

Supplementary Information for manuscript,

#### "Regulation of GSK3 cellular location by FRAT modulates mTORC1dependent cell growth and sensitivity to rapamycin"

Long He<sup>1,2,3\*</sup>, Dennis Liang Fei<sup>1</sup>, Michal J. Nagiec<sup>1,2</sup>, Anders P. Mutvei<sup>1,2</sup>, Andreas Lamprakis<sup>1,2</sup>, Bo Yeon Kim<sup>3</sup>, John Blenis<sup>1,2,3\*</sup>

\*Corresponding authors: J.Blenis, email: jblenis@med.cornell.edu; L,He, email: loh2007@med.cornell.edu

#### This PDF file includes:

Figures S1 to S7 Tables T1

## Table 1

List of proteins whose phosphorylation is potentially suppressed by mTORC1 (data obtained from SILAC-based mass spectrometry analysis of the mTORC1-regulated phosphoproteome as described <sup>12</sup>.

| Gene 🔽  | Log2( - | Annotation                                                          | +1                 |
|---------|---------|---------------------------------------------------------------------|--------------------|
| Hmgn1;L | -4.0893 | Non-histone chromosomal protein HMG-14                              | Chromosome remodel |
| Atrx    | -2.6173 | Transcriptional regulator ATRX                                      | Chromosome remodel |
| Mett10d | -2.1007 | Isoform 1 of Putative methyltransferase METT10D                     | Chromosome remodel |
| Chd4    | -1.7479 | Chromodomain-helicase-DNA-binding protein 4                         | Chromosome remodel |
| Srcap   | -1.4029 | Putative uncharacterized protein                                    | Chromosome remodel |
| Ezh2    | -1.1269 | Isoform ENX-1B of Histone-lysine N-methyltransferase EZH2           | Chromosome remodel |
| Tip60   | -0.57   | Isoform 1 of Histone acetyltransferase HTATIP                       | Chromosome remodel |
| Pds5b   | -2.0744 | Isoform 1 of Sister chromatid cohesion protein PDS5 homolog B       | DNA repair         |
| Cdt1    | -1.3039 | DNA replication factor Cdt1                                         | DNA replication    |
| Dgcr8   | -2.0617 | Protein DGCR8                                                       | miRNA              |
| Lmnb1   | -2.2046 | Lamin-B1                                                            | Nucleopore         |
| Nup153  | -1.6324 | Nucleoporin 153                                                     | Nucleopore         |
| Tcof1   | -2.2181 | Treacle protein                                                     | rDNA transc        |
| Senp3   | -2.0671 | Sentrin-specific protease 3                                         | rDNA transc        |
| Zcchc8  | -2.3802 | Zinc finger CCHC domain-containing protein 8                        | splicing           |
| Srrm2   | -1.4846 | Isoform 3 of Serine/arginine repetitive matrix protein 2            | splicing           |
| Prpf4b  | -1.3629 | Serine/threonine-protein kinase PRP4 homolog                        | splicing           |
| Rprd2   | -1.2854 | Isoform 1 of Regulation of nuclear pre-mRNA domain-containing pro   | splicing           |
| Acin1   | -1.071  | Isoform 1 of Apoptotic chromatin condensation inducer in the nucleu | splicing           |
| 2610101 | -1.0703 | Isoform 3 of U2-associated protein SR140                            | splicing           |
| Ahnak   | -1.4738 | AHNAK nucleoprotein isoform 1                                       | splicing           |
| Gtf2f1  | -4.2298 | General transcription factor IIF subunit 1                          | Transcription      |
| Foxk1   | -3.9502 | Forkhead box protein K1                                             | Transcription      |
| Foxk2   | -3.2075 | Isoform 1 of Forkhead box protein K2                                | Transcription      |
| Tcea1   | -2.4464 | Isoform 2 of Transcription elongation factor A protein 1            | Transcription      |
| Tcfeb   | -1.7984 | Transcription factor EB                                             | Transcription      |
| Fam117b | -1.7549 | Protein FAM117B                                                     | Transcription      |
| Grlf1   | -1.6907 | Glucocorticoid receptor DNA-binding factor 1                        | Transcription      |
| Gatad2b | -1.2476 | Isoform 1 of Transcriptional repressor p66-beta                     | Transcription      |
| Jun     | -1.1254 | Transcription factor AP-1                                           | Transcription      |
| Junb    | -1.0586 | Transcription factor jun-B                                          | Transcription      |
| Pcif1   | -2.1367 | Phosphorylated CTD-interacting factor 1                             | Transcription      |
|         |         |                                                                     |                    |



HCC4006

HCC4006

(A) HCC4006 cells were exposed to 20nM Rapamycin and/or 10µM CHIR for 4hrs. Whole cell lysate was extracted and subjected to WB analysis with the indicated antibodies. (B) HCC4006 cells were exposed to DMSO or 20nM Rapamycin for 4hrs. Whole cell lysate was exposed to vehicle or I-phosphatase for 20 minutes prior to WB analysis with the indicated antibodies. (C) Whole cell lysates from growing, serum starved(16hrs) cells or cells with 10% serum restimulation for indicated times were subjected to WB analysis with the indicated antibodies. (D) WT or GSK3a/b-deficient MEFs established as described previously<sup>9</sup>. Cells were subjected to immunostaining with GSK3 antibodies. (E) HCC4006 Cells were serum-starved for 16hrs prior to restimulation for the indicated times and subsequently subjected to immunostaining with anti-GSK3 antibody and (F) GSK3 nuclear translocation was quantified and assessed as the ratios between nuclear and total fluorescence in at least 10 cells and values are expressed as mean ± SEM. One-way ANOVA with Dunnett's post-test, \*\*p<0.001, n=3. (G) GSK3 nuclear translocation was quantified from Figure 1D and assessed as the ratios between nuclear and total fluorescence in at least 10 cells and values are expressed as mean ± SEM. One-way ANOVA with Dunnett's post-test, \*\*p<0.001, n=3. (H) Established cells from Figure 1E were exposed to 1µM Dox with or without 1µM CHIR for 24hrs. Whole cell lysates were subjected to WB analysis with the indicated antibodies. Data are representative of at least three independent experiments.



Cell lines were established with pTRIPZ-RFP, pTRIPZ-HA-GSK3-(WT), pTRIPZ-HA-NLS-GSK3b. Cells were injected into mice through subcutaneous injection as described in Figure 2. Dox (625 mg per kg) was included in the food where indicated and after 3 weeks, whole cell lysates from tumor tissues were subjected to WB analysis with the antibodies against GSK3 and vinculin.



## Figure S3

Cell lines were established with ectopically expressing FRAT2 in HCC4006 cells. (A) Whole cell lysates of growing cells were extracted and subjected to WB analysis with the indicated antibodies. Data are representative of at least three independent experiments. (B) Cells were exposed to 20nM rapamycin for 4hrs and subjected to Immunostaining with the indicated antibodies and (C) GSK3 nuclear translocation was quantified and assessed as the ratios between nuclear and total fluorescence in at least 10 cells and values are expressed as mean  $\pm$  SEM. One-way ANOVA with Dunnett's post-test, \*\*p<0.001, n=3.



Cell lines were established with ectopic expression of FRAT1/2 in HCC4006 or A549 cells. (A) Whole cell lysates were subjected to WB analysis with the indicated antibodies. Data are representative of at least three independent experiments. (B) Clonogenic assay was performed using indicated cells with the indicated concentrations of rapamycin and (C) inhibition of cell proliferation was estimated as described in *Materials and Methods.* Values are expressed as mean ± SEM. Student T-Test, \*\*p<0.001, n=3.



(A) Clonogenic assay was performed with rapamycin (20nM) or CHIR ( $0.5\mu$ M) or both using the indicated cell lines. (B) Cell proliferation was estimated as described in *Materials and Methods*. (C-G) Cell lines were established with knock-down of GSK3a/b in A549 and HCC4006 cells. (C) Whole cell lysates from growing cells were subjected to WB analysis with antibodies against GSK3 and Vinculin. Data are representative of at least three independent experiments. (D) Clonogenic assay was performed with the indicated concentrations of rapamycin and (E) inhibition of cell proliferation were estimated as described in *Materials and Methods*. (F-G) cell growth curves were determined with or without 20nM rapamycin in each cell lines. Values are expressed as mean ± SEM. One-way ANOVA with Dunnett's post-test, \*\*p<0.001, n=3.



## Figure S6

Cell lines were established with suppression of FRAT1/2 expression in H441 or H1975 cells. (A) Total RNA was extracted from growing cells and subjected to RTqPCR analysis with primers against FRAT2. (B) Clonogenic assay was performed using the indicted cell lines with the indicated concentrations of rapamycin and (C) inhibition of cell proliferation were estimated as described in *Materials and Methods*. Values are expressed as mean ± SEM. One-way ANOVA with Dunnett's post-test, \*\*p<0.001, n=3. (D) Whole cell lysates were subjected to WB analysis with anti-FRAT1 and anti-Vinculin antibodies. Data are representative of at least three independent experiments.



## Figure S7

(A-D) S6K1/2 double deficient cell lines were established by suppressing S6K2 with RNAi in S6K1 -/- MEFs. (A, B) Whole cell lysates from growing cells or cells which were exposed to Rapamycin (20nM) or Torin (200nM) for 4hrs were subsequently subjected to WB analysis with the indicated antibodies. Data are representative of at least three independent experiments. (C) immunostaining was performed with anti-GSK3 antibody and (D) GSK3 nuclear translocation was quantified and assessed as the ratios between nuclear and total fluorescence in at least 10 cells and values are expressed as mean  $\pm$  SEM. (E) HCC4006 cells transiently expressing GSK3b(S9A) were subjected to immunostaining with anti-HA antibody and (F) GSK3(S9A) nuclear translocation was quantified and assessed as the ratios between nuclear and total fluorescence in at least 10 cells and values are expressed as the ratios between nuclear and total fluorescence in at least 10 cells and values are expressed as the ratios between nuclear and total fluorescence in at least 10 cells and values are expressed as mean  $\pm$  SEM. One-way ANOVA with Dunnett's post-test, \*\*p<0.001, n=3.



# Figure S8. GSK3 and FRAT contribute to mTORC1-dependent regulation of nuclear protein phosphorylation events.

Model: mTORC1 regulates nuclear-cytoplasmic localization of GSK3 and thus promotes differential phosphorylation and regulation of target proteins involved in cell growth/cell cycle regulation. Upon mTORC1 suppression, GSK3 accumulates in the nucleus where it promotes phosphorylation of nuclear proteins including FOXK1 and GTF2F1. Increased expression of FRAT1/2 facilitate nuclear exclusion of GSK3 resulting in decreased GSK3-dependent phosphorylation of FOXK1 and GTF2F1, and potentially many additional targets identified in our previous phosphoproteomics analysis (see Table 1).

#### **Experimental Procedures**

#### Clonogenic assay

1,000 or 2,000 Cells were seeded in 12 or 6 well/plates and incubated for 1~2 weeks. After colonies were clearly observed, they were fixed with 4% Formaldehyde, stained with crystal violet (0.5% w/v). After rinsing four times with PBS buffer, the images of the wells were scanned. For quantification, methanol was added to each well plate and O.D was measured at 570nm as described  $^{22}$ .

#### Immunofluorescence staining

Cells were plated on cover glass and the next day, cells were fixed with 4% paraformaldehyde for 10 min at room temperature. The cells were rinsed with PBS four times and incubated with a blocking solution containing 5% BSA in PBS for 15 min. The cells were then incubated with indicated antibodies in blocking solution for 3.5 hrs followed by 4 times washing with PBS. Secondary antibodies conjugated to a fluorochrome (Alexa Fluor, Thermo Fisher Scientific) in blocking buffer were then added to cover glasses and incubated for another 1.5 hrs at room temperature. Cells were rinsed with PBS four times and incubated with Hoechst 33258 solution (DNA staining) for 15 min. After washing with PBS four times, cells were mounted with mounting buffer and images observed by fluorescence microscopy.

#### Animal studies

For our mouse xenograft studies, we followed Institutional Animal Care and Use Committee (IACUC)-approved protocols and guidelines. Indicated amount of cells (1X10<sup>6</sup> cells) were injected subcutaneously into 5-6-week-old female nude mice (Envigo or Taconic). After subcutaneous tumors formed, mice were randomly divided into 2~3 groups for intraperitoneal injection 3

days/week with vehicle or rapamycin (1 or 5 mg/kg body weight) or fed food containing Doxycyclin and grown for additional 3~4 weeks. Rapamycin was dissolved with PEG400: water (50%: 50%).

#### Establishment of stable cell lines

To generate lentiviruses, shRNA plasmids or overexpression plasmids were transfected into 293T cells together with the packaging ( $\Delta$ 8.9) and envelope (VSVG) plasmids, and medium was changed the next day. After 24 hrs, viral supernatants were harvested, and new medium was added. For infection, cells were infected with viral supernatants in the presence of a serum-containing medium supplemented with 4 µg/ml polybrene. After 16 hrs, viral-containing medium was removed and cells were grown in serum-containing medium for 24 hrs. Cells were treated with puromycin (2 µg/ml) or blasticidin (10µM) for selection. The knock-down or overexpression of target protein was confirmed by immunoblot analysis.

#### **Statistics**

Data were expressed as average ± SEM of at least three independent experiments performed in triplicate. One-way ANOVA or two-tailed Student's t test was used to determine differences between each group, followed by the Dunnett's or Tukey's post-test or pairwise comparisons as appropriate.