
 
 

1 
 

 
 

 
 
 
 
 
 
Supplementary Information for 
 
Decadal increase in Arctic dimethylsulfide emission 
 
Martí Galí, Emmanuel Devred, Marcel Babin, Maurice Levasseur 
 
Corresponding author: Martí Galí 
Email:  marti.gali.tapias@gmail.com 
 
 
This PDF file includes: 
 

Supplementary text 
Figs. S1 to S8 
Tables S1 to S3 
References for SI reference citations 
 
 
 
 

 

 
 
  

www.pnas.org/cgi/doi/10.1073/pnas.1904378116



 
 

2 
 

Supplementary Information Text 
 

Outline 

1. Datasets 

 1.1 In-situ datasets 

 1.2 Ocean color and ancillary geophysical data 

2. Remote sensing processing chain 

 2.1 Ocean color data and DMSPt calculation 

 2.2 Binning and gap-filling scheme and DMS calculation 

3. DMSSAT algorithm tuning and skill metrics 

4. Sea-air DMS flux 

5. Sources of uncertainty in high-Arctic DMS emission 

6. Decomposition of interannual variations 

7. Review of DMS emission projections and their radiative effects 

  

1. Datasets 
1.1 In situ datasets. In situ concentrations of dimethylsulfide (DMS, nM), total 
dimethylsulfoniopropionate (DMSPt, nM) and chlorophyll a (Chl, mg m-3), accompanied by other 
ancillary data (bottom depth, temperature, salinity), were downloaded from the Pacific Marine 
Environmental Laboratory database (PMEL; https://saga.pmel.noaa.gov/dms/; last access 13 
April 2017). This public dataset contains around 50,000 measurements made between 1972 and 
2012, of which around 15,000 were made at latitudes >45°N. We extended it with 9 additional 
datasets obtained in Arctic and Subarctic waters in recent years (Table S1). We selected 
measurements from depths shallower than 10 m, deemed representative of the upper mixed layer, 
95% of which were taken between 1 and 6 m depth. We then applied quality control criteria to the 
ensemble data set as described in previous studies (1) and ref. (17) of the main text. Overall, only 
0.24% of the measurements were removed through the quality control process. A summary of in 
situ data availability during the satellite observation period (1998-2016) is given in Table S2. 
 
In situ data were binned to 8-day periods and 27.84 km x 27.84 km pixels to match the resolution 
of the modeled DMS fields (SI section 2.2). Binning of in situ data gave more even weight to 
different DMS datasets that had been acquired at different sampling frequencies (Table S2): from 
discrete measurements from Niskin bottle samples analyzed using purge-and-trap gas 
chromatography (generally with daily frequency), to automated ship underway systems (with 
sampling frequencies of up to 1 Hz). Different in situ datasets were binned separately, even if 
they overlapped in space and time, to keep track of the different methods used. Nevertheless, 
overlap occurred only in 4.3% of bins, meaning that repeat observations for a given 27.84 km 
macropixel and 8-day period were scarce. The binned database is made available through a public 
repository (https://doi.org/10.5281/zenodo.3243967) 
 
Within each bin, the mean, minimum, maximum and data counts were recorded for each variable. 
For DMS, the median (geometric mean) data counts per documented bin were 3 (3.5); for 
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DMSPt, 2.0 (1.7); and for Chl, 1.0 (1.5). The best-documented bins, defined as the 95% 
percentile of bin data counts, contained N > 61, N > 5 and N > 4 measurements for DMS, DMSPt 
and Chl, respectively.  
 
The binned dataset was used for model tuning and validation (SI section 3). The mean (min–max) 
concentrations were 5.5 nM (0.05–96.8) for DMS, 41.2 nM (1.0–240.6) for DMSPt, and 1.27 mg 
m-3 (0.03–20.8) for Chl, which illustrates the wide environmental range covered by the dataset. 
For DMS, the coefficient of variation about the mean was less than 50% in 90% of the bins, 
suggesting that intra-bin variability was appropriate. Most measurements (67%) were taken 
between May and August, our period of interest.  
 
The sea-surface DMS climatology produced by Lana et al. (2011) was downloaded from 
http://www.bodc.ac.uk/solas_integration/implementation_products/group1/dms/. This 1°x1° 
monthly climatology is based on the sea-surface DMS measurements available on the PMEL 
website (https://saga.pmel.noaa.gov/dms/; last update April 2010; accessed 13 April 2017), 
covering the period 1972-2009, and will be referred hereafter as L11. We interpolated the L11 
climatology to 8-day periods and re-projected it onto a 27.84 km grid to allow for direct 
comparison against the output of our algorithm. 
 
1.2 Ocean color and ancillary geophysical data. Ocean color datasets were downloaded from 
the NASA ocean color website (https://oceancolor.gsfc.nasa.gov/) for two satellite sensors: the 
Sea-viewing Wide Field-of-view Sensor (SeaWiFS; 9.28 km resolution) and the Moderate 
Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODIS-Aqua; 4.64 km 
resolution) (2). SeaWiFS data covered the period 1998-2007 (the SeaWiFS record is 
discontinuous after 2007), and MODIS-Aqua the period 2003-2016, with 5 years of overlap 
(2003-2007). We used the 2014.0 reprocessing for both missions to maximize consistency. The 
following variables (level-3 binned data) were downloaded and used to compute other variables 
or for data analysis: daily composites of remote sensing reflectance spectra (Rrs(λ)) and 8-day 
composites of mean daily photosynthetically available radiation (PAR; mol photons m-2 d-1). 
Daily ocean color data is the basis of our processing chain (SI section 2.1) and defines the 
primary amount of observations available to calculate DMS concentration fields.  
 
Mixed layer depth (MLD) was obtained from the monthly isopycnal/mixed-layer ocean 
climatology (MIMOC; http://www.pmel.noaa.gov/mimoc/) with 0.5°x0.5° resolution (3). 
 
Daily sea ice concentration (SIC) at 25 km x 25 km resolution was downloaded from the National 
Snow and Ice Data Center. Sea ice concentration data from ref. (4) was used for 2002 to 2015, 
corresponding to the sensors SMMR on the Nimbus-7 satellite and SSM/I-SSMIS on DMSP 
satellite platforms (http://nsidc.org/data/NSIDC-0051/versions/1). Sea ice concentration data 
from ref. (5) was used for 2016, corresponding to the sensor SSMIS on DMSP satellite platforms 
(http://nsidc.org/data/NSIDC-0081/versions/1).  
 
Sea surface temperature (SST) and the eastward (u) and northward (v) components of 10-m 
height wind speed (WS) were obtained from the ERA-Interim reanalysis (6) for the period 1998-
2016 (data downloaded from the ECMWF data server). We used the daily analysis data at 12 
UTC. The WS modulus was calculated by adding in quadrature the u and v components. 
 
Daily satellite-observed gridded SST (12-µm wavelength) was also obtained from the Advanced 
Very High Resolution Radiometer (AVHRR) for the period 1998-2012, Pathfinder Version 5.3 
(https://climatedataguide.ucar.edu/climate-data/sst-data-avhrr-pathfinder-v53-noaa-nodc). For the 
period 2003-2016 we supplemented AVHRR data with MODIS-Aqua nighttime SST (11-µm 
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wavelength; https://oceancolor.gsfc.nasa.gov/) to maximize coverage. These products were used 
in the DMSPt processing chain because their resolution matches that of ocean color data. 
 
A monthly climatology of sea surface salinity was obtained from the World Ocean Atlas 2013 
(WOA13 v2; https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl?parameter=s) for the 
period 2005-2013. 
 
Bathymetry was obtained from the General Bathymetric Chart of the Oceans (GEBCO_2014, 
http://www.gebco.net/data_and_products/gridded_bathymetry_data/). North of 64°N, 
GEBCO_2014 incorporates the International Bathymetric Chart of the Arctic Ocean (IBCAO 3.0) 
released in 2012. 
 
When needed, the datasets were re-projected onto the sinusoidal equal-area grids used in our 
remote sensing processing chain (4.64 km × 4.64 km pixels for MODIS-Aqua; 9.28 km × 9.28 
km pixels for SeaWiFS; and 27.84 km × 27.84 km macropixels for DMS and FDMS variables) 
and/or binned to 8-day periods. Monthly MLD was also linearly interpolated to 1-day resolution. 
Maps of the processed and the original datasets were visually compared and no significant 
alterations were detected. In the case of the MLD, salinity and L11 DMS climatologies, the 
coarse spatial resolution of the original datasets produced data gaps in coastal areas. These gaps 
were filled using the nearest available measurements to obtain full coverage prior to computing 
sea-air DMS fluxes.  
 
2.  Remote sensing processing chain 
The DMSSAT algorithm proceeds through two steps, the DMSPt and DMS sub-algorithms, which 
embody macroecological patterns that regulate sea-surface DMS concentration. Below we 
describe the implementation of the algorithm for northern high latitudes. 
 
2.1 Ocean color data and DMSPt sub-algorithm. We computed chlorophyll a (Chl; mg m-3) 
concentration from daily Rrs(λ) using different types of algorithms: the semi-analytical Garver-
Siegel-Maritorena (GSM) (7) algorithm, and standard band-ratio algorithms (8) for SeaWiFS and 
MODIS (generically called OC). These Chl products will hereafter be referred to as ChlGSM and 
ChlOC, respectively. The GSM algorithm can retrieve simultaneously the absorption coefficients 
of phytoplankton pigments (aphy) and colored detrital matter (aCDM), and the particle 
backscattering coefficient. The Chl concentration, which is derived from aphy, is less affected by 
interference from high CDM abundance in optically complex waters. Thus, GSM is a priori more 
appropriate in waters with continental runoff influence, and has been show to outperform OC in 
Beaufort Sea coastal waters (9). On the other hand, the GSM algorithm relies on absolute 
reflectance spectra and is therefore more sensitive to errors in atmospheric correction compared 
to band-ratio OC algorithms. Here we chose GSM as our default algorithm, and compared its 
results to OC-derived data to ensure robustness in open ocean waters. 
 
We computed diffuse attenuation coefficients of downwelling irradiance (Kd(λ); m-1) at 
wavelengths (λ) of 490 nm for SeaWiFS and 488 nm for MODIS Aqua from daily Rrs(λ) spectra 
using the algorithm of Lee et al. (10). We then calculated euphotic layer depth (Zeu; m) as the 
depth of 1% penetration of 490 or 488 radiation, as Zeu = 4.6/Kd(λ). 
 
We computed daily maps of sea-surface DMSPt using the algorithm of Galí et al. (1). A total of 
four DMSPt datasets were generated, corresponding to the two sensors (SeaWiFS or MODIS 
Aqua) and the two Chl products (ChlGSM or ChlOC) for each sensor. The DMSPt algorithm 
switches between two equations two different equations depending on the quotient between 
euphotic layer depth (Zeu; 1% light penetration) and mixed layer depth (MLD): 
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log10DMSPt = 1.70 + 1.14 log10Chl + 0.44 (log10Chl)2 + 0.063 SST - 0.0024 SST2, 
Zeu/MLD ≥ 1 (eq. 1a) 
 
log10DMSPt = 1.74 + 0.81 log10Chl + 0.60 log10(Zeu/MLD), 
Zeu/MLD < 1  (eq. 1b) 
 
(Chl in mg m-3, SST in °C, Zeu and MLD in m). These equations implicitly represent DMSPt 
concentration in phytoplankton communities dominated by different taxonomic and size classes. 
Eq. 1a reflects pico- and nanoplankton dominated waters with a prominent role for 
prymnesiophytes (e.g. Phaeocystis sp.) and high DMSPt:Chl ratios (typically of order 100 µmol 
µg-1). Eq. 1b reflects microplankton dominated waters with a prominent role for diatoms and low 
DMSPt:Chl ratios (typically <30 µmol µg-1).  Here we used the model coefficients optimized for 
the global ocean, which performed well in Arctic and Subarctic waters (see SI section 3). From 
May through August (our period of interest), Zeu/MLD > 1 occurs in about 90% of observed 
pixels in the Subarctic and Arctic seas (stratified condition, eq. 1a).  
 
In pixels where satellite Chl cannot be retrieved because of coccolith-enhanced light scattering, 
i.e. in decaying cocclithophore blooms, the DMSPt algorithm proposed a third equation based on 
satellite-retrieved PIC. This equation was not used in our study to avoid PIC retrieval artifacts in 
coastal waters (11). 
 
2.2 Binning and gap-filling scheme and DMS sub-algorithm. On average, less than 10% of 
ice-free marine pixels are documented daily by ocean color satellites in our study domain because 
of cloud cover (Fig. S1). Yet, full coverage is required prior to DMS and FDMS calculation to (i) 
avoid positive PAR bias towards cloud-free pixels (see eq. 2 below), and (ii) allow for full 
interaction between DMS, wind speed and SST fields when computing FDMS (see SI section 4). 
Therefore, we applied a stepwise binning and gap-filling scheme to obtain full DMSPt and DMS 
coverage, excluding areas that cannot be observed due to low solar elevation during the polar 
winter, finally resulting in a temporal resolution of 8 days and a spatial resolution of 27.84 km 
("28 km" equal-area sinusoidal grid). The increase in coverage through the binning and gap-
filling process, and its seasonal variation, is shown in Fig. S1 and briefly described below. 
 
First, daily data were binned to 8-day periods and 27.84 km macropixels (which comprise 3x3 
SeaWiFS and 6x6 MODIS-Aqua level 3 pixels), increasing areal coverage from 10-11% to 62-
71%; second, remaining empty pixels were filled by linear temporal interpolation, achieving 
~90% coverage; finally, the 10% remaining pixels were successively filled with the 8D and the 
monthly climatology of each sensor to achieve full coverage. These proportions refer to ice-free 
marine pixels only, and the ranges reflect variations depending on the sensor. 
 
The spatial-temporal resolution of the binned data was chosen after preliminary tests consisting of 
spatial-temporal variograms. In the spatial domain, the 28 km spatial resolution preserves large-
scale gradients while smoothing out mesoscale variability —eddies at (sub)polar latitudes are 
smaller than this macropixel size. In the temporal domain, the 8-day resolution retains the sharp 
phytoplankton biomass peaks characteristic of high latitudes that would be smoothed out using 
monthly temporal averaging. Finally, sea-surface DMS was estimated as a function of satellite-
retrieved DMSPt and PAR, binned to 28 km and 8-day periods, according to eq. 2 of the main 
text. 
 
Sea-surface DMS concentration (nmol L-1) was estimated from 8-day 28 km DMSPt and PAR as: 
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log10(DMS) = -1.30 + 0.70 log10(DMSPt) + 0.020 PAR  (eq. 2) 
 
3. DMSSAT algorithm tuning and skill metrics 
As explained above, we estimated DMSPt using the coefficients optimized for the global ocean 
(eq. 1a and 1b). This is justified because DMSPt sub-algorithm skill metrics in our full study 
domain (>45°N) were similar to those reported for the global ocean (1), with RMSE ~ 0.30 and 
R2 ~ 0.50 for log10DMSPt. Additional preliminary tests of the DMSPt sub-algorithm north of 
45°N included the use of alternative satellite Chl algorithms (9, 12), different narrow-band or 
integral-band Kd for the estimation of Zeu, and different MLD products. Overall, these tests 
indicated (i) little sensitivity to Zeu and MLD choices, and (ii) best performance with ChlGSM and 
ChlOC compared to regional Arctic algorithms (9, 12). We also tested the DMSPt sub-algorithm 
using recent measurements acquired during the Green Edge 2016 cruise in Baffin Bay (Galí et al. 
dataset in Table S2) that were not used in algorithm development. The Green Edge cruise 
sampled the ice margin phytoplankton bloom, with phytoplankton biomass dominated by either 
Phaeocystis pouchetii or diatoms and DMSPt ranging between 10 and 300 nM. This test also 
produced favorable validation statistics (RMSE ~ 0.29 and R2 ~ 0.44 for log10DMSPt). 
 
After thorough testing, and given higher availability of in situ DMS data (Table S2) with 
concurrent satellite matchups, we focused on adjusting the DMS sub-algorithm coefficients (eq. 
2) for Subarctic and Arctic Ocean waters. The reader is referred to references (1) and ref. (17) of 
the main text for a detailed discussion of algorithm skill metrics and their dependence on (i) the 
satellite sensors used (SeaWiFS or MODIS-Aqua), (ii) the Chl products used (GSM and OC), (iii) 
the degree of data binning, and (iv) the availability of in situ Chl data to constrain the error in 
satellite-retrieved Chl. 
 
The DMS sub-algorithm (eq. 2) coefficients used here are based on a regression analysis of 5°x5° 
monthly binned data (DMS, DMSPt and PAR) for latitudes >45°N (ref. 17 of the main text). This 
regression involved only data bins where both in situ DMS and DMSPt were available (20% of 
bins). To further constrain the ranges of variation of eq. 2 coefficients, we used the bootstrap 
method to produce 105 sets of regression coefficients (Fig. S2). Based on this analysis, eq. 2 
coefficients were further adjusted for latitudes >45°N using the 28 km 8-day binned DMS dataset 
(SI section 1). After comprehensive tests, we set these coefficients to optimal values of α = -1.30, 
β = 0.70 and γ = 0.020. Our tests took into account both (i) the trade-offs between the 
minimization of RMSE and the maximization of the models' ability to reproduce the full spread 
of the data (13) and (ii) the visual inspection of validation scatterplots (Fig. S3) and DMS 
seasonal cycles (Fig. 1 of the main text). For the latter analysis we considered both the full 
domain and specific Arctic and Subarctic ecoregions. These ecoregions were chosen based on 
their distinct DMS dynamics and the availability of in situ DMS data, and their size was adjusted 
to ensure they represented relatively homogeneous ecosystem dynamics.  
 
Fig. S3 shows validation statistics for our reference algorithm configuration for the MODIS-Aqua 
satellite record (2003-2016). It is important to note that these statistics are based on a dataset 
much larger than that used for algorithm development, because: 
(i) Only pixels containing both DMS and DMSPt data were used for algorithm development (20% 
of 5°x5° monthly pixels, 12% of 8-day 28 km pixels), and 
(ii) Validation statistics include pixels where the binning and gap-filling procedure was applied, 
increasing by about 50% the amount of pixels available in a "strict" satellite matchup assessment. 
The DMSSAT algorithm calibrated for Subarctic and Arctic latitudes estimates in situ log10DMS 
(8-day 28 km binned data; Table S2) with RMSE = 0.40, bias = 4%, R2 = 0.41, and model:data 
slope = 0.85 (type II major axis regression). With this validation dataset, DMSSAT has skill similar 
to the objective interpolation-based climatology of Lana et al. (L11) (ref. 16 of the main text). In 
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particular, DMSSAT has very similar RMSE, lower bias, and a model:data slope closer to 1, with 
the obvious advantage that DMSSAT allows for interannual variation. 
 
We also compared DMSSAT and L11 using the ST score proposed by Jollif et al. (13). This skill 
score takes into account the mean-normalized variance, the correlation coefficient and the bias of 
model estimates against observations. Quoting Jollif et al., "the contrast between the ST score and 
the total RMSD [=RMSE] is that the skill score does not reward underestimates of the variance 
for correlation values less than one". Since lower ST score indicates better model skill, DMSSAT 
(ST = 0.23) has better performance than L11 (ST = 0.40) according to this metric. Therefore, 
DMSSAT is better suited to capture DMS variability in space and time. Fig. S3 also shows that the 
probability distribution of DMSSAT better matches that of in situ data (panel D), such that model-
data residuals are more symmetric around 0 (panel E) or, in log10 space, the model/data ratio is 
more normally distributed around 1 (panel F). As thoroughly discussed by Galí et al. (ref. 17 of 
the main text), the sparseness of in situ data and the sampling bias towards bloom conditions can 
compromise the objective interpolation procedures used to calculate the L11 climatology. This is 
particularly true in the Arctic seasonal ice zone, where phytoplankton dynamics follow variable 
ice retreat patterns. 
 
Fig. S3 shows DMSSAT skill metrics for the MODIS-Aqua record (2003-2016), when strongest 
changes in Arctic DMS emission were detected. Corresponding DMSSAT skill metrics for 
MODIS-Aqua using as input the alternative ChlOC product were: ST = 0.27, RMSE = 0.41, bias = 
11%, R2 = 0.41, slope = 0.82 (N = 2259). Corresponding DMSSAT skill metrics for SeaWiFS 
(1998-2007) using as input the default ChlGSM product were: ST = 0.24, RMSE = 0.45, bias = 3%, 
R2 = 0.42, slope = 0.83 (N = 1856). This highlights the consistency across sensors. 
 
The performance of DMSSAT can be compared to that of primary production algorithms based on 
satellite data in the Arctic Ocean. A round-robin study that included 32 net primary production 
(NPP) models for the Arctic Ocean (14) found an average RMSE of 0.28 for log10(NPP) (0.65 for 
ln(NPP)), slightly lower than the RMSE = 0.40 obtained for log10(DMSSAT). The mean 
correlation coefficient to in situ data for modeled log10(NPP) was r = 0.38, substantially lower 
than the r = 0.64 found for log10(DMSSAT) (Figure S3). Therefore, DMSSAT estimates captures 
more variance than satellite NPP models, but also has somewhat larger uncertainty. Given that 
DMSSAT relies on macroecological relationships, whereas NPP models use input variables 
(chlorophyll, PAR) that directly control NPP rates, this comparison supports the remarkable skill 
of DMSSAT. 
 
Fig. S4 shows pan-Arctic maps of DMSPtSAT and DMSSAT as diagnosed with our algorithm, as 
well as the ratio between DMSSAT and DMSL11 and sea-air gas exchange coefficient Kw. 
 
4. Sea-air DMS flux (FDMS) 
FDMS was calculated as the product of a transfer coefficient KW (m d-1; chiefly controlled by 
wind speed and sea surface temperature) and the DMS gradient at the interface, 
 
FDMS = KW (DMSw - DMSa/H)  (eq. 3)  
 
where DMSw and DMSa are DMS concentrations (µmol m-3) in surface seawater and the air 
overlying it, respectively, and H is the dimensionless gas-over-water Henry's law solubility. Since 
seawater is generally largely supersatured with DMS, i.e. DMSw >> DMSa/H, many studies omit 
the DMSa/H term. Here we estimated DMSa as a constant fraction of DMSw, DMSa = DMSw / 
252.75. This constant is based on four North Atlantic cruises at latitudes between 43°N and 54°N, 
which displayed a Cw/Ca ratio (mean ± std) of 252.75 ± 61.02 (see Table 1 in ref. (15)). Failing to 
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account for the DMSa/H term would overestimate DMS emission by 8% at SST = 5°C and 
salinity = 34. We calculated H using the numerical scheme of Johnson (16), which includes both 
temperature and salinity effects on gas solubility. 
 
The total DMS transfer coefficient Kw was calculated considering boundary layers on both sides 
of the sea surface: 
 
Kw = (1/kw + 1/(ka × H))-1 (eq. 4) 
 
where kw and ka are the water-side and air-side transfer coefficients, respectively (17). Although 
waterside resistance (rw = 1/kw) largely controls the exchange of sparingly soluble gases like 
DMS, air-side resistance (ra = 1/ka) may decrease total Kw by 5–10% depending on wind speed 
and temperature conditions, and has to be taken into account. We calculated ka using the 
numerical scheme of Johnson (16), which builds on the NOAA COARE algorithm and improves 
it in the low wind speed range (16, 18). Johnson's code was also used to calculate normalized 
kw,600 (the kw of CO2 at 20°C in freshwater), which was then scaled to DMS diffusivity using the 
dimensionless Schmidt number raised to -1/2 (Sc–1/2) (19). We modified Johnson's code to 
calculate Sc according to the DMS diffusivity parameterization of Saltzman et al. (20). 
 
We used two different models to parameterize the water-side transfer coefficient kw. Although 
both models use wind speed at 10 m height (WS) as the physical driver of gas exchange, they 
differ in their physical foundations. The first is the widely used empirical parameterization of 
Nightingale et al. (2000) (21), (hereafter N00), based on dual tracer gas exchange measurements.  
The second is the physically-based scheme of Woolf (1997) (22) (hereafter W97), which includes 
two terms: (i) turbulence-mediated gas exchange, represented as a function of wind stress (in turn 
a function of WS and the drag coefficient); and (ii) bubble-mediated gas exchange, represented as 
a function of the whitecap fraction (in turn parameterized as a function of WS3.41). 
 
The difference between the two schemes is small at WS <10 m s-1, whereas at WS >10 m s-1 the 
N00 scheme produces higher kw owing to its quadratic form (Fig. S5A). At intermediate wind 
speeds (5–10 m s-1), which account for about 60% of DMS emission in our domain (Fig. S5C), 
the W97 scheme has nearly linear behavior, in better agreement with direct DMS flux 
measurements based on the eddy correlation technique (Fig. S5A). Bubble-mediated gas transfer 
is small for moderately soluble gases like DMS, which is also in support of gas transfer schemes 
with nearly linear behavior. For instance, at high WS of 20 m s-1, the W97 scheme predicts a 20% 
enhancement of DMS Kw due to bubbles, but this Kw is still ~25% lower than that estimated with 
N00. For these reasons here we adopted W97 as our default parameterization. 
 
In our processing chain, the Kw and H for a given pixel were linearly interpolated from pre-
computed look-up tables (LUT). The Kw LUT had 136,500 elements, resulting from 100 wind 
speed levels (0.25-25 m s-1), 65 SST levels (-2 to 30 degrees) and 21 salinity levels (0 to 40), all 
divided at regular intervals. The H LUT had 1,365 elements, resulting from 65 SST levels (-2 to 
30 degrees) and 21 salinity levels (0 to 40). Fig. S5B illustrates the important effect of SST on KW 
and the small effect of salinity. 
 
Daily FDMS was computed from daily wind speed and SST from the ERA-Interim reanalysis and 
8-day DMS fields (eq. 3). FDMS was then averaged over 8-day periods for data analysis. We used 
instantaneous wind speed values taken daily at 12:00 hours (ERA-Interim), avoiding temporal 
averaging prior to FDMS calculation, to preserve wind speed variability (23). Fig. S6 shows 
seasonal cycles of FDMS in selected Arctic ecoregions matching those in Fig. 1 of the main text. 
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5. Assessment of uncertainty in DMS emission 
We produced alternative DMS emission time series to evaluate different sources of uncertainty. 
The mean satellite-based EDMS in summer between years 2003 and 2016 (MODIS-Aqua record) 
was 114±10 and 53±11 Gg S for the 60-70°N and >70°N latitude bands, respectively, for our 
reference configuration ("reference run"). Using an alternative chlorophyll product (ChlOC; SI 
setion 2.1) gave similar emissions of 127±7 and 51±9 Gg S for the same latitude bands. 
Replacing satellite-based DMS with the Lana et al. DMS climatology gave slightly higher 
estimates of 140±5 and 72±9 Gg S. When we used an alternative gas exchange parameterization 
in combination with our reference DMSSAT fields, we obtained similar EDMS of 115±10 and 
53±11 Gg S for the 60-70°N and >70°N latitude bands. The overall good agreement between 
different datasets suggests our EDMS estimates are robust. Finally, mean EDMS in the 60-70°N 
band computed with our reference configuration was extremely similar during the SeaWiFS 
observation period (1998-2007; 111±10 Gg S) and the MODIS-Aqua observation period 
described above (2003-2016; 114±10 Gg S). This suggests stable EDMS in the 60-70°N region, 
which was minimally affected by changes in sea ice extent over the study period. 
 
Uncertainty in EDMS trends was analyzed in latitudes north of 70°N and for the MODIS-Aqua 
2003-2016 record, which largely determine the outcomes of our study. These alternative 
algorithm runs are described below and their main results are compiled in Table S3, where we 
report multiyear means and trends, and the mean percentage deviation (MPD) and mean absolute 
percentage deviation (MAPD) of annual summer values with respect to the reference run (named 
0. REF). 
 
1. COEFFS: in this run we assessed the sensitivity to eq. 2 coefficients (DMS sub-algorithm). 
We produced an ensemble of 10 FDMS datasets, each derived from a different set of eq. 2 
coefficients. The 10 sets of eq. 2 coefficients were randomly selected from a larger set of 105 
bootstrapped coefficients (as shown in Fig. S2), and adjusted for the mean difference between the 
regression-derived coefficients (α = -1.28, β = 0.67 and γ = 0.0186) reported by Galí et al (ref. 17 
of the main text) and the optimized coefficients employed here in the reference run (α = -1.30, β 
= 0.70 and γ = 0.0200). We then calculated a composite EDMS time series resulting from 
averaging the ensemble of 10 EDMS time series. The composite time series showed virtually the 
same multiyear means and trends as the reference run. The mean coefficient of variation about the 
EDMS ensemble annual means was ± 8.5%. 
 
2. CHLOC: we replaced ChlGSM by ChlOC to assess the sensitivity of EDMS to input satellite Chl 
products. Although mean 2011-2016 EDMS was very similar to the reference run, the 2003-2016 
trend was 22% faster (though non significantly). The largest negative (positive) deviations 
compared to REF were recorded in 2011 (2016), with -18% (+24%). 
 
3. KW: we replaced Kw derived from the W97 parameterization with Kw derived from the N00 
parameterization. This change decreased annual EDMS by 1.7% on average. However, the 2003-
2016 trend was 8% faster with N00 (though non significantly). This suggests that the trend 
derived from W97 Kw is, if anything, conservative, and less sensitive to the slight increase in 
wind speed recorded in recent years (see Fig. 4 of the main text). 
 
4. REF.CLIM: we replaced time-varying DMS fields by the DMSSAT climatology (8-day 28 km 
resolution), calculated from the reference run. This had a small impact on mean annual EDMS 
but increased the 2003-2016 trend by 39% (though non significantly). The largest negative 
(positive) deviations compared to REF were recorded in 2011 (2016), with -13% (+39%). Thus, 
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EDMS deviations associated to the use of satellite-derived climatological fields were similar or 
larger than those associated to the different satellite Chl products tested. 
 
5. L11.CLIM: we replaced time-varying DMS fields by the L11 climatology (interpolated to 8-
day resolution and re-projected onto the 28 km grid). This change gave on average 37% higher 
EDMS. The 2003-2016 increasing trend was 18% faster than REF (though non significantly). 
Since L11 displays lower DMS in coastal areas and higher DMS in the Central Arctic basin 
compared to REF (Fig. S4), this analysis shows that the DMS deviation in the Central Arctic 
dominates differences in pan-Arctic EDMS estimates and its trends. 
 
Comparison of the reference run (REF) with either REF.CLIM or L11.CLIM suggests EDMS 
trends are somewhat sensitive to the use of climatological fields, but uncertainty is generally 
within the 95% CI of our REF trends. A priori, combination of time-varying DMS fields with 
concurrent meteorological observations (REF) should yield the most realistic estimates. 
 
6. Decomposition of interannual EDMS variations 
We adapted the analysis of Vancoppenolle et al. (ref. 5 of the main text) to decompose EDMS 
changes into the following components: 

1. Change in mean FDMS over a common domain, that is, in grid elements (pixels-periods) 
that were ice-free in any given consecutive years (y1 and y2). 

2. Change associated to different spatial-temporal ice cover patterns, divided into: 
a. Gained EDMS: pixels documented in y2 and not in y1 in a given 8D period. 
b. Lost EDMS: pixels documented in y1 and not in y2 in a given 8D period. 

 
To calculate these components, the FDMS matrices of each year (m x n, where m is pixel index 
and n is time) were converted to column vectors (of size m*n x 1). Then, for each couple of 
consecutive years we defined three subsets: 
 O: common ocean pixels, with SIC < 10% in both y1 and y2. 
 G: pixels gained, with SIC ≥ 10% in y1 and SIC < 10% in y2. 
 L: pixels lost, with SIC < 10% in y1 and SIC ≥ 10% in y2. 
 
EDMS from common ocean pixels, EDMSO, was calculated as the product of mean FDMSO and 
the corresponding area, AO in each year, 
 
EDMSO

y = < FDMSO
y> AO  (eq. 5) 

 
Note that AO was equal in both years since the pixel-time elements were common. Component 1 
of EDMS was then calculated as: 
 
ΔEDMSO = EDMSO

2 – EDMSO
1  (eq. 6) 

 
Component 2a was calculated as the summation of FDMS over the G domain in year 2 (since in 
year 1 the domain G produced no emissions): 
 
ΔEDMSG = ΣFDMSG

2 
 
Similarly, component 2b was calculated as the summation of FDMS over the L domain in year 1 
(since in year 2 the domain L produced no emissions): 
 
ΔEDMSL = –ΣFDMSL

1 
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The net EDMS change caused by shifts in ice patterns is: 
 
ΔEDMSICE = ΔEDMSG - ΔEDMSL 
 
And the net interannual change is: 
 
ΔEDMS = ΔEDMSO + ΔEDMSICE 
 
This analysis is graphically summarized in Fig. S7. As an additional check, it can be seen that 
ΔEDMS calculated in this way matches the net interannual EDMS changes shown in Fig. 4 of the 
main text. A regional breakdown of EDMS time series and their drivers is shown in Fig. S8. 
 
7. Review of DMS emission projections and their radiative effects 
Here we provide a brief and non-exhaustive review of previous projections of Arctic EDMS 
under climate change scenarios and the corresponding effects on aerosols and the radiation 
budget, following a chronological order. Note however that different projections can be hardly 
compared because they focused on different domains, and the Earth System models (ESMs) used 
in different studies differed in the degree of coupling between ocean physics, sea ice dynamics, 
ocean biogeochemistry, atmospheric chemistry, aerosols and cloud microphysics. Finally, note 
that there is an important vertical asymmetry in the shortwave and longwave components of cloud 
radiative forcing (CRFSW and CRFLW, respectively). CRFSW at the top-of-atmosphere (TOA), the 
value reported by most modeling studies, is in general only slightly less than at the sea surface. 
However, CRFLW at the TOA is much smaller than at the surface. In consequence, indirect 
aerosol effects on clouds at very low CCN concentrations can warm the surface while cooling the 
TOA (see figure 2 in ref. 33 of the main text and corresponding text explanations). 
 
Gabric et al. (2005) (ref. 21 of the main text) used an ESM with interactive ocean physics, sea ice, 
biology and sulfur biogeochemistry. They reported that significant decreases in sea-ice cover 
(61% in summer–autumn), increases in mean annual SST of 1°C, and a shoaling of the mixed 
layer depth by 13%, would result in annual DMS flux increases of over 80% in the 70°N-80°N 
latitude band by 2080 (in response to a tripling of atmospheric CO2). Their estimated rate of 
EDMS increase, about 11% decade-1, is one third of our contemporaneous satellite-based 
estimates. This is coherent with slower-than-observed ice loss rates in their model. Using a crude 
representation of DMS effects on CCN and cloud albedo (probably unrealistic in the Arctic) they 
estimated a DMS-driven CRFSW of –7.6 W m-2. 
 
Browse et al. (2014) (ref. 26 of the main text) used the Global Model of Aerosol Processes 
(GLOMAP-mode) with uncoupled meteorology and atmospheric oxidants, and represented sea-
surface DMS using the climatology of Kettle et al. (1999) (24). This climatology suffers from 
data sparseness in the Arctic even more than its successor L11. Browse et al. projected a 15-fold 
increase in EDMS north of 70°N in August in response to complete sea ice loss, which is 
unrealistic according to our study. They found an increase in nucleation rates but a weak CCN 
response due to efficient aerosol scavenging by drizzling stratocumulus clouds. They also 
suggested an alternative scenario whereby increasing CCN would suppress precipitation (thus 
increasing cloudiness and albedo). They did not estimate the associated radiative effects, but 
highlighted the spatial heterogeneity of aerosol responses in their model. 
 
Ridley et al. (2016) (ref. 3 of the main text) used an ESM with coupled ocean, sea ice and 
atmosphere (HadGEM2-ES). However, marine sulfur biogeochemistry was not included in their 
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model, and sea-surface DMS was diagnosed within the ESM using the empirical algorithm of 
Simó and Dachs (2002) (25) (hereafter SD02), based on chlorophyll and mixed layer depth. They 
projected a 2- to 5-fold increase in "high-Arctic" EDMS in response to total sea ice loss (in their 
study the "high Arctic" domain has a variable latitudinal limit, located at about 70°N in the 
Bering Strait and 80°N in the Svalbard sector). Their estimates lie in the upper end of ours, 
probably because the SD02 algorithm overestimates Arctic DMS in summer and early fall (ref. 17 
of the main text). DMS overestimation in SD02 results from it being parameterized as a function 
of oceanic mixed layer depth, combined with shallow salinity stratification in the Arctic. Thus, 
the SD02 scheme also overemphasizes the DMS response to projected mixed layer shoaling in the 
Arctic. The DMS-driven CRFSW was estimated at between –1 and –2 W m-2, but DMS-driven 
CRFLW was not estimated. 
 
Mahmood et al. (2019) (ref. 24 of the main text) used the CanESM4.3 model, with coupled 
ocean, sea ice and atmosphere, but represented DMS non-interactively using different 
climatological fields: the L11 climatology, a preliminary version of our satellite-based 
climatology (which had lower mean DMS concentration that the version presented here), and 
spatially uniform DMS concentration. Thus, in their model EDMS changed only in response to 
ice cover, SST and wind fields. They found that a 25% reduction of summer ice cover (latitudes 
>62.78°N) increased DMS emission by 33–46% (7–9% decade-1) between 2000 and 2050. Their 
rate of EDMS increase is about 50% slower than our satellite-based estimates for the same 
latitude band, owing to slower-than-observed ice receding in the model. Although the sulfate 
burden does not increase proportionally due to increased scavenging, they project a major 
increase in nucleation rates (3– to 4–fold) that heightens cloud droplet number concentrations. 
The pan-Arctic DMS-driven annual mean CRFSW is –0.14 W m-2, but this average hides large 
spatial heterogeneity, with local CRFSW generally ranging ±1.6 W m-2, as well as seasonal 
variability (which is not addressed). No results are given regarding CRFLW. 
 
Besides the Arctic-focused studies reviewed above, below we briefly review other studies that 
had a global scope. They do not provide detailed information on the relationship between Arctic 
EDMS, ice cover, aerosols and radiative forcing, but add interesting nuances regarding DMS-
climate feedbacks, like the potential impact of ocean acidification or phytoplankton species shifts.  
 
Six et al. (2013) (ref. 38 of the main text) used the MPI-ESM, with interactive ocean physics, sea 
ice, marine biology and sulfur cycle, and an offline model for cloud microphysics (ECHAM5.5-
HAM2). Additionally, they represented within MPI-ESM the potential response of DMS to ocean 
acidification. To do so, they extrapolated scenarios derived from weeks-long experimental studies 
to the global scale and over the next century. Their estimated DMS-driven radiative forcing at the 
TOA (due to both aerosols and clouds) under a climate change scenario (2090-2099 vs. pre-
industrial period) ranges from about 0 W m-2 at 70°N to between –1 and –2 W m-2 north of 75°N. 
Although Arctic EDMS increases in response to sea ice loss in all of their ocean acidification 
scenarios, the EDMS increase (and its radiative effect) becomes smaller with increasing 
acidification. A follow-up study by Schwinger et al. (2017) (26) obtained similar results using 
coupled ocean and atmosphere models, which allowed for feedbacks between marine DMS 
production and climate while better resolving regional responses.  
 
The effect of phytoplankton community species composition was tackled by Wang et al. (2015) 
(ref. 20 of the main text). They showed that explicit parameterization of Phaeocystis sp. (a key 
DMS producer in polar environments) can improve DMS estimates in a biogeochemical model. 
The improved model was subsequently used (27) to show that species shifts can influence EDMS 
and regional and global climate in various ways. In another study (28), they proposed that 
relevant feedbacks between phytoplankton primary production, DMS emission and climate can 
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occur at regional and global scales (see also (29)). Therefore, the latter study concluded that "it is 
necessary to model marine ecosystems dynamically and the marine sulfur cycle explicitly in order 
to better evaluate the role of DMS in the climate system". Finally, Grandey and Wang (2015) (ref. 
39 of the main text), and Fiddes et al. (2018) (29) examined the effects of large EDMS 
perturbations on modeled present and future climate. They found significant global effects on 
radiative forcing and precipitation. Fiddes et al. also highlighted the limited capacity of most 
models to represent the horizontal and vertical distribution of clouds, which implies shortcomings 
in simulating aerosol-cloud interactions. 
 
From this short review it can be concluded that: (i) the relationships between Arctic Ocean 
EDMS and ice cover, and their spatial patterns, were poorly constrained in previous model 
studies; (ii) interannual variability in EDMS and atmospheric processes was not properly (or not 
at all) represented; (iii) models consistently predict an increase in nucleation rates in response to 
increased EDMS in the Arctic, (iv) models generally predict an increase in cloud albedo in 
response to increasing EDMS in the Arctic, but its magnitude and spatial-temporal distribution 
are uncertain; (v) the response of longwave cloud forcing at the sea surface to increasing EDMS 
is uncertain. Extreme sensitivity at very low CCN over the Arctic ice pack (ref. 32 of the main 
text) is generally not considered in detail, perhaps because of the models' limited ability to 
represent cloud macrophysics (occurrence and lifetime); (vi) atmospheric responses are spatially 
heterogeneous in the Arctic, and seasonal patterns should also be considered in detail (30); and 
(vii) potential EDMS changes due to phytoplankton species shifts and acidification are uncertain. 
 
 
  



 
 

14 
 

 
 
 

 
 
Fig. S1. Statistics of satellite observations over the seasonal cycle. A-D) Fraction of the ice-
free ocean surface covered by level-3 daily satellite data, and after binning to 8 days and 28 km 
macropixels, for different sensors (SeaWiFS and MODIS-Aqua) and latitudinal domains (>45°N 
and >65°N). E-F) number of level-3 daily observations averaged into 8-day 28 km macropixels. 
G-H) as in (A–D), but in terms of absolute area observed, and showing the sequential binning and 
gap-filling procedure: 8-day and 28 km binning, temporal interpolation, filling with 8-day 
satellite climatology, and filling with monthly satellite climatology. These statistics correspond to 
ChlGSM and its derived DMSPt. In (G–H), gray shading indicates the period when solar elevation 
controls the seasonal increase/decrease in satellite observations; the central white area marks the 
period when ice retreat controls the increase in satellite observations, which comprises the 
summer period (May-August) during which we assessed DMS emission trends. 
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Fig. S2. Bootstrapped eq. 2 coefficients for algorithm tuning and uncertainty assessment. 
105 sets of bootstrapped regression coefficients were generated for eq. 2 (log10DMS = α + 
β log10DMSPt + γ PAR) for the in situ dataset. Scatterplots display the relationships among the α, 
β and γ coefficients. In each panel, the square shows the mean coefficient (equivalent to those 
fitted through regular regression of 5°x5° monthly binned data for latitudes >45°N), the large 
coloured circle shows the tuned coefficient used for the reference algorithm run (α = –1.3; 
β = 0.70; γ = 0.020), and the black dots show 10 randomly selected coefficient sets (used to assess 
the sensitivity of DMS emission to eq. 2 coefficients). 
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Fig. S3. DMSSAT algorithm validation plots. A) Map of in situ DMS measurements made 
during the satellite observation period (1998-2016) used to validate our algorithm (data counts 
calculated within 111 km x 111 km pixels). Gray dots indicate measurements not used for 
DMSSAT validation (made before 1998). B) Scatterplot of DMSSAT estimates vs. in situ 
measurements (all binned into 8-day 28 km pixels); darker color indicates higher data density. C) 
As in (B) but for the L11 DMS climatology. Bottom plots show (D) the probability distribution 
for the same datasets as above, (E) the linear-space residuals of DMSSAT or L11 vs. in situ data, 
and (F) the corresponding log10-space residuals, which are equivalent to the 
estimates/measurements ratio. Residual ratios shown in (F) correspond to the diagonal lines 
panels (B) and (C). 
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Fig. S4. Mean summertime (May-August) distribution of key variables. Sea surface 
concentrations, diagnosed with the DMSSAT algorithm, of (A) DMSPt and (B) DMS. C) Ratio 
between satellite-diagnosed DMS (DMSSAT) and the DMS climatology of Lana et al. 2011 
(DMSL11). D) Sea-air gas transfer coefficient (Kw) estimated with the scheme of Woolf 1997 
(W97). 
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Fig. S5. Wind-speed and SST-dependence of sea-air DMS transfer coefficients. A) Kw versus 
wind speed parameterizations of Woolf 1997 (W97) and Nightingale et al. 2000 (N00); these 
schemes are compared to a compilation of direct flux measurements made with the eddy 
correlation technique (31). B) Effect of temperature and salinity on Kw (W97 scheme). 
Temperatures are indicated on the plot, and salinities are 34 (solid lines) and 20 (dashed lines). C) 
Frequency distribution of realized DMS emission fluxes at latitudes >45°N (2003-2016, MODIS-
Aqua-derived dataset) as a function of wind speed. D) as in (C), but as a function of SST.  
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Fig. S6. DMS flux (FDMS) seasonal cycles and histograms in Subarctic and Arctic seas. A) 
Bathymetric map and ecoregions (yellow polygons) used to illustrate DMS dynamics; B-H) mean 
FDMS seasonal cycle derived from the DMSSAT satellite algorithm for latitudes higher than 50°N 
(B) and six smaller ecoregions (C-H) shown in panel (A). In (C–H), light red lines mark 
individual years, light red shadow marks the 19-years envelope, and red triangles mark the annual 
peak for each year. The light blue shade is the mean fractional ice cover, scaled to the maximum 
of the y-axis, shown only for regions within the seasonal ice zone. This figure is analogous to Fig. 
1 of the main text but, for simplicity, FDMS seasonality estimated using the L11 climatology is 
not included in (B-H). Bottom panels (I, J) compare histograms of summer FDMS, computed 
with DMS fields from DMSSAT and L11, and for two latitude bands. 
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Fig. S7. Decomposition of interannual changes north of 70°N. Interannual changes in DMS 
emission (EDMS; see Fig. 4), represented by ΔTOTAL, are decomposed into two main 
components: EDMS change in open-ocean areas (ΔOCEAN, caused by variations in mean 
FDMS) and EDMS changes caused by shifts in ice patterns (ΔICE, white). The latter results from 
the net balance between "gained" EDMS (from newly open areas, orange) and "lost" EDMS 
(newly ice-covered areas, blue) between any two consecutive years. 
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Fig. S8. Regionalized DMS emission (EDMS) and its driving factors north of 70°N (May-
August). Data from Fig. 4 of the main paper are here split into 7 sectors. In counterclockwise 
rotation on a polar projection (Fig. 4 map): Greenland Sea (45°W to 15°E), Barents Sea (15°E to 
55°E), Kara Sea (55°E to 105°E), Laptev Sea (105°E to 150°E), East Siberian and Chukchi Seas 
(150°E to 160°W), Beaufort Sea (160°W to 100°W) and Baffin Bay (100°W to 45°W).  The right 
panel shows regional relationships between summertime EDMS and ice-free area. 
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Greenland: S = 8.1 ± 13.3, R2 = 0.09
Barents: S = 18.0 ± 6.7, R2 = 0.65 **
Kara: S = 19.4 ± 5.1, R2 = 0.79 **
Laptev: S = 28.6 ± 9.0, R2 = 0.73 **
SibE+Chukchi: S = 9.9 ± 2.5, R2 = 0.80 **
Beaufort: S = 12.0 ± 3.2, R2 = 0.79 **
Baffin: S = 9.4 ± 6.2, R2 = 0.38 **
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Table S1. Summary of recent data sets added to the PMEL database used for algorithm tuning 
and validation, listed in alphabetical order. Samples deeper than 10 m were excluded. 
 

Reference 
Study area 

Year 
(DOYb) 

Latitude 
range 

Longitude 
range 

N  
Da Pa Ca 

Galí et al.c 
Baffin Bay 

2016 
(176-192) 

68.0–70.5 -64.0– -57.8 47 0 0 

Jarnikova et al. 
(2018), 

Canadian Arctic 

2015 
(194–230) 

51.7–74.8 -105.7– -52.3 32844 294 0 

Kameyama et al.c  
Chukchi Sea 

2015 
(249–276) 

65.8–74.0 -169.0– -
153.6 

34 34 24 

Kameyama et al.c 
Chukchi Sea 

2016 
(219–232) 

65.2–78.5 178.8–180.0 30 30 31 

Lizotte et al. 2012 
NW Atlantic 

2003 
(115–300) 

36.8–59.6 -44.8– -57.7 52 51 48 

Lizotte et al. c 
Baffin Bay and 

Canadian Arctic 

2014 
(198–224) 

69.0–81.6 -105.5– -57.9 77 0 0 

Lizotte et al.c 
Baffin Bay and 

Canadian Arctic 

2016 
(205–232) 

66.8–80.7 -98.8– -57.1 1022 0 0 

Luce et al. 2011 
Canadian Arctic 

2007 and 
2008 

(280–337) 

68.9–76.4 -134.0– -64.5 57 33 19 

Matrai et al. 2007 
Barents Sea 

1998, 1999 
and 2001 
(75–212) 

72.5–78.7 31.0–34.4 0 61 32 

Merzouk et al. 
2006 

NE Pacific 

2002 
(191–209) 

50.0–51.6 -144.8– -
143.0 

20 20 0 

Royer et al. 2010 
NE Pacific 

2007 (175–
195) 

48.6–50.0 -145.0– -
125.4 

11 11 11 

aD stands for DMS, P for DMSPt, and C for Chl. 
bday of year (initial–final). 
cThese datasets can be accessed on a public repository (https://doi.org/10.5281/zenodo.3243967). 
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Table S2. Number of in situ quality-controlled DMS, DMSPt and Chl data (depth < 10 m) at 
latitudes higher than >45°N. Averaging data into 8-day 28km bins allows for direct comparison 
against satellite-diagnosed data during the period 1998-2016. 
 
Data 
source 

Non-binned Binned 
1972-2016 1998-2016  1998-2016 
Da Pa Ca D P C D P C 

PMEL 15200 1474 1567 11113 469 529 3004 286 421 
NEW b 34108 398 85 34108 398 85 736 175 48 
TOTAL 49308 1872 1652 45221 867 614 3740 461 469 
aD stands for DMS, P for DMSPt, and C for Chl. 
bA single high-frequency dataset accounted for over 32000 new measurements prior to binning 
(Table S1). 
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Table S3. DMS emission (EDMS) sensitivity tests at latitudes >70°N (MODIS-Aqua sensor 
only). The reference algorithm (0. REF) is compared to alternative algorithm runs where we 
varied either the DMS sub-algorithm coefficients (eq. 2) (1. COEFFS), the Chl product used as 
input (2. CHLOC), or the gas exchange Kw parameterization (3. KW); we also produced 
alternative emission estimates using climatological DMS fields (4. REF.CLIM and 5. L11.CLIM). 
Changes with respect to the reference run are shaded in grey. Metrics reported include the mean 
percentage deviation (MPD) and mean absolute percentage deviation (MAPD) on an annual 
summer basis, EDMS between 2011 and 2016, and EDMS trends between 2003 and 2016. 
Asterisks denote significance level: * α < 0.05, ** α < 0.01. 
 
Algorithm run DMS sub-

algorithm 
coeffs. 

Chl 
prod. 

Gas  
Kw 

Clim. 
DMS 
fields 

MPD 
% 

MAPD 
% 

Mean EDMS 
(2011-2016) 

Gg S 

EDMS trend 
(2003-2016) 

Gg S decade-1 
 

0.REF eq. 2 GSM W97 NO 0 0 59.7±10.1 13.8±13.0 * 

1.COEFFS bootstrap GSM W97 NO 0.1 0.8 59.6±10.4 13.4±4.1 * 

2.CHLOC eq. 2 OC3M W97 NO -2.5 7.9 58.5±5.5 16.9±6.9 ** 

3.KW eq. 2 GSM N00 NO -1.7 1.7 59.3±10.3 14.9±13.4 * 

4.REF.CLIM eq. 2 GSM W97 YES 3.3 8.0 62.4±5.6 19.2±7.6 ** 

5.L11.CLIM na na W97 YES 37.0 37.0 77.6±6.7 16.3±7.7 ** 

na: not applicable. 
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