.

1.11 ATP-[³²P]pyrophosphate exchange assays

The reactions were set up in a total assay volume of 100 μ L at 25 °C in 100 mM phosphate buffer, 5 mM MgCl₂, 125 nM EDTA, 5 mM ATP, 100 nM purified GliP proteins, 0.1 μ M [³²P]pyrophosphate (50 Ci/mmol), and 1 mM amino acid substrate were added. The reaction proceeded for 30 min before it was stopped (1 % (w/v) activated charcoal, 4.5 % (w/v) tetrasodium pyrophosphate, 3.5 % (v/v) perchloric acid) and further processed as described.^[10] Pyrophosphate exchange was quantified on a scintillation counter (PerkinElmer TriCarb 2910TR).

1.12 Synthesis of *N*-acetylcystamine-L-Phe-L-Ser (5)

a) EDC (1.2 eq), HOBt (1.2 eq.), DIEA (3 eq.) DMF, 24 h. b) H₂ (continuous stream), Pd/C (10 mol %), 1.5 h. c) *N*-acetylcystamine (1.5 eq.), EDC (1.2 eq.), HOBt (1.2 eq.), DIEA (3 eq.) DMF, 24 h. d) 40 % TFA, DCM, 1 h.^[11] e) 1 M phosphate buffer, pH 8, 48 h. See below for NMR assignments and spectra of **5.**^[12]

1.13 Mining for putative DKP producing NRPSs with ATCATC_TT_c domain architecture (Table S1).

GliP (accession: AAW03307.1) was used as a query sequence for a blastp search of NCBI's Fungi (taxid: 4751) non-redundant protein database using the default parameters with a total of 20000 subject sequences. The resulting hits were exported to an excel sheet and dereplicated (for multiple alignments to the same sequence) and sorted for size (2100-2300 amino acids) to obtain NRPSs with the correct domain architecture. The resulting sequences (156) were parsed with Python to search for the conserved residues "SHXXXDXXS/T" in the C_T active site, which yielded 89 sequences that were manually curated to ensure

correct domain architecture and to remove homologs >95 % similarity to GliP, which likely produce gliotoxin.

The resulting 56 putative NRPSs are annotated in Table S1.

1.14 Gene sequences for GliP-WT and mutant GliP proteins.

GliP - WT (AFUA_6G09660)

ATGCCATCAGTAGTAGCGCTCGACCTCTGCCAGCTTTTTGACCGGTCCGTCGCTCGGACACCACACC AGCTGGCAGTCGATCATGAGAGCGGCTCGCTCACCTATACCGAACTCGATGTGGCCTCATCGAACCT CACCCGGAATGTTGTCGCGCTGCTTGCCATCCTCAAGGCCCACGCCTGCTACGTTCCTCTGGACCGC ACTCTATCGACGGACCGCAGCACCACAAAGGTCATTCCCGACATCGCTCCCGAAGACCTCGCTTGTT TGATCTTTACCAGTGGGAGCACAGGTGTGCCCAAGGGAGTCATGATTCCACATCGTGCCGTAGCCAA TTATGCTCAGACCAGTCCATTCAACATGGATGTGCAGCCGGGAGACCGGGTACTGCATATCCTGTCG GTATCCTTTGATGCCTCTACGGGCATGCTGTTTTCCATTCTAGGCAACTCGGGCATCGTGGTCCCCG CCACGATGGACACCCTCTTCGACAAAGCGCAGTCCTGCTCCATCCTCGCGTCGACGCCGTCAATCCT GGCAACACTACCCCTGCCGACGGCCCTGCCAGACAGCTATCCCTACGTCCATACTATTCTGTTGGGT GGAGAGTCGCCACCCGCCCCGCTGTTGTCCAGCTGGCTTCAATTCGGCGTTCGCATCCTGAACGCG TACGGTCCTACTGAAACCACCTGTGCCTCGTTGATGCAGGAAGTAGAGGTCTGTCAGGAGACGGGAA TGATCAATCGCAGTATTATCGGTCGCCCAATGCCCCAATGGACCGGTATACCTGCTACAGCCGGATAC GCTCCTCCCGGTCGAGGAAGAAGGCGAGGAAGGGGAGATTGCCATTGCGGGCGTCGGCCTGGCCC ACGGCTACTACCGAAATGCCGCACTAACAGCCGAGAAGTTTATCGAGTGGCACGGCAAGCGAGTCTA TCGCACCGGCGACCAAGGACGGTGGACACGCCGTAACGACGGCCAGCGCGTGGTGGAATTCCGCG GCCGCAGTGATCGCACCGTCAAGAACCGCGGATTCCTCGTCAATCTACCCGCCGATGTCGAGGAAC CGCTACGCCAGATGGGCTTCGGTGTCACCGACGTCTATGCTTCGCTGATCAACGGTCTCTTGGTTGC GCTGGTGACCCCGGCAACTGCAGATCTGGACGGCCTGCAGAGCGAGGCGGACCGTCGGCTGTCTT CTTTCCATCGGCCGGGACGATACTTGGCTGTCGATCAGTTTCCACTGTCAGCCAACGGCAAGATTGA TACCAAGGCCATTGAGAACATGCTGAAAGAGTATCAGGCGCGTCTCTGCGAGGGCACCGATGATGAA GAGACCACAGGGGGGGGGGGCGTCCTACGGAGCGCGAGCAAGTCATAGCCGAATGCATGTATACCGCG TTGGGGTTGGATCTCCCGTCGGCGTCGGCGTCCAAAGATTTCAATTTCTTCGCCATGGGCGGAAACT CCCTTGCTGCTCTTCGATTCACCTCCCTGTGCCGTGAGCGAGGCATCCTCCTCACTACCCGGGATCT GTACCTACATCCAACAGTCAGAGGCATTCTCCCGTATGCTCGTGACCTTGCTCATTCTGGTCTGCCTT TGCCAGACAAGGAGGAGCAAATCGACCACCGATTATCCCTCAAGGCCGAGGTTGCTGCGGCCCTTC ATCTCTTGGGCGACATTGACGTCGCTCCGTTGACTCCCCTTCAGCTACAACTGAGCGCTCCTATTTTC CAAAGCGATGGGACCAACACGAACCAGCTGCGGCAATCGTATCCCCTGGCCTCGGCCGAGCACATC TGCAATGCATGGCGACAGGTCGTCCTCAGTGAACCGGTCTTCCGAACGCAGATTGCGCTGGATATCG GGCCCGGTGTGCAGATCGTTCACGCTCAGCCACGGTGCCAGCCGCAGGAGATTACCTTTCACCGCC GGGAAGACTACAATGCTGCCTTGAGCGATCCTTCCCGTCTGCCGGTTGGACTGGGAATGCGTTTGGA ATTTATGAAATTTATGCCGAATGACGACGATGACGACGAGGGTGAAGTGACTGTCGTCTGGACGGCC CACCACAGCCTGATCGATGGTTACTCCCTGGGACTCATTCTGGCTCGGGTGCAGCAGGCAAGCCAG GGTGTCGCATCCTCCCGGGTCTCTTCCTTTGTAGACGCAGCGTGGAATCTGCTGAGCGTGCAGAAGC CAGAGGCAACCACAACGCCTGTAGCACGGCCGTACCTCGCTCAGGAGGTGCTGTTCAAGCATGTGG GCGGCGTGGACGAGTTACACCGACTCGCATCCAGCTGCAGTGTCACCCTAGCGGCCGTCTACTACA CGGCGTGGGCCATGACGATTGCTCGGACGACCAAGTCCACCCTGGTAACTCTGGGAGTTGTCTTCTC TGGCCGCGAGATCCTCCCAGACGATGCGCAGGCCGTCGGCCCATTGATGGCCACTCTGCCCCTGGT ATGCCGCATTGACGGAGAAGCCTCGATTGAGCGCCAGCTGCAGACCACGTTCGAAGGTTTGGCAAC CATTAGCACCTACGCATGGTCTGCCCCAGATCAAATCGGGTACCGGGTCGACTCTCTGCTGGCGACG CAGTATGATTTCCCAACCTACGACCAACCCATCCCGCCGCAAAAGGAGCAGTTCTTCGAGAACACGA

CCTTTGCGCTGAGTCTCCTGGTCGAAGCTGATGCTCGTTTCCGCTTGGTGTACAATCCTTCCGTGCA TTCGACGATGGAGGCATGGCTCACGGGGCCGACAAAAGCACCGCTTGCCGTCGACCAAGCTTCTGA TATCCAACATGTCAATGTACCGAATGTGGCGTCGGCGTTCTATGCCTCGGTCGACCTCCACAAGGAT TTGATTGCCGTAGACGGACCAGGAGGCACGTTACCCTACCGGGAACTGGATCAAAAGTCGAACGCG GTGGCCTCGCATATTGCCAAACACTTCAGCAGGGCTCAAGTCATCGCCATCCACGCCGATGGAACCC TCAACTGGGTTGTCGGCATCCTGGGTATCCTGAAAGCCGGCTGCGCATACTGCCCACTCGATCCTGC GTATCCCATCGCGAGACGGGTCGCTGTGTACGAACAAAGCGGTGCCAGCGCGCTCCTCATCCCTAA TGCCTGCTCATCGTCCGCGGCCCTCCTGCCGATAACCGATCTTCGCGTCTTCACGATTCAAGAAACC GAGACAAGCGACACAAGCAGACAGCCATCGCTGCTCGCAAACGCAAATGAGGATGCCCTCATCGTCT TCACCTCCGGCACCGGCCGCCCCAAGGGGGTCCCCATCAGTCACAGGGGCCTTCTGGCTTTGC AGTCGAATCCCGAAGCCACCATGTTCAGCCGTCCCGGTCGTCGTATAGCTCAGTTCATGTCGCCTGC GTTCGACTACTGTGCCAACGAGATTTTCTCTGCGTTGCTGCATGGCGGAACCTTGGTGCTTCGGGAC CCGTCCGACCCCCTTGCCCATCTCGCGAAGGTCGATGTGTCGACAATTACTCCTTCTGTGCTCAGCG TGCTGAATCCAGACGACTATCCTAATCTCGACATGGTCTATGCAACAGGAGAACCCGTCACGCCCGG CTTGCTCGCTCGATGGGGCGAGGGCCGGGCATTCTACAATGCCTATGGTCCTGCAGAGTGCTCTATT TGCACGTCATTTACCCGCCTAGAGCCCGGCCAGCAGGTCACCATCGGAAACGCCGTTCGCACCGCG CGCATGTACATCCTGGACCCGGATCTCCAGCCCGTGTCGGACGGCCAAACCGGAGAGATCTTCCTG GCCGGACAACAGGTGATGCGAGGCTACGTGGGAGACGATGCCAAGACGGCCTACAGCGTGCTGCC GGATCCCTGGCATCCTGGTGAGCGGATGTATCGCACCGGCGACTACGGCTACTGGAACGCGGACAG ACAGATTGTCTACATCGGACGACTGGACCGGCAGGTCAAAATCCGTGGCTTCCGCGTCGAGCTCGC GGCGGTCGAGCAGAAGATGTACCAAGAGGAGCCGCGGCTTACCCAAGCGGCGGCTCTCGTTGTCAA CGATACTCTGGTGGCCTTTGTCATGCCGCTTGACGTGGATGTCAGCCGTCTGGAGCAGCGACTGCG CGAGTCCCTCCAACCCAGCTGGGTGCCTCAGGTGATTACCGCGCTGGAGGAGTTCCCTTGGACGGC CAACCGCAAGGTTGACTATCGCAAGCTGGCGGAGAGAGCCACCCTGACGCGGCCGGAGGACTCCCT CCTGTGGAAGAACGTGCTGCGTCTGCAGGCAGGCGGCGGCTCTCGCAAGCTCTGTGAAGATGATGA CTTCCGTGCTCTGGGCGGCCATTCCGTTCTCCAGATGATGTTGGCGGCTCGCCTCGGCAGCACATTT GGCATCTCCGTGTCGATGCGCGATGTGATCGAGCACTCCACGCTGGCCGAGCAGGTCGAGCTGGTG CGCCGCAAACGTCAGGCCTCGACGGCCAAGCCACGGACCATCTGCGACGCGTTTCCCGACCACTGC CTGTCGCCGTTGGAGCGTCAGACGTGGTTCCAGTACCTGATCGCTGACGTGCGCACGTTCAACA TTCCCGTCCTCTTGCATCTCGGCGGGACATTTGACCGCGACCGTCTCGTGCAGTCATTCAACGCCGT GTTGGCGTCACGCAAGATCTTCCGGACCAACTTTGTCGAGACATCACTCGGACCGTGTCGGATCTTC CGGGACACGCCGCCCCGAGTCCTTGTGTGCGACGGTGCGCTCGACACGACCAAGGAGATCGACCG GAGCTTTGACCTGGCTCGGGATGAGCTGATCCGCGTCTTCCTGGACCGTCGCACCCTCCTTGTGGTT ACCAGCCACGCCGTCGCCGATCTCAACAGCGTGCAGAATCTGCTGCAGGACGTCTCCGGCGTGTAC GCGGGAAGGACGACCCCAACACCGGACCGATGGCACTATCCCCGGGCCCCGGCCTGGTCCCGTCA GGCCACAGAGCAGGAACGGAAGTTCTGGTCGAAGTATCTCGAGGGGGGCTCCCCAGCGTCTGGACAT CCCGCGGTATCCCGGCCAAATGGCGTTTGAAGGCCGCTCGCGCGTGTCCGAGTTCAAAGGCGACCT CGTTCGACGCGCCGTCACTCTGGGGCAGGAACATGGGTTGAGTCAGCACCAGCTGGTGTGTGCCGC CGTCGCGCAGACCCTCCAGTGGCTCGCCGGCTCGAACGACGTCGTTCTCGGCTCTCCGTGGGCCAA AACCCCTGTGAATGCAGACTGCGCCACCATCCTGCAGTCTACGCGTGCAGCCAGGCAGCCGT CTGCAATTCCATTCCATTCGAGCAGGTCCTGAACCTCCTCCACCTGCCGCGGACCATCCGGCAACAC CCGCTGTTCGAAGCCATGGTCACCTTTCATCTCAAGGGGGCAGTGGAAGATTGTCTCGCCATCGAGG GGCTGGAGGTGAAACGCGAGATGTGCTTTGCGTCCGGGGCCAAGTTCCTGCTCATGTTCGAATGGA CCGAGATCGAGGCGGATCACTGGACCCTGCGCATCGAGTATGACGACCACCAGCTCGACGACGCGA CCGTCACCACCATCGAGGACAGCATCCGATGTGTCCTCGAAGGGCTGGCGGATCGGCTCTCTCGCG CCGCCATCCACGAGCGCCTGAACGCCATGCACAAGACGGCCAGGACCAAGGTGGATTGGAACTTCT ACCGCCGGCTGGTGGGCATTCTGCAGCGTGAGATGGCGACCTGTCTGGGCGTCTCGCTGGATGAGT TCCCCTGCTCCGTCTCCTTCTTCGAGGCCGGCGGCGACTCGATCCAGGCCTGGCGGTTGAGCCGTC

AGTTGAAACGGGTTGGGCTGGAGGTGCCCATCTGCAACATCTTCGATCATCCCACGGCGCAGGATTT GGCACAGCGTCTTTACCGTCAGGTTCTTTAG

GliP-∆T₃

ATGCCATCAGTAGTAGCGCTCGACCTCTGCCAGCTTTTTGACCGGTCCGTCGCTCGGACACCACC AGCTGGCAGTCGATCATGAGAGCGGCTCGCTCACCTATACCGAACTCGATGTGGCCTCATCGAACCT CACCCGGAATGTTGTCGCGCTGCTTGCCATCCTCAAGGCCCACGCCTGCTACGTTCCTCTGGACCGC ACTCTATCGACGGACCGCAGCACCACAAAGGTCATTCCCGACATCGCTCCCGAAGACCTCGCTTGTT TGATCTTTACCAGTGGGAGCACAGGTGTGCCCAAGGGAGTCATGATTCCACATCGTGCCGTAGCCAA TTATGCTCAGACCAGTCCATTCAACATGGATGTGCAGCCGGGAGACCGGGTACTGCATATCCTGTCG GTATCCTTTGATGCCTCTACGGGCATGCTGTTTTCCATTCTAGGCAACTCGGGCATCGTGGTCCCCG CCACGATGGACACCCTCTTCGACAAAGCGCAGTCCTGCTCCATCCTCGCGTCGACGCCGTCAATCCT GGCAACACTACCCCTGCCGACGGCCCTGCCAGACAGCTATCCCTACGTCCATACTATTCTGTTGGGT GGAGAGTCGCCACCCGCCCCGCTGTTGTCCAGCTGGCTTCAATTCGGCGTTCGCATCCTGAACGCG TACGGTCCTACTGAAACCACCTGTGCCTCGTTGATGCAGGAAGTAGAGGTCTGTCAGGAGACGGGAA TGATCAATCGCAGTATTATCGGTCGCCCAATGCCCAATGGACCGGTATACCTGCTACAGCCGGATAC GCTCCTCCCGGTCGAGGAAGAAGGCGAGGAAGGGGAGATTGCCATTGCGGGCGTCGGCCTGGCCC ACGGCTACTACCGAAATGCCGCACTAACAGCCGAGAAGTTTATCGAGTGGCACGGCAAGCGAGTCTA TCGCACCGGCGACCAAGGACGGTGGACACGCCGTAACGACGGCCAGCGCGTGGTGGAATTCCGCG GCCGCAGTGATCGCACCGTCAAGAACCGCGGATTCCTCGTCAATCTACCCGCCGATGTCGAGGAAC CGCTACGCCAGATGGGCTTCGGTGTCACCGACGTCTATGCTTCGCTGATCAACGGTCTCTTGGTTGC GCTGGTGACCCCGGCAACTGCAGATCTGGACGGCCTGCAGAGCGAGGCGGACCGTCGGCTGTCTT CTTTCCATCGGCCGGGACGATACTTGGCTGTCGATCAGTTTCCACTGTCAGCCAACGGCAAGATTGA TACCAAGGCCATTGAGAACATGCTGAAAGAGTATCAGGCGCGTCTCTGCGAGGGCACCGATGATGAA GAGACCACAGGGGGGGGGGGGCGTCCTACGGAGCGCGAGCAAGTCATAGCCGAATGCATGTATACCGCG TTGGGGTTGGATCTCCCGTCGGCGTCGGCGTCCAAAGATTTCAATTTCTTCGCCATGGGCGGAAACT CCCTTGCTGCTCTTCGATTCACCTCCCTGTGCCGTGAGCGAGGCATCCTCCTCACTACCCGGGATCT GTACCTACATCCAACAGTCAGAGGCATTCTCCCGTATGCTCGTGACCTTGCTCATTCTGGTCTGCCTT TGCCAGACAAGGAGGAGCAAATCGACCACCGATTATCCCTCAAGGCCGAGGTTGCTGCGGCCCTTC ATCTCTTGGGCGACATTGACGTCGCTCCGTTGACTCCCCTTCAGCTACAACTGAGCGCTCCTATTTTC CAAAGCGATGGGACCAACACGAACCAGCTGCGGCAATCGTATCCCCTGGCCTCGGCCGAGCACATC TGCAATGCATGGCGACAGGTCGTCCTCAGTGAACCGGTCTTCCGAACGCAGATTGCGCTGGATATCG GGCCCGGTGTGCAGATCGTTCACGCTCAGCCACGGTGCCAGCCGCAGGAGATTACCTTTCACCGCC GGGAAGACTACAATGCTGCCTTGAGCGATCCTTCCCGTCTGCCGGTTGGACTGGGAATGCGTTTGGA ATTTATGAAATTTATGCCGAATGACGACGATGACGACGAGGGTGAAGTGACTGTCGTCTGGACGGCC CACCACAGCCTGATCGATGGTTACTCCCTGGGACTCATTCTGGCTCGGGTGCAGCAGGCAAGCCAG GGTGTCGCATCCTCCCGGGTCTCTTCCTTTGTAGACGCAGCGTGGAATCTGCTGAGCGTGCAGAAGC CAGAGGCAACCACAACGCCTGTAGCACGGCCGTACCTCGCTCAGGAGGTGCTGTTCAAGCATGTGG GCGGCGTGGACGAGTTACACCGACTCGCATCCAGCTGCAGTGTCACCCTAGCGGCCGTCTACTACA CGGCGTGGGCCATGACGATTGCTCGGACGACCAAGTCCACCCTGGTAACTCTGGGAGTTGTCTTCTC TGGCCGCGAGATCCTCCCAGACGATGCGCAGGCCGTCGGCCCATTGATGGCCACTCTGCCCCTGGT ATGCCGCATTGACGGAGAAGCCTCGATTGAGCGCCAGCTGCAGACCACGTTCGAAGGTTTGGCAAC CATTAGCACCTACGCATGGTCTGCCCCAGATCAAATCGGGTACCGGGTCGACTCTCTGCTGGCGACG CAGTATGATTTCCCAACCTACGACCAACCCATCCCGCCGCAAAAGGAGCAGTTCTTCGAGAACACGA CCTTTGCGCTGAGTCTCCTGGTCGAAGCTGATGCTCGTTTCCGCTTGGTGTACAATCCTTCCGTGCA TTCGACGATGGAGGCATGGCTCACGGGGCCGACAAAAGCACCGCTTGCCGTCGACCAAGCTTCTGA TATCCAACATGTCAATGTACCGAATGTGGCGTCGGCGTTCTATGCCTCGGTCGACCTCCACAAGGAT

TTGATTGCCGTAGACGGACCAGGAGGCACGTTACCCTACCGGGAACTGGATCAAAAGTCGAACGCG GTGGCCTCGCATATTGCCAAACACTTCAGCAGGGCTCAAGTCATCGCCATCCACGCCGATGGAACCC TCAACTGGGTTGTCGGCATCCTGGGTATCCTGAAAGCCGGCTGCGCATACTGCCCACTCGATCCTGC GTATCCCATCGCGAGACGGGTCGCTGTGTACGAACAAAGCGGTGCCAGCGCGCTCCTCATCCCTAA TGCCTGCTCATCGTCCGCGGCCCTCCTGCCGATAACCGATCTTCGCGTCTTCACGATTCAAGAAACC GAGACAAGCGACACAAGCAGACAGCCATCGCTGCTCGCAAACGCAAATGAGGATGCCCTCATCGTCT TCACCTCCGGCACGACCGGCCGCCCCAAGGGGGTCCCCATCAGTCACAGGGGCCTTCTGGCTTTGC AGTCGAATCCCGAAGCCACCATGTTCAGCCGTCCCGGTCGTCGTATAGCTCAGTTCATGTCGCCTGC GTTCGACTACTGTGCCAACGAGATTTTCTCTGCGTTGCTGCATGGCGGAACCTTGGTGCTTCGGGAC CCGTCCGACCCCCTTGCCCATCTCGCGAAGGTCGATGTGTCGACAATTACTCCTTCTGTGCTCAGCG TGCTGAATCCAGACGACTATCCTAATCTCGACATGGTCTATGCAACAGGAGAACCCGTCACGCCCGG CTTGCTCGCTCGATGGGGCCGAGGGCCGGGGCATTCTACAATGCCTATGGTCCTGCAGAGTGCTCTATT TGCACGTCATTTACCCGCCTAGAGCCCGGCCAGCAGGTCACCATCGGAAACGCCGTTCGCACCGCG CGCATGTACATCCTGGACCCGGATCTCCAGCCCGTGTCGGACGGCCAAACCGGAGAGATCTTCCTG GCCGGACAACAGGTGATGCGAGGCTACGTGGGAGACGATGCCAAGACGGCCTACAGCGTGCTGCC GGATCCCTGGCATCCTGGTGAGCGGATGTATCGCACCGGCGACTACGGCTACTGGAACGCGGACAG ACAGATTGTCTACATCGGACGACTGGACCGGCAGGTCAAAATCCGTGGCTTCCGCGTCGAGCTCGC GGCGGTCGAGCAGAAGATGTACCAAGAGGAGCCGCGGCTTACCCAAGCGGCGGCTCTCGTTGTCAA CGATACTCTGGTGGCCTTTGTCATGCCGCTTGACGTGGATGTCAGCCGTCTGGAGCAGCGACTGCG CGAGTCCCTCCAACCCAGCTGGGTGCCTCAGGTGATTACCGCGCTGGAGGAGTTCCCTTGGACGGC CAACCGCAAGGTTGACTATCGCAAGCTGGCGGAGAGAGCCACCCTGACGCGGCCGGAGGACTCCCT CCTGTGGAAGAACGTGCTGCGTCTGCAGGCAGGCGGCGGCTCTCGCAAGCTCTGTGAAGATGATGA CTTCCGTGCTCTGGGCGGCCATTCCGTTCTCCAGATGATGTTGGCGGCTCGCCTCGGCAGCACATTT GGCATCTCCGTGTCGATGCGCGATGTGATCGAGCACTCCACGCTGGCCGAGCAGGTCGAGCTGGTG CGCCGCAAACGTCAGGCCTCGACGGCCAAGCCACGGACCATCTGCGACGCGTTTCCCGACCACTGC CTGTCGCCGTTGGAGCGTCAGACGTGGTTCCAGTACCTGATCGCTGACGTGCGCACGTTCAACA TTCCCGTCCTCTTGCATCTCGGCGGGGACATTTGACCGCGACCGTCTCGTGCAGTCATTCAACGCCGT GTTGGCGTCACGCAAGATCTTCCGGACCAACTTTGTCGAGACATCACTCGGACCGTGTCGGATCTTC CGGGACACGCCGCCCCGAGTCCTTGTGTGCGACGGTGCGCTCGACACGACCAAGGAGATCGACCG GAGCTTTGACCTGGCTCGGGATGAGCTGATCCGCGTCTTCCTGGACCGTCGCACCCTCCTTGTGGTT ACCAGCCACGCCGTCGCCGATCTCAACAGCGTGCAGAATCTGCTGCAGGACGTCTCCGGCGTGTAC GCGGGAAGGACGACCCCAACACCGGACCGATGGCACTATCCCCGGGCCCCGGCCTGGTCCCGTCA GGCCACAGAGCAGGAACGGAAGTTCTGGTCGAAGTATCTCGAGGGGGGCTCCCCAGCGTCTGGACAT CCCGCGGTATCCCGGCCAAATGGCGTTTGAAGGCCGCTCGCGCGTGTCCGAGTTCAAAGGCGACCT CGTTCGACGCGCCGTCACTCTGGGGCAGGAACATGGGTTGAGTCAGCACCAGCTGGTGTGTGCCGC CGTCGCGCAGACCCTCCAGTGGCTCGCCGGCTCGAACGACGTCGTTCTCGGCTCTCCGTGGGCCAA AACCCCTGTGAATGCAGACTGCGCCACCATCCTGCAGTCTACGCGTGCAGCGAGCCAGGCAGCCGT CTGCAATTCCATTCCATTCGAGCAGGTCCTGAACCTCCTCCACCTGCCGCGGACCATCCGGCAACAC CCGCTGTTCGAAGCCATGGTCACCTTTCATCTCAAGGGGGCAGTGGAAGATTGTCTCGCCATCGAGG GGCTGGAGGTGAAACGCGAGATGTGCTTTGCGTCCGGGGCCAAGTTCCTGCTCATGTTCGAATGGA CCGAGATCGAGGCGGATCACTGGACCCTGCGCATCGAGTATGACGACCACCAGCTCGACGACGCGA CCGTCACCACCATCGAGGACAGCATCCGATGTGTCCTCGAAGGGCTGGCGGATCGGCTCTCTCGCG CCGCCATCCACGAGCGCCTCGAGCACCACCACCACCACCACTGA

$GliP-\Delta C_T T_3$

ACTCTATCGACGGACCGCAGCACCACAAAGGTCATTCCCGACATCGCTCCCGAAGACCTCGCTTGTT TGATCTTTACCAGTGGGAGCACAGGTGTGCCCAAGGGAGTCATGATTCCACATCGTGCCGTAGCCAA TTATGCTCAGACCAGTCCATTCAACATGGATGTGCAGCCGGGAGACCGGGTACTGCATATCCTGTCG GTATCCTTTGATGCCTCTACGGGCATGCTGTTTTCCATTCTAGGCAACTCGGGCATCGTGGTCCCCG CCACGATGGACACCCTCTTCGACAAAGCGCAGTCCTGCTCCATCCTCGCGTCGACGCCGTCAATCCT GGCAACACTACCCCTGCCGACGGCCCTGCCAGACAGCTATCCCTACGTCCATACTATTCTGTTGGGT GGAGAGTCGCCACCCGCCCCGCTGTTGTCCAGCTGGCTTCAATTCGGCGTTCGCATCCTGAACGCG TACGGTCCTACTGAAACCACCTGTGCCTCGTTGATGCAGGAAGTAGAGGTCTGTCAGGAGACGGGAA TGATCAATCGCAGTATTATCGGTCGCCCAATGCCCCAATGGACCGGTATACCTGCTACAGCCGGATAC GCTCCTCCCGGTCGAGGAAGAAGGCGAGGAAGGGGAGATTGCCATTGCGGGCGTCGGCCTGGCCC ACGGCTACTACCGAAATGCCGCACTAACAGCCGAGAAGTTTATCGAGTGGCACGGCAAGCGAGTCTA TCGCACCGGCGACCAAGGACGGTGGACACGCCGTAACGACGGCCAGCGCGTGGTGGAATTCCGCG GCCGCAGTGATCGCACCGTCAAGAACCGCGGATTCCTCGTCAATCTACCCGCCGATGTCGAGGAAC CGCTACGCCAGATGGGCTTCGGTGTCACCGACGTCTATGCTTCGCTGATCAACGGTCTCTTGGTTGC GCTGGTGACCCCGGCAACTGCAGATCTGGACGGCCTGCAGAGCGAGGCGGACCGTCGGCTGTCTT CTTTCCATCGGCCGGGACGATACTTGGCTGTCGATCAGTTTCCACTGTCAGCCAACGGCAAGATTGA TACCAAGGCCATTGAGAACATGCTGAAAGAGTATCAGGCGCGTCTCTGCGAGGGCACCGATGATGAA GAGACCACAGGGGGGGGGGGGCGTCCTACGGAGCGCGAGCAAGTCATAGCCGAATGCATGTATACCGCG TTGGGGTTGGATCTCCCGTCGGCGTCGGCGTCCAAAGATTTCAATTTCTTCGCCATGGGCGGAAACT CCCTTGCTGCTCTTCGATTCACCTCCCTGTGCCGTGAGCGAGGCATCCTCCTCACTACCCGGGATCT GTACCTACATCCAACAGTCAGAGGCATTCTCCCGTATGCTCGTGACCTTGCTCATTCTGGTCTGCCTT TGCCAGACAAGGAGGAGCAAATCGACCACCGATTATCCCTCAAGGCCGAGGTTGCTGCGGCCCTTC ATCTCTTGGGCGACATTGACGTCGCTCCGTTGACTCCCCTTCAGCTACAACTGAGCGCTCCTATTTTC CAAAGCGATGGGACCAACACGAACCAGCTGCGGCAATCGTATCCCCTGGCCTCGGCCGAGCACATC TGCAATGCATGGCGACAGGTCGTCCTCAGTGAACCGGTCTTCCGAACGCAGATTGCGCTGGATATCG GGCCCGGTGTGCAGATCGTTCACGCTCAGCCACGGTGCCAGCCGCAGGAGATTACCTTTCACCGCC GGGAAGACTACAATGCTGCCTTGAGCGATCCTTCCCGTCTGCCGGTTGGACTGGGAATGCGTTTGGA ATTTATGAAATTTATGCCGAATGACGACGATGACGACGAGGGTGAAGTGACTGTCGTCTGGACGGCC CACCACAGCCTGATCGATGGTTACTCCCTGGGACTCATTCTGGCTCGGGTGCAGCAGGCAAGCCAG GGTGTCGCATCCTCCCGGGTCTCTTCCTTTGTAGACGCAGCGTGGAATCTGCTGAGCGTGCAGAAGC CAGAGGCAACCACAACGCCTGTAGCACGGCCGTACCTCGCTCAGGAGGTGCTGTTCAAGCATGTGG GCGGCGTGGACGAGTTACACCGACTCGCATCCAGCTGCAGTGTCACCCTAGCGGCCGTCTACTACA CGGCGTGGGCCATGACGATTGCTCGGACGACCAAGTCCACCCTGGTAACTCTGGGAGTTGTCTTCTC TGGCCGCGAGATCCTCCCAGACGATGCGCAGGCCGTCGGCCCATTGATGGCCACTCTGCCCCTGGT ATGCCGCATTGACGGAGAAGCCTCGATTGAGCGCCAGCTGCAGACCACGTTCGAAGGTTTGGCAAC CATTAGCACCTACGCATGGTCTGCCCCAGATCAAATCGGGTACCGGGTCGACTCTCTGCTGGCGACG CAGTATGATTTCCCAACCTACGACCAACCCATCCCGCCGCAAAAGGAGCAGTTCTTCGAGAACACGA CCTTTGCGCTGAGTCTCCTGGTCGAAGCTGATGCTCGTTTCCGCTTGGTGTACAATCCTTCCGTGCA TTCGACGATGGAGGCATGGCTCACGGGGCCGACAAAAGCACCGCTTGCCGTCGACCAAGCTTCTGA TATCCAACATGTCAATGTACCGAATGTGGCGTCGGCGTTCTATGCCTCGGTCGACCTCCACAAGGAT TTGATTGCCGTAGACGGACCAGGAGGCACGTTACCCTACCGGGAACTGGATCAAAAGTCGAACGCG GTGGCCTCGCATATTGCCAAACACTTCAGCAGGGCTCAAGTCATCGCCATCCACGCCGATGGAACCC TCAACTGGGTTGTCGGCATCCTGGGTATCCTGAAAGCCGGCTGCGCATACTGCCCACTCGATCCTGC GTATCCCATCGCGAGACGGGTCGCTGTGTGCGAACAAAGCGGTGCCAGCGCGCTCCTCATCCCTAA TGCCTGCTCATCGTCCGCGGCCCTCCTGCCGATAACCGATCTTCGCGTCTTCACGATTCAAGAAACC GAGACAAGCGACACAAGCAGACAGCCATCGCTGCTCGCAAACGCAAATGAGGATGCCCTCATCGTCT TCACCTCCGGCACGACCGGCCGCCCCAAGGGGGTCCCCATCAGTCACAGGGGCCTTCTGGCTTTGC AGTCGAATCCCGAAGCCACCATGTTCAGCCGTCCCGGTCGTCGTATAGCTCAGTTCATGTCGCCTGC GTTCGACTACTGTGCCAACGAGATTTTCTCTGCGTTGCTGCATGGCGGAACCTTGGTGCTTCGGGAC

CCGTCCGACCCCCTTGCCCATCTCGCGAAGGTCGATGTGTCGACAATTACTCCTTCTGTGCTCAGCG TGCTGAATCCAGACGACTATCCTAATCTCGACATGGTCTATGCAACAGGAGAACCCGTCACGCCCGG CTTGCTCGCTCGATGGGGCGAGGGCCGGGCATTCTACAATGCCTATGGTCCTGCAGAGTGCTCTATT TGCACGTCATTTACCCGCCTAGAGCCCGGCCAGCAGGTCACCATCGGAAACGCCGTTCGCACCGCG CGCATGTACATCCTGGACCCGGATCTCCAGCCCGTGTCGGACGGCCAAACCGGAGAGATCTTCCTG GCCGGACAACAGGTGATGCGAGGCTACGTGGGAGACGATGCCAAGACGGCCTACAGCGTGCTGCC GGATCCCTGGCATCCTGGTGAGCGGATGTATCGCACCGGCGACTACGGCTACTGGAACGCGGACAG ACAGATTGTCTACATCGGACGACTGGACCGGCAGGTCAAAATCCGTGGCTTCCGCGTCGAGCTCGC GGCGGTCGAGCAGAAGATGTACCAAGAGGAGCCGCGGCTTACCCAAGCGGCGGCTCTCGTTGTCAA CGATACTCTGGTGGCCTTTGTCATGCCGCTTGACGTGGATGTCAGCCGTCTGGAGCAGCGACTGCG CGAGTCCCTCCAACCCAGCTGGGTGCCTCAGGTGATTACCGCGCTGGAGGAGTTCCCTTGGACGGC CAACCGCAAGGTTGACTATCGCAAGCTGGCGGAGAGAGCCACCCTGACGCGGCCGGAGGACTCCCT CCTGTGGAAGAACGTGCTGCGTCTGCAGGCAGGCGGCGGCTCTCGCAAGCTCTGTGAAGATGATGA CTTCCGTGCTCTGGGCGGCCATTCCGTTCTCCAGATGATGTTGGCGGCTCGCCTCGGCAGCACATTT GGCATCTCCGTGTCGATGCGCGATGTGATCGAGCACTCCACGCTGGCCGAGCAGGTCGAGCTGGTG CGCCGCAAACGTCAGGCCTCGACGGCCAAGCCACGGACCATCTGCGACGCGTTTCCCGACCACTGC CTCGAGCACCACCACCACCACCACTGA

GliP-C_TT₃ only

ATGCGCGATGTGATCGAGCACTCCACGCTGGCCGAGCAGGTCGAGCTGGTGCGCCGCAAACGTCAG GCCTCGACGGCCAAGCCACGGACCATCTGCGACGCGTTTCCCGACCACTGCCTGTCGCCGTTGGAG CGTCAGACGTGGTTCCAGTACCTGATCGCTGCTGACGTGCGCACGTTCAACATTCCCGTCCTCTTGC ATCTCGGCGGGACATTTGACCGCGACCGTCTCGTGCAGTCATTCAACGCCGTGTTGGCGTCACGCAA GATCTTCCGGACCAACTTTGTCGAGACATCACTCGGACCGTGTCGGATCTTCCGGGACACGCCGCCC CGAGTCCTTGTGTGCGACGGTGCGCTCGACACGACCAAGGAGATCGACCGGAGCTTTGACCTGGCT CGGGATGAGCTGATCCGCGTCTTCCTGGACCGTCGCACCCTCCTTGTGGTTACCAGCCACGCCGTC GCCGATCTCAACAGCGTGCAGAATCTGCTGCAGGACGTCTCCGGCGTGTACGCGGGAAGGACGACC CCAACACCGGACCGATGGCACTATCCCCGGGCCCCGGCCTGGTCCCGTCAGGCCACAGAGCAGGA ACGGAAGTTCTGGTCGAAGTATCTCGAGGGGGGCTCCCCAGCGTCTGGACATCCCGCGGTATCCCGG CCAAATGGCGTTTGAAGGCCGCTCGCGCGTGTCCGAGTTCAAAGGCGACCTCGTTCGACGCGCCGT CACTCTGGGGCAGGAACATGGGTTGAGTCAGCACCAGCTGGTGTGCCGCCGCCGCGCAGACCCT CCAGTGGCTCGCCGGCTCGAACGACGTCGTTCTCGGCTCTCCGTGGGCCAACCGCGGGCACACCG AGACTGCGCCACCATCCTGCAGTCTACGCGTGCAGCGAGCCAGGCAGCCGTCTGCAATTCCATTCC ATTCGAGCAGGTCCTGAACCTCCTCCACCTGCCGCGGACCATCCGGCAACACCCGCTGTTCGAAGC CATGGTCACCTTTCATCTCAAGGGGGGCAGTGGAAGATTGTCTCGCCATCGAGGGGCTGGAGGTGAA ACGCGAGATGTGCTTTGCGTCCGGGGGCCAAGTTCCTGCTCATGTTCGAATGGACCGAGATCGAGGC GGATCACTGGACCCTGCGCATCGAGTATGACGACCACCAGCTCGACGACCGCCGACCGTCACCACCAT CGAGGACAGCATCCGATGTGTCCTCGAAGGGCTGGCGGATCGGCTCTCTCGCGCCGCCATCCACGA GCGCCTGAACGCCATGCACAAGACGGCCAGGACCAAGGTGGATTGGAACTTCTACCGCCGGCTGGT GGGCATTCTGCAGCGTGAGATGGCGACCTGTCTGGGCGTCTCGCTGGATGAGTTCCCCTGCTCCGT CTCCTTCTTCGAGGCCGGCGGCGACTCGATCCAGGCCTGGCGGTTGAGCCGTCAGTTGAAACGGGT TGGGCTGGAGGTGCCCATCTGCAACATCTTCGATCATCCCACGGCGCAGGATTTGGCACAGCGTCTT TACCGTCAGGTTCTTTAG

2 Supporting Figures

LAEQVELVRRKRQASTAKPRTICDAFPDHCLSPLERQTWFQYLIAADVRTFNIPVLLHLGGTFDRDRLV QSFNAVLASRKIFRTNFVETSLGPCRIFRDTPPRVLVCDGALDTTKEIDRSFDLARDELIRVFLDRRTL LVVT<mark>SHAVADLNS</mark>VQNLLQDVSGVYAGRTTPTPDRWHYPRAPAWSRQATEQERKFWSKYLEGAPQRLDI PRYPGQMAFEGRSRVSEFKGDLVRRAVTLGQEHGLSQHQLVCAAVAQTLQWLAGSNDVVLGSPWANRGH TVEQESMGLFLDRLPLRFKTPVNADCATILQSTRAASQAAVCNSIPFEQVLNLLHLPRTIRQHPLFEAM VTFHLKGAVEDCLAIEGLEVKREMCFASGAKFLLMFEWTEIEADHWTLRIEYDDHQLDDATVTTIEDSI RCVLEGLADRLSRAAIHERLNAMHKTARTKVDWNFYRRLVGILQREMATCLGVSLDEFPCSVSFFEAGG DSIQAWRLSRQLKRVGLEVPICNIFDHPTAQDLAQRLYRQVL

Figure S1. Amino acid sequence of C_TT_3 domains of GliP (Af293). Residues highlighted in yellow are conserved across C_T domains.^[13]

Figure S2. *glil* gene expression in WT(Af293) GliP- $\Delta C_T T_3$ and GliP- ΔT_3 *A. fumigatus* strains. 10⁷ spores/mL were inoculated in 50 mL liquid GMM and incubated for 72 h at 25 °C, 225 rpm, before total RNA extraction.

Figure S3. Gene expression of *gliC, gliG, gliI* and *gliJ* in WT(Af293), Δ GliP, Δ GliI, and GliP- Δ C_TT₃ *A. fumigatus* strains. 10⁷ spores/mL were inoculated in 50 mL liquid GMM and incubated for 24 h at 30 °C, 225 rpm and an additional 24 h at 25°C, 225 rpm before adding gliotoxin (1, 25 mg/mL). After 24 h of further cultivation at 25 °C, total RNA was isolated from samples for gene expression analysis.

Figure S4. SDS-PAGE confirmation of recombinant GliP- $\Delta C_T T_3$, GliP- ΔT_3 , and GliP-WT.

Figure S5. ATP-[³²P]PP_i- radioisotope exchange assay results for (a) recombinant GliP-WT, (b) GliP- ΔT_3 , and (c) GliP- $\Delta C_T T_3$. Shown are raw turnover rates for L-Phe, L-Ser, L-His, and water for each enzyme,^[14] each assay was run in triplicate and analyzed with a student's *t*-test, *P < 0.05, **P < 0.005, ***P < 0.005.

SUPPORTING INFORMATION

Figure S6. *In vitro* product formation assays with GliP. (top) L-Phe and L-Ser incubated with purified GliP variants furnishes **2**. (bottom) Quantification of relative yield of **2** from each assay, as measured by integration of LC-MS ion-chromatograms (n = 4). **p < 0.01, ***p < 0.001.

Figure S7. LC-HRMS/MS confirmation of phosphopantetheinyl modification of GliP-T₃. See Supporting Methods for experimental details.^[15]

Figure S8. *In vitro* cyclization activity of GliP- ΔT_1T_2 toward **5.** (a) **5** can first be loaded onto T_3 via transthiolation, then cyclized by the C_T domain to form **2**, or (b) the C_T domain can directly cyclize **5** to form **2**.

Figure S9: Examples for conservation of the C_T domain in confirmed and putative DKP producing fungal NRPSs. (top) Conserved amino acid sequence in the C_T domains are highlighted in red text. Percentages are total amino acid similarity. (bottom) Phylogenetic tree for GliP homologs containing $C_T T_C$ tandem, see **Supporting Methods 1.13** and **Table S1** for more information. Scale bar is Grishin distance.^[16-18]

Figure S10: Model for hexadehydroastechrome biosynthesis in *Aspergillus fumigatus*. Prenylation of a T_C-tethered dipeptide (as opposed to prenylation of the cyclized DKP) would explain copious production of prenyltyptophan in Δ *hasC* mutant background (see references 17 and 19). DMATS: dimethylallyltryptophan synthase.^[17,19]

Figure S11: Southern confirmation. (a) *A. fumigatus* C_TT_3 and T_3 deletion mutants. Genomic DNA was digested by *Ndel*. WT (10 kb), C_TT_3 deletion (4.7 and 6 kb) and T_3 deletion (4.7 and 7.3 kb). TJW139.30 and TJW140.16 were chosen for the subsequent experiments. (b) Complementation of C_TT_3 deletion mutant. Genomic DNA was digested by *BamH*I and *Hind*III with 3.6 kb fragment expectation. TJW178.26 was chosen for subsequent experiment.

EcoRI

Figure S12: Confirmation of *gliP* deletion strain. The GliP open reading frame was replaced with a copy of *pyrG* from *A. parasiticus*. Genomic DNA was digested by *EcoRI*; the wildtype (WT) parental control shows the expected bands of 6.6 and 2.5kb, and transformants 2 and 3 show the expected band size of 4.4kb.

Figure S13: Confirmation of *gliP* complementation and cluster expression. (a) Genomic DNA was extracted and digested with *BamHI*; wild-type (WT) parental control shows the expected band of 4.7 kb while all transformants show the expected banding pattern of 6.7 and 5.4 kb. (b) Northern analysis of *gliG* expression in wild-type strains (AF293 & TBTP105) as well as $\Delta gliP$ (TBTP94), *gliP* complement strain (TBTP99) and the *gliP*-H1754A point mutant (TBTP100). Strains were grown in liquid GMM for 72 h at 25 °C at 225 RPM.

TJW201.

Figure S14: Southern confirmation of S2095A point mutant. Genomic DNA was digested by *Nde*I. WT (10 kb), and point mutation (4.7 and 7.5 kb). TJW201.38 was chosen for the subsequent experiments.

3 Supporting Tables

Table S1. F	ungal NRPSs	with homologous	domain	architecture to GliP
		0		

Accession	Name	Species	[%] similarity
	nonribosomal peptide		
GAQ03188.1	synthetase 10	Aspergillus lentulus	93.192
	nonribosomal peptide		
XP_024683983.1	synthase GliP	Aspergillus novofumigatus IBT 16806	91.589
	nonribosomal peptide		
GAO88012.1	synthetase 10	Aspergillus udagawae	88.832
	hypothetical protein		
XP_026610442.1	CDV56_101444	Aspergillus thermomutatus	87.482
	AMP-dependent		
XP_016603809.1	synthetase/ligase	Penicillium expansum	60.784
	hypothetical protein		
OQE22222.1	PENFLA_c013G03821	Penicillium flavigenum	60.492

	non ribosomal peptide		
ABV48729.1	synthase	Penicillium lilacinoechinulatum	59.605
	hypothetical protein		
RYP29373.1	DL767_006759	Monosporascus sp. MG133	40.071
	acetyl-CoA synthetase-		
ETR98473.1	like protein	Trichoderma reesei RUT C-30	39.666
	non-ribosomal peptide	Tricke damas research OMCs	20.000
XP_006961011.1	synthetase, partial	Trichoderma reesel QIVI6a	39.666
01A04143.1	NRPS protein	Trichodormo longibroobiotum ATCC	30.001
PTB75330 1	synthetase	18648	38 /82
11073333.1	hypothetical protein	10040	30.402
PKK53446.1	CI102 1861	Trichoderma harzianum	38.28
	hypothetical protein		00.20
XP 024772669.1	M431DRAFT 496332	Trichoderma harzianum CBS 226.95	38.28
	non-ribosomal peptide		
XP_024745528.1	synthetase	Trichoderma citrinoviride	38.279
	nonribosomal peptide		
XP_018138929.1	synthase GliP2	Pochonia chlamydosporia 170	37.562
	hypothetical protein		
RZR63507.1	I1G_00004049	Pochonia chlamydosporia 123	37.466
0.1.1.1000.1	non-ribosomal peptide		00.000
OAA41296.1	synthetase	Metarnizium rileyi RCEF 4871	36.233
VD 00007510 1		Apporaillus alouque CRS 516 65	21 202
ΔΔS025/51	SirP	Aspergilius glaucus CBS 510.05	31.302
77032343.1	hypothetical protein		01.2
XP 022577239.1	ASPZODRAFT 162131	Penicilliopsis zonata CBS 506.65	30.66
	AMP-dependent		
KGO76902.1	synthetase/ligase	Penicillium italicum	30.45
	non-ribosomal peptide		
KPA37248.1	synthetase	Fusarium langsethiae	30.277
	nonribosomal peptide		
XP_001263173.1	synthase GliP2	Aspergillus fischeri NRRL 181	30.072
0.00050.40.4	nonribosomal peptide		
GA085048.1	synthetase 5	Aspergillus udagawae	30.072
VD 005490600 4	putative Nonribosomal	Asperaillus peopiaer CBS 115656	20.062
AP_020400000.1	bypothetical protein	Aspergilius neoniger CBS 115656	30.062
	PENNAL c0011G10486	Penicillium nalgiovense	30
	nonribosomal pentide		50
KEY80879.1	synthase GliP2	Asperaillus fumigatus var. RP-2014	29.991
	hypothetical protein		201001
OXN05566.1	CDV58 05250	Aspergillus fumigatus	29.95
	nonribosomal peptide		
EDP52461.1	synthase GliP2	Aspergillus fumigatus A1163	29.937
	nonribosomal peptide		
	synthase GliP-like		
KMK60067.1	protein	Aspergillus fumigatus Z5	29.905
	hypothetical protein	Fusarium oxysporum f. sp. lycopersici	
EWZ/9981.1	FOWG_16001	MN25	29.883

	Nonribosomal peptide		
RYC81866.1	synthetase 5	Fusarium oxysporum f. sp. narcissi	29.883
	nonribosomal peptide		
GAQ04194.1	synthetase 5	Aspergillus lentulus	29.878
XP_754329.2	HasD	Aspergillus fumigatus Af293	29.86
	hypothetical protein		
EWY87626.1	FOYG_11806	Fusarium sp. FOSC 3-a	29.835
	AMP-dependent		
EKG15398.1	synthetase/ligase	Macrophomina phaseolina MS6	29.786
	hypothetical protein		
EWZ34065.1	FOZG_12081	Fusarium oxysporum Fo47	29.758
	hypothetical protein	Fusarium oxysporum f. sp. radicis-	
PCD30303.1	AU210_009985	cucumerinum	29.713
	hypothetical protein	Fusarium oxysporum f. sp. radicis-	
EXL47760.1	FOCG_10286	lycopersici 26381	29.668
	Nonribosomal peptide		
RKK80740.1	synthetase 5	Fusarium oxysporum	29.668
	nonribosomal peptide		00.54
XP_020126697.1	synthase 2	Diplodia corticola	29.51
	non-ribosomal peptide		00,400
KIL87740.1	synthetase	Fusarium avenaceum	29.499
		Apparaillus torrous NILL2624	20.451
AP_001217046.1	AIEG_00427	Aspergilius terreus Ninzoza	29.431
PM 126830 1	synthese	Dhialosimploy sp. HE37	20.3/1
1/10/02/00/03/0	AMP-dependent	Filalosimplex sp. fil St	29.341
KXG49620 1	synthetase/ligase	Penicillium ariseofulyum	20 328
10,043020.1	hypothetical protein		23.320
OAI 68959 1	AZD00 7126	Trichophyton violaceum	29 255
0/12000011	TPA exp: Nonribosomal		201200
DAA76165.1	peptide synthase GliP	Trichophyton benhamiae CBS 112371	29.25
	nonribosomal peptide		
XP_003021172.1	synthase GliP	Trichophyton verrucosum HKI 0517	29.185
	nonribosomal peptide		
XP_003013751.1	synthase GliP	Trichophyton benhamiae CBS 112371	29.061
	nonribosomal peptide		
XP_024677137.1	synthase GliP2	Aspergillus novofumigatus IBT 16806	29.04
	nonribosomal peptide		
EGE05589.1	synthase GliP2	Trichophyton equinum CBS 127.97	28.799
	hypothetical protein		
EZF68370.1	H104_00006	Trichophyton rubrum CBS 289.86	28.798
	nonribosomal peptide		
XP_024704292.1	synthase GliP2	Aspergillus steynii IBT 23096	28.444
	hypothetical protein		
KKP03905.1	THAR02_03993	Trichoderma harzianum	24.906
	nonribosomal peptide		
UOQ91422.1	synthetase 13	Penicillium brasilianum	24.415

-NRPSs with >95 % similarity to GliP are excluded from this table, as they likely produce gliotoxin (1).

Table S2. LC-HRMS	data of	ⁱ reported	compounds
-------------------	---------	-----------------------	-----------

Compound	HR-ESI(+/-)	lon	Calculated Ion	Calculated m/z	Retention
	Observed (m/z)		Formula		time [min]
1	263.1030	[M-S ₂ +H] ⁺	C13H15N2O4 ⁺	263.1032	5.00
2	235.1080	[M + H] ⁺	C ₁₂ H ₁₅ N ₂ O ₃ +	235.1082	2.30
3	279.0801	[M-SCH ₃ +H] ⁺	C ₁₃ H ₁₆ N ₂ O ₃ S ⁺	279.0803	3.84
4	309.0906	[M + H]+	$C_{14}H_{18}N_2O_4S^+$	309.0908	5.00

Table S3. Fungal strains used in this study

Name	Genotype	Reference
Af293	Wild type	[20]
Af293.1	A. fumigatus pyrG1	[20]
Af293.6	A. fumigatus pyrG1, argB1	[20]
ARC2	∆gliP::para pyrG1	[21]
TJW139.3	$\Delta C_2 T_3$ gliP:: para pyrG1	This study
TJW140.16	ΔT_3 gliP:: para pyrG1	This study
TJW201.38	GliP2095 ^{ser->ala} ::AfpyrG; pyrG1	This study
TBTP94.1	<i>pyrG1</i> ; ∆ <i>gliP</i> ::A.p <i>pyrG1</i> ; ∆akuA	This Study
TBTP99.1	<i>pyrG1</i> ; ∆ <i>gliP</i> ::A.p <i>pyrG1</i> ; <i>gliP</i> ::Af. argB:: <i>akuA</i>	This Study
TBTP100.6	<i>pyrG1</i> ; ∆ <i>gliP</i> ::A.p <i>pyrG1</i> ; <i>gliP</i> -H1754A::Af. <i>argB</i> :: <i>akuA</i>	This Study
TFYL44	pyrG; argB-; ∆akuA	[22]
TBPT12	pyrG; argB-; ∆gliP::A.p pyrG;∆akuA	This study
TBTP94	$pyrG; \Delta gliP::A.p pyrG; \Delta akuA$	This study
TBTP99	<i>pyrG</i> ; ∆ <i>gliP</i> ::A.p <i>pyrG</i> ; <i>gliP</i> ::Af. <i>argB</i> :: <i>akuA</i>	This study
TBTP100	$pyrG; \Delta gliP::A.p pyrG; gliP H1754A::Af. argB::akuA$	This study
TBTP105	∆akuA::A.p. pyrG; pyrG1	This study

Table S4. PCR primer sets used in this study

Name	Sequence (5'-3')	Purpose
DgPCT5'F	TGGTCTATGCAACAGGAGAACCC	$\Delta C_T T_3$
DgPCT5'R	GGGTGAAGAGCATTGTTTGAGGCGACCGGTTCAAAACG	$\Delta C_T T_3$
	CGTCGCAGATGGTCCGTGGC	
glutapyrGF	TGAACCGGTCGCCTCAAACAATGC	$\Delta C_T T_3$
glutapyrGR	CTGTCTGAGAGGAGGCACTGATG	$\Delta C_T T_3$
DgpCT3'F	GGCATCACGCATCAGTGCCTCCTCTCAGACAGTTCTTCC	$\Delta C_T T_3$
	ACACGGTATACATTGTAGCC	
DgPCT3'R	ATTCGCGAGCTCAACCGCATGG	$\Delta C_T T_3$
DgPT5'F	TTGTCGAGACATCACTCGGACC	ΔT_3
DaPT5'R	GGGTGAAGAGCATTGTTTGAGGCGACCGGTTCAGCAGG	ΔΤ3
-9	GGAACTCATCCAGCGAGACGCC	
gliPgpdF	AAAGTCACAGGATCCAAGCTGTAAGGATTTCGGCACGG	$\Delta C_T T_3$
		complementation
glipgpdR	GCGTGGAGTGCTCGATCACATCGCGCATTGTGATGTCTG	$\Delta C_T T_3$
	CTCAAGCGGGGTAGCTG	complementation
CTgliPF	CAGCTACCCCGCTTGAGCAGACATCACAATGCGCGATGT	$\Delta C_T T_3$
	GATCGAGCACTCCACGC	complementation
CTglipR	CCATGTCAAAGCTTATATCATCTACGCTGGGACGCG	$\Delta C_T T_3$
		complementation
gliP 3'-F	GATAGCACACCCTCGGAATAGTCCTCTCGGCGTTCCATT	Deletion
	CGACAGAAGACGAGG	
gliP 3'-R	CTGGAGCAGCTTCCGTGC	Deletion
gliP 5'-F	GAGGCTCTGCTCAGATGAGG	Deletion
gliP 5'-R	CGATGATAAGCTGTCAAACATGAGGCAGAGCGTAGGGTT	Deletion
	GAGC	
Ap-pyrG-F	CTCATGTTTGACAGCTTATCATCG	Deletion
Ap-pyrG-R	CCGAGAGGACTATTCCGAGG	Deletion
YS F	TTCGCGTACTGACAGCACAGG	Complement
YS R	GCAAGACGGCGAGACTGTTCC	Complement
KU5'-F	TATTGCCGTTGGATCTTTGGGG	Complement

KU5'-R	GGTATGGATTGTCATCAGCCATAGTGAG	Complement
gliP-F	TTCTCACTATGGCTGATGACAATCCATACCCGCTCGCCA	Complement
	ATATGCTTGC	
gliP-R	GAAAATTTGTCTTGGATGCAGACCGCGTTCCTGTGACGA	Complement
	ACTCGACGAGG	
gliP-H1754A-R	ACGGCTGCGCTGGTAACCACAAGGAGG	Complement
		Mutant Copy
gliP-H1754A-F	GCACCCTCCTTGTGGTTACCAGCGCAGCCGTCGCCGAT	Complement
	CTCAACAGCGTG	Mutant Copy
AFU argB fwd	GAACGCGGTCTGCATCCAAG	Complement
AFU argB rev	TGGTTAGTAACATTCAGACAGTCGGCATGCAGGGACTGA	Complement
	ACCTGGTGAATCG	
KU3'-F	GCATGCCGACTGTCTGAATGTTACTAACC	Complement
KU3'-R	TCACATGTTCTTTCCTGCGTTATCCCCTACACCAAGAAGC	Complement
	TCACCACCCC	
AFU argB rev2	AGCATCCATTCTGCGTCTCG	Complement
gliP_S555A_fwd	AAGAGCAGCAAGGGCGTTTCCGCCCATGG	SDM of gliP-
		S555A
gliP_S555A_rev	CCATGGGCGGAAACGCCCTTGCTGCTCTT	SDM of gliP-
		S555A
gliP_H1754A_fwd	TTGTGGTTACCAGCGCCGCCGTCGCCGATC	SDM of gliP-
		H1754A
gliP_H1754A_rev	GATCGGCGACGGCGGCGCTGGTAACCACAA	SDM of gliP-
		H1754A
gliP_S1582A_rev	CTGGAGAACGGCATGGCCGCCCAGAGC	SDM of gliP-
		S1582A
gliP_S1582A_rev	GCTCTGGGCGGCCATGCCGTTCTCCAG	SDM of gliP-
		S1582A
pET21_gliPC _T T ₃ _fwd	Ctctagaaataattttgtttaactttaagaaggagatatacat <u>ATGCGCGATGT</u>	Truncation to
	GATCGA	express gliPC2T3
pETet21_gliPC2T3_r	tgttagcagccggatctcagtggtggtggtggtggtggtgAGAACCTGACGGT	Truncation to
ev	AAAGACGCT	express gliPC _T T ₃
Ptmt5'F	AGTCATTCAACGCCGTGTTGGC	S2095A mutation

Ptmt5'R	GACGGCTCAACCGCCAGGCCTGGATCGCGTCGCCGCC GGCCTCGAAGAAGGAG	S2095A mutation
Ptmt3'F	GGCGACGCGATCCAGGCCTGGCGGTTGAGCC	S2095A mutation
Ptmtnested5'R	GGTGAAGAGCATTGTTTGAGGCGACCGGTTCAAAGA ACCTGACGGTAAAGACGCTGTGCC	S2095A mutation
PtmtglutpyrGF	CGTCAGGTTCTTTGAACCGGTCGCCTCAAACAATGC	S2095A mutation
gliGF	AAAGGTGAGTCGAGTCGACGC	Northern probe
gliGR	ATACTCTTTCTCGCCATGGCC	Northern probe
gliIinF	TTCGTTGGCACCGCATGCATGG	Northern probe
gliIinR	AGATAGCCGTCCATTTCTGCCC	Northern probe
gliJF	AAGAGGTACCTCTGATCGACGG	Northern probe
gliJR	TATCCTCGTTCCACACCTCGTCG	Northern probe
gliCF	AGTTCTTCCGCAACTCGCACC	Northern probe
gliCR	AGCCAGGAATGTGTCATCCCG	Northern probe

SUPPORTING INFORMATION

Table S5. ¹H (600 MHz) and ¹³C (151 MHz) NMR spectroscopic data for compound **5** in a 80:20 mixture of methanol- d_4 : chloroform- d_3 .

Chemical shifts were referenced to $\delta(C\underline{H}D_2OD) = 3.31$ ppm and $\delta({}^{13}\underline{C}HD_2OD) = 49.00.{}^{13}C$ chemical shifts were determined via HMBC, HSQC and direct observation ${}^{13}C$ spectra. ${}^{1}H$, ${}^{1}H$ -*J*-coupling constants were determined from the acquired ${}^{1}H$ or dqfCOSY spectra. HMBC correlations are from the proton(s) stated to the indicated ${}^{13}C$ atom.

No.	δ _c	Proton	δH(<i>J</i> _{HH} [Hz])	НМВС
1	129.28	1-H	7.24 (<i>J</i> _{1,2} = 7.5)	3
2	127.68	2-H ₂	7.21 ($J_{2,1} = 7.5$) ($J_{2,3} = 7.4$)	2,4
3	128.92	3-H ₂	7.25 $(J_{3,2} = 7.4) (J_{3,5} = 1.0)$	1,3,5
4	133.65			
5	36.87	5-H _a	2.98 $(J_{5a,5b} = 14.0)$ $(J_{5a,6} = 8.2)$ $(J_{5a,3} = 1.0)$	3,4,6,7
		5-H₀	$3.28 (J_{5b,5a} = 14.0) (J_{5b,6} = 5.5) (J_{5a,3} = 1.0)$	3,4,6,7
6	54.39	6-H	4.26 ($J_{6,5a} = 8.2$) ($J_{6,5a} = 5.5$)	4,5,7
7	168.86			
8		8-NH		
9	61.54	9-H	$4.55 (J_{9,10a} = 4.0) (J_{9,10b} = 4.5)$	7,10,11
10	61.70	10-H _a	$3.75 (J_{10a,10b} = 11.8) (J_{10a,9} = 4.0)$	9,11
		10-H _b	$3.84 (J_{10b,10a} = 11.8) (J_{10b,9} = 4.5)$	9,11
11	198.19			
12				
13	28.44	13-H ₂	$2.90 (J_{13,14} = 12.0)$	11,14
14	38.48	15-H ₂	$3.27 (J_{14,13} = 12.0)$	13,16
15		15-NH		
16	172.01			
17	22.31	17-H ₃	1.86	16

4 Supporting References

- [1] J. A. Baccile, J. E. Spraker, H. H. Le, E. Brandenburger, C. Gomez, J. W. Bok, J. Macheleidt, A. A. Brakhage, D. Hoffmeister, N. P. Keller, et al., *Nat Chem Biol.* **2016**, 12, 419.
- [2] J. W. Bok, A. A. Soukup, E. Chadwick, Y.-M. Chiang, C. C. C. Wang, N. P. Keller, *Mol. Microbiol.* 2013, *89*, 963.
- [3] A. M. Calvo, J. Bok, W. Brooks, N. P. Keller, *Appl. Environ. Microbiol.* **2004**, *70*, 4733.
- [4] J. W. Bok, N. P. Keller, *Eukaryotic Cell* **2004**, *3*, 527–535.
- [5] J. W. Bok, S. A. Balajee, K. A. Marr, D. Andes, K. F. Nielsen, J. C. Frisvad, N. P. Keller, *Eukaryotic Cell* **2005**, *4*, 1574.
- [6] J.-H. Yu, Z. Hamari, K.-H. Han, J.-A. Seo, Y. Reyes-Domínguez, C. Scazzocchio, *Fungal Genet Biol.* **2004**, *41*, 973.
- [7] C. J. Balibar, C. T. Walsh, *Biochemistry* **2006**, *45*, 15029.
- [8] T. Mamiatis, E. F. Fritsch, J. Sambrook, J. Engel, *Molecular Cloning: A Laboratory Manual.* **1985**.
- [9] J. W. Bok, Y.-M. Chiang, E. Szewczyk, Y. Reyes-Domingez, A. D. Davidson, J. F. Sanchez, H.-C. Lo, K. Watanabe, J. Strauss, B. R. Oakley, et al., *Nat. Chem. Biol.* **2009**, *5*, 462.
- [10] P. Schneider, S. Bouhired, D. Hoffmeister, *Fungal Genet. Biol.* **2008**, *45*, 1487.
- [11] M. E. Due-Hansen, S. K. Pandey, E. Christiansen, R. Andersen, S. V. F. Hansen, T. Ulven, *Org. Biomol. Chem.* **2016**, *14*, 430.
- [12] R. R. Forseth, E. M. Fox, D. Chung, B. J. Howlett, N. P. Keller, F. C. Schroeder, *J. Am. Chem. Soc.* **2011**, *133*, 9678.
- [13] X. Gao, S. W. Haynes, B. D. Ames, P. Wang, L. P. Vien, C. T. Walsh, Y. Tang, *Nat. Chem. Biol.* **2012**, *8*, 1.
- [14] R. R. Forseth, S. Amaike, D. Schwenk, K. J. Affeldt, D. Hoffmeister, F. C. Schroeder, N. P. Keller, *Angew. Chem. Int. Ed. Engl.* **2012**, *52*, 1590.
- [15] P. C. Dorrestein, S. B. Bumpus, C. T. Calderone, S. Garneau-Tsodikova, Z. D. Aron, P. D. Straight, R. Kolter, C. T. Walsh, N. L. Kelleher, *Biochemistry* **2006**, *45*, 12756.
- [16] ^aG. M. Boratyn, A. A. Schäffer, R. Agarwala, S. F. Altschul, D. J. Lipman, T. L. Madden, *Biol. Direct* **2012**, *7*, 12. ^bN. V. Grishin, *J. Mol. Evol.* **1995**, 5, 675-679.
- [17] W.-B. Yin, J. A. Baccile, J. W. Bok, Y. Chen, N. P. Keller, F. C. Schroeder, J. Am. Chem. Soc. 2013, 135, 2064.
- [18] D. M. Gardiner, A. J. Cozijnsen, L. M. Wilson, M. S. C. Pedras, B. J. Howlett, *Mol. Microbiol.* 2004, 53, 1307.
- [19] A. Kremer, S. M. Li, *Chem. Biol.* **2008**, *15*, 729.
- [20] T. Xue, C. K. Nguyen, A. Romans, D. P. Kontoyiannis, G. S. May, *Arch. Microbiol.* **2004**, *18*2, 346.
- [21] R. A. Cramer, M. P. Gamcsik, R. M. Brooking, L. K. Najvar, W. R. Kirkpatrick, T. F. Patterson, C. J. Balibar, J. R. Graybill, J. R. Perfect, S. N. Abraham, et al., *Eukaryotic Cell* **2006**, *5*, 972.
- [22] K. Throckmorton, P. Wiemann, N. P. Keller, *Toxins (Basel)* **2015**, *7*, 3572.

Main text reference #25: K. D. Clevenger, R. Ye, J. W. Bok, P. M. Thomas, M. N. Islam, G. P. Miley, M. T. Robey, C. Chen, K. Yang, M. Swyers, E. Wu, P. Gao, P.M. Thomas, C.C. Wu, N.P. Keller, N.P. Kelleher, *ACS Chem. Biol.* **2018**, *57*, 3237.

Main text reference #26: M. T. Robey, R. Ye, J. W. Bok, K. D. Clevenger, M. N. Islam, C. Chen, Gupta, M. Swyers, E. Wu, P. Gao, P.M. Thomas, C.C. Wu, N.P. Keller, N.L. Kelleher, *Biochemistry* **2018**, *13*, 1142.