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Supporting Information Text11

A. Polony Seeding and Voronoi Tessellations. Our basic mathematical model comprises a family of polonies generated by a12

finite set of N seed points P = {p1, . . . , pN} placed on a 2D circular disk C ⊆ R2 according to a Poisson point process of13

intensity λ. (Hence in particular the expected number of seed points and respectively polonies is E[N ] = λA, where A = A(C)14

is the area of C.) The polonies expand at a uniform rate from their seed points until their boundaries meet, so that at15

saturation they form a (Poisson-)Voronoi tessellation T of the disk C.16

Denoting the Euclidean distance metric on R2 by d(x, y), the polony generated by seed point pk, k = 1, . . . , N , is thus
represented by the Voronoi cell Tk ∈ T containing the set of points in C relatively closest to pk:

Tk = {x ∈ C | d(x, pk) < d(x, pj) for all j 6= k}

B. Chance of Barcode Degeneracy. An individual polony is identified by its barcode, a sequence over the alphabet Σ =17

{A, T,G,C}. The set of all possible barcode sequences w of length b is denoted Σb and has cardinality B = 4b.18

The probability of all the N ∼ λA polonies on C having unique barcodes for a sequence of length b can be represented in
terms of binomial coefficients by the expression

Pr(nondegenerate) =

(
B
N

)
(

B +N − 1
N

)
which is approximated by the series19

Pr(nondegenerate) ≈ 1− (N − 1)N
B

+ (N − 1)2N2

2B2 − (N − 1)2N2(N2 −N + 1)
B3 · · · = 1−O(N2/B)

From the expression one can see that for B � N2, i.e. b� log2 N , the probability of nonunique barcodes goes rapidly to20

zero. For instance, for an ensemble of N = 30, 000 polonies as in the example in the main paper and a b = 20 nucleotide barcode,21

and assuming a naive, uniformly distributed, base composition, the probability of all the codes being unique is p ≈ 0.9992. We22

thus consider the ideal scenario where b� log2 N and each polony Tk is uniquely distinguishable by its barcode sequence wk.23

Then the existence of a barcode pair {wi, wj} implies physical adjacency of two polonies Ti and Tj , between which crosslinks24

have associated their unique identifiers.25

C. Heuristic Rationale for the Tutte Reconstruction Method. Any given point set P in general position on the disk C has a26

unique Delaunay triangulation D = 〈P,L〉, determined by the important empty circle property: no circumcircle of any triangle27

constituted from the points in P and their connecting line segments L contains a point from P in its interior (1, Section 9).28

Now, for our point set reconstruction problem, we only know the Delaunay triangulation D of P as an abstract graph29

G = (V,E). Since G is triangulated, it has a topologically unique plane embedding on the disk C, given a counterclockwise30

(say) listing of the vertices on the outer boundary. However, information about the vertex neighbourhoods in D = 〈P,L〉 as31

given by G does not yet fully determine the geometric locations of the points in P .32

Statistically speaking, the problem concerns determining the conditional distribution Pr(P | G) of the locations of the33

Poisson-generated point set P , given that the graph of its Delaunay triangulation is G. (Or maybe computing a maximum-34

probability arrangement for P under this distribution.) However this distribution is not easy to characterize explicitly. It could35

be sampled by a Markov Chain Monte Carlo technique based on the observation that the local distribution of a single point36

p ∈ P conditioned on the locations of the other points, Pr(p | P \{p}, G), is uniform within the feasible region Fp(P \{p}, G) ⊆ C37

available for p in the given arrangement of the points in P \ {p}.38

The feasible region Fp = Fp(P \{p}, G) for p is obviously contained within the polygon spanned by the present locations of its39

immediate Delaunay-graph neighbors N1(p) = {p1, . . . , pk} ⊆ P \ {p}. Let us call this the Delaunay polygon Vp = V (p1, . . . , pk).40

Because of the characteristics of Delaunay triangulations, the feasible region Fp does not cover all of Vp, and its shape actually41

depends on the present arrangement of the points in N1(p) and their Delaunay-graph neighbors, i.e. the set N2(p) of points42

at graph distance 2 from p – but no further. One could thus simplify the prospective MCMC sampling of the distribution43

Pr(P | G) by the observation that for every p ∈ P , Pr(p | P \ {p}, G) = Pr(p | N(p), G), where N(p) = N1(p) ∪N2(p); but it44

would still be a complex and time-consuming process.45

Now the Tutte reconstruction method can heuristically be seen as a fast deterministic approximation to sampling the46

distribution Pr(P | G) by simply picking for each point p a location likely to be in Fp, namely the barycenter of the polygon47

Vp. Or to be more precise, the reconstruction algorithm explicitly arranges the points in P in such a way that every point p is48

located at the barycenter of the Delaunay polygon Vp spanned by its neighbors N1(p), thereby aiming to provide a feasible49

sample (albeit only one) from the distribution Pr(P | G).50
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D. A Topological Hierarchy in Poisson-distributed Delaunay Triangulations. Here we aim to establish the connection between51

the Euclidean metrics of the Delaunay triangulation, whose major spatial constraints directly result in the topological52

relationships that form, and the purely topological metrics of the untethered graph. While the main text contains a proof of53

concept essentially demonstrating this fact, underlying this phenomenon are basic principles of stochastic geometry.54

The relationship between Euclidean distance and topological distance was investigated empirically by generating Delaunay55

triangulations and measuring both Euclidean and topological distances between points. In order to avoid bias due to boundary56

effects, vertices were not chosen randomly from Delaunay triangulations. This could result in points near the boundary to57

be selected, and topological distances may then be skewed. Instead, after generating a Delaunay triangulation for a given58

random point set bounded by a circle, we used betweenness centrality to select one of the central vertices as an origin point,59

and topological distances (and their corresponding Euclidean distances) were sampled by proceeding one edge at a time away60

from the origin.61

Given a known boundary geometry, e.g. a circle with known radius a, and knowledge that polonies are Poisson-distributed,62

we conjecture that for any two vertices in the non-embedded graph G with a N length topological shortest path distance, there63

exists a vertex along that shortest path with N − 1 topological distance that is also closer to the origin in Euclidean distance.64

Conjecture 1 Let {k0, kN , kN−1} ⊆ K be any subset of three vertices in K that satisfies the property that kN has at least65

one topological shortest path (i.e. hop count or number of edges) leading to a so-called origin k0 equal to N steps, and let kN−166

be a vertex located on a topological shortest path to kN with its own topological shortest path to k0 equal to N − 1 steps. Let67

the set {pk0 , pkN , pkN−1} ⊆ P be the corresponding set of real coordinate points in D in R2. The points are Poisson-distributed.68

Then it is conjectured that
〈d(pk0 , pkN )〉 > 〈d(pk0 , pkN−1 )〉∀k0, kN ∈ K.

In other words, the average Euclidean distance between an origin point and a destination point is greater than that of the69

average distance from the origin to a point 1 topological step closer to the origin than the destination.70

E. Tutte Embedding Respects the Topological Hierarchy of the Delaunay Triangulation. We make a conjecture analogous to71

Conjecture 1 about the coupling of Euclidean and topological metrics in the Tutte embedding, a suggestion that a Tutte72

embedding satisfies one of the major properties of the a priori distribution.73

Conjecture 2 Let {k0, kN , kN−1} ⊆ K be any subset of three vertices in K that satisfies the property that kN has at least
one topological shortest path (i.e. hop count or number of edges) leading to a so-called origin k0 equal to N steps, and let
kN−1 be a vertex located on a topological shortest path to kN with its own topological shortest path to k0 equal to N − 1
steps. Let the set {p′k0 , p

′
kN
, p′kN−1} ⊆ P be a corresponding set of real coordinate points in the embedded graph D′ in R2.

Then it is conjectured that
∃ kN−1|d(p′k0 , p

′
kN

) > d(p′k0 , p
′
kN−1 )∀k0, kN ∈ K.

We make this conjecture based on the observation that attempts to violate this rule by artificially placing a distance N74

vertex closer in Euclidean distance to some origin point than a distance N − 1 vertex invariably result in the formation concave75

structures that are forbidden by the laws of the Tutte embedding. Another related observation is that the topological contour76

lines surrounding a vertex may never cross each other in Euclidean space. A topological contour n may not be closer at all77

points than some points of topological contour n− 1, however there will always be some point on contour n− 1 that is closer78

to the origin in Euclidean distance.79

F. Description of the topological distance matrix reconstruction. A topological path path(i, j) in a graph is defined as a fully80

connected ordered set of edges e1, e2, ...en connecting two vertices i and j in which all vertices visited are unique. The path81

length | paths(i, j) | is then the number of edges comprising a path. We define a topological distance function as the length of82

the path with the fewest edges connecting two points or t(i, j) = min(| path(i, j) | ∀ path(i, j)).83

Let us compile a distance matrix t using t(i, j) for the untethered graph G composed of N columns and N rows where N is84

the number of vertices in G, and each element ti,j is a topological distance t(i, j) between vertices corresponding to the ith row85

and jth column, taking the form:86

t =

 t0,0 . . . tN,0
...

. . .
t0,N tN,N


F.1. total topological distance matrix reconstruction. Where each topological distance element is obtained using the Floyd-Warshall87

algorithm (2). We then perform a linear transform to a new coordinate system by determining the eigenvectors v1...vN and88

their corresponding eigenvalues λ1...λN of the covariance matrix Ktt compiled by computing the covariances of t. The 2 vectors89

with the highest-valued eigenvalues are used to approximate x and y coordinate vectors.90

F.2. peripheral topological distance matrix reconstruction. Alternatively we utilize only the topological distances between all vertices91

and each of the peripheral vertices. Peripheral vertices can be found using face enumeration (above) to determine the face with92

the most edges.93
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G. Sequencing benchmark estimates for experimental implementation. Bridge PCR methods can achieve densities of one94

million polonies/mm2 for an approximate 1 µm2 average polony size (3). For 1000 copies per polony, a 1 mm2 tissue slice95

would generate approximately 1,000,000,000 strands with an expected value of 6,000,000 unique edges (number of polonies96

times the expected number of neighbors of a typical 2D Poisson Voronoi cell (4)), and about 32,000,000 total cross-pairing97

events assuming the theoretical limit of linking yield based on our scaling measurements from Figure S3. Assuming no changes98

in these proportions during subsequent amplification and processing steps, an Illumina NextSeq which can deliver up to 40099

million reads, would be expected to capture about 12,800,000 crosslinking reads, the rest being self-pairing reads. Let us100

estimate coverage with a simplified formula, sampling with replacement from a pool of unique items:101

E(k,N) = N
(

1−
(
N − 1
N

)k)
Sampling from a pool of N = 6, 000, 000 unique edges a total of k = 12, 800, 000 times, we get an expected network coverage102

of 88%. We emphasize here that this is largely speculative, and meant to provide a rough expectation of order of magnitude.103

H. Resolution benchmark estimates for experimental implementation. The maximum theoretical resolution depends on polony104

size (Figure 5, main text), and thus depends primarily on the polony generation approach used. With bridge PCR, a typical105

polony size could be on the order of 1 µm2 with 1,000,000 polonies/mm2, and thus an estimated FWHM (Figure 5i) point106

spread function of ≈ 0.9µm. However denser polony generation techniques such as template walking amplification (5) rely107

on a much more locally confined mechanism of amplification requiring denser primer surface. Polony composition for these108

techniques is likely to be close to the immobilization density of primers, and thus should be smaller for a given ρ. Furthermore,109

a lower ρ value such as 125 sites per polony within an acceptable range for reconstruction could be used to push polony size to110

its smallest usable size.An estimate for high density primer immobilization is 1.1× 1013molecules/cm2 (6), and assuming a111

maximal packing of sites per polony and ρ = 125 this would give an average polony size of approximately 0.001 µm2 or roughly112

1000 nm2 and corresponding estimated FWHM of approximately 45 nm. Again, it should be emphasized here that this is an113

informal estimate designed mainly to provide an educated guess as to the order of magnitude for a best-achievable resolution.114

I. Towards an optimal graph approximation algorithm. We desire an approximation approach that maximally utilizes the115

available information while obeying a maximum entropy or minimally presumptive criterion. That is, given an untethered116

graph and the knowledge that it is derived from a Poisson-Delaunay generating process, what is the best possible positioning of117

vertices? Such a model should be derived from properties of the originating Delaunay triangulation.118

A property that intuitively should be satisfied is what we may call the same-Delaunay-topology criterion, in other words a119

new Delaunay diagram D′ generated from the a posteriori point positions P ′ should have the same topological structure as D,120

i.e. G′ = G. In this case P ′ shares in common with P all of the spatial constraints expressed in D. In fact our Levenshtein121

distance metric provides this, offering a route to possibly iteratively reconstructing a best-possible reconstruction, i.e. one122

which when a Delaunay triangulation is computed from the new positions, produces the exact same set of edges as those used123

to begin the reconstruction in the first place.124

For small graphs (on the order of 10’s of points) we could perform iterative adjustment to the positions, initialized with the125

Tutte embedding, until they form a Delaunay diagram with the same topology as the original one. This was accomplished with126

a simulated annealing computation where with each iteration, the Delaunay diagram generated by the current set of Euclidean127

coordinates (Figure S13b orange lines) is compared with the untethered graph (Figure S13b red lines), its topology derived128

from the Delaunay diagram of the a priori seed distribution. After adjustment, a final graph satisfies the property that its129

Delaunay diagram has the same topology as the untethered graph (Figure S13c). The a posteriori positions that satisfy this130

same-Delaunay topology criterion thus satisfy all of the constraints of the original Delaunay diagram.131

Due to the computational inefficiency of the simulated annealing approach however, a much more desirable direction for132

future work would be the development of a Tutte-like embedding which, deterministically and in linear time, computes a133

non-degenerate distribution that satisfies the major properties of the Delaunay diagram (for example that vertices should134

be placed at the centers of mass of their topological neighbors), and ideally computes in one shot a graph satisfying the135

same-Delaunay criterion with levG,G′ = 0.136
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Fig. S1. Schematic representation of strategies for the formation of network connections. We identified both enzymatic (a-b) and non-enzymatic (c) strategies for the connection
of the information that reside in the locally amplified DNA strands. (a) The first proposed strategy, takes advantage ofa bridging double stranded DNA to be added at the end of
the polony formation reaction together with a ligase enzyme. The ligated molecules could then be released from the solid support by stripping or hydrolysis of the anchor
chemistry and sequenced. (b) A second enzymatic strategy is characterized by a partial annealing of neighboring DNA strands and polymerase-mediated elongation according
to a similar principal as that of bridge-PCR (3). (c) Alternatively, incorporating an unnatural nucleotide (7) in polony strands would enable the possibility to induce - in this case
with the help of a 365 nm light irradiation - a covalent connection with an adjacent strand. A sequencing-ready library could be generated from this material surface isolation in
an emulsion-PCR like setup (8).
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INPUT: set of pairs of polony ID’s,
paired according to spatial adjacency

Compute an intermediate planar
embedding

Enumerate faces and determine the
largest face that forms the outer

boundary

Approximate polony coordinates with
Tutte embedding algorithm

Untethered graph – assemble from the
set of unique edges

Approximate polony coordinates by
spring relaxation – Kamada Kawai

algorithm

Approximate polony coordinates with
total topological distance matrix

method

Measure topological distances from
each vertex out to every peripheral

vertex

Approximate polony coordinates with
peripheral topological distance matrix

method

Measure topological distances from
each vertex out to every other vertex

Form pairs between neighboring sites
in adjacent polonies

Eu
cl
id
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n
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s
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To
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lM
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Compute Voronoi Tessellation from final coordinates – forming the a final image with Voronoi faces as pixels

Fig. S2. Flow chart of the spatial adjacency mapping algorithm. Initial input data comes from a Euclidean metric space but is converted into a topological metric space.
From topological metrics, we assemble a planar embedding, identify a largest face, and arrange the largest face on an outer boundary to then compute the final positions of
interior points with the Tutte embedding algorithm. Alternatively, the spring relaxation approach of Kamada and Kawai can be used to compute final positions. And in the final
two approaches, a pseudo-distance matrix is compiled from topological distances (shortest paths between vertices). In the case of total distance matrix reconstruction, all
topological distances in the network are included in an NxN matrix. In the alternative variant, only peripheral vertices are used as reference points, and a matrix of all the
topological distances of internal points out to these peripheral points is compiled. In both cases, the 2 principal component vectors of these matrices are used for the final
coordinates. All four embedding approaches result in a return to the Euclidean metric space and planar representation of the graph.
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a. b. c.

Fig. S3. Analysis of crosslinking efficiency. As the average amplicon copy number, i.e. the number of oligonucleotide sites comprising a polony ρ is increased, there is an
increasing chance that a crosslinking event between two different, adjacent polonies occurs. As maximization of this characteristic is desirable, it would seem reasonable to use
a high ρ. However this has the unwanted side effect of diluting the usable information content on a per read basis due to the non-proportional scaling of crosslinking events with
self-pairing events as ρ is increased. (a) Example of a simulated polony surface with crosslinking events highlighted in red and self-pairing events shown in gray. We can
appreciate here the probabilistic nature of edge formation which, above a certain average number of sites per polony, becomes highly probable, but at critically low values may
result in missed edges. (b) Log-log plot of the fraction of crosslinking events out of total pairing events versus sites per polony ρ showing that the fraction of crosslinking events
scales according to∝ 1/√ρ. Moreover, the number of crosslinking events per polony yields diminishing returns with increasing ρ: (c) Log-log plot of the number of crosslinking
events per polony versus ρ showing∝√ρ scaling, indicating that to double the number of crosslinking events, one should square the number of additional average sites per
polony.
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a. b.

Fig. S4. (a) Example of a simulated saturated polony surface with λ = 500 polonies/ROI and relative site density of ρ = 100 sites per polony after undergoing random neighbor
crosslinking. Self-pairing events are colored in gray and crosslinking events are colored in red. (b) The corresponding Delaunay triangulation computed from the positions of
polony seed molecules.
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a. b. c. d.

e. f. g. h.

i. j. k. l.

Fig. S5. Visual comparison of topological reconstruction approaches for λ = 500 polonies/unit area and ρ = 100 average sites per polony. (a-d) Final reconstructed graph
embeddings produced, respectively, by Tutte embedding, spring relaxation, total distance matrix, and peripheral distance matrix approaches (e-h) Reconstructed Voronoi
images corresponding to the reconstructed graphs from a-d generated using the 3-target color sampling procedure described in the main text for the four reconstruction
approaches. (i-l) Alignment of a priori seed positions with the final a posteriori reconstructed positions for the four reconstruction techniques.
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a. b. c. d.

e. f. g. h.

Fig. S6. Visual comparison of the four reconstruction approaches for a λ = 2000 polonies/unit area scenario and ρ = 500 average sites per polony.(a-d) Reconstructed graph
embeddings for the four approaches respectively: Tutte embedding, spring relaxation, total topological distance matrix, and peripheral topological distance matrix. (e-f) Voronoi
image reconstructions corresponding respectively to the graphs from a-d.
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Fig. S7. Average distortion visualized as 2D histograms for varying polony densities λ showing progressive improvement in distortion with larger λ. Radial systematic
distortions can be distinguished from local noise due to averaging effect. Distortions appear most severe near the edge. Color bar indicates scale of distortion, with the
unit circle diameter 2.0 being the maximum. Distortion histograms are shown for (a) the Tutte embedding, (b) spring relaxation, (c) total topological distance matrix, and (d)
peripheral topological distance matrix reconstruction approaches. ρ = 500 sites per polony for all, and each diagram represents n = 5000/λ independent simulation results.
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Fig. S8. Average distortion visualized as 2D histograms for varying relative site densities ρ. As ρ is increased, relatively negligible reduction in distortion is seen. However for
critically low values, graphs begin to have defects affecting reconstruction. This critical point was observed for Tutte embedding graphs at ρ = 63 sites per polony, whereas the
other approaches remained robust at this density. Distortion histograms are shown for (a) the Tutte embedding, (b) spring relaxation, (c) total topological distance matrix, and
(d) peripheral topological distance matrix reconstruction approaches. λ = 500 polonies/unit area, and each diagram represents 10 simulation results.
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Fig. S9. (a-b) Distortion maps, visualized for single instance reconstructions for λ = 500 polonies/unit area for the four reconstruction approaches, respectively, Tutte embedding,
spring relaxation, total topological distance matrix, and peripheral topological distance matrix. Lines show individual displacements Dfi connecting a priori seed molecule
locations and the a posteriori reconstructions following alignment to obtain min(

∑N

i=1
Dfi). Colormap indicates line length with unit circle diameter 2.0 being the maximum.

(e-h) Radial profiles of distortion Dfi corresponding to the single instance distortion maps from a-d. (i-l) Distortion maps for single instance reconstructions for λ = 2000
polonies/unit area for the four respective reconstruction approaches. (m-p) Radial profiles of distortion Dfi corresponding to the single instance distortion maps from a-d.
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a. b. c. d.

e. f. g. h.

Fig. S10. Quantification of reconstruction quality as a function of polony density λ for the four reconstruction approaches respectively, Tutte embedding, spring relaxation,
total topological distance matrix, and peripheral topological distance matrix. (a-d) Log-log plots of average distortion Df (ρ = 500 sites/polony) versus polony density λ.
Slope values to the fits indicate scaling constant, with Tutte embedding (Df ∝ λ−0.447) outperforming the other techniques, i.e. the fastest improvement in distortion upon
progressive addition of more polonies per unit area. Poorly performing simulations formed a secondary population in the spring relaxation case (b), due to the tendency for
singly-connected vertices to diverge away from their adjacent neighbors. (e-h) Linear plots of the a posteriori Levenshtein distance error metric (levG,G′ ) or number of edits
required to create identical topology between the original untethered graph and the graph derived from a post-reconstruction Delaunay triangulation. The Tutte embedding
approach outperformed the other techniques followed by spring relaxation in levG,G′ scaling, i.e. the error grows slower upon progressive addition of polonies per unit area.
Each condition (λ value) was simulated independently for n = 25 times, and each point represents a single simulation.
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λ=10
λ=10 λ=10 λ=10

λ=10λ=10λ=10λ=10

λ=20

λ=20 λ=20 λ=20

λ=20λ=20λ=20λ=20

a. b. c. d.

e. f. g. h.

Fig. S11. Quantification of reconstruction quality as a function of relative site density ρ for the four reconstruction approaches respectively, Tutte embedding, spring relaxation,
total topological distance matrix, and peripheral topological distance matrix. (a-d) Plots of the a posteriori Levenshtein distance metric (levG,G′ ) or number of edits required to
create identical topology between the original untethered graph and the graph derived from a post-reconstruction Delaunay triangulation. Each are plotted for two values of λ =
10 and 20 polonies per unit area. Error bars represent standard deviations, n = 25 independent simulations per point. All approaches display a transient high error regime at
low values of ρ which are more prominent for the greater λ value. (e-h) Average distortion Df plotted versus ρ for two values of λ = 10 and 20 polonies per unit area. Error
bars represent standard deviations, n = 25 independent simulations per point. Transient high error regimes manifested less prominently in distortion compared to levG,G′ .
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Fig. S12. Visualization of resolution limit and its dependence on polony density λ (polonies per unit area). (a) Image of black and white comb to be reconstructed. (b) Voronoi
images with facets colored according to probability sampled from the original image, reconstructed with the Tutte embedding approach. Boxes i-vi show reconstructions with
progressively quadrupled values of λ to approximately halve the minimum size of distinguishable features in the image each increment.
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Fig. S13. Towards optimal exploitation of available information. (a) Plot of average distortion Df versus levG,G′ for two values of λ = 10 and 20 polonies per unit area
and a fixed ρ = 500 sites per polony for the Tutte embedding approach. The figure indicates a weak but positive correlation between distortion and Levenshtein distance.
Although Df requires omniscient knowledge of the a priori distribution, levG,G′ on the other hand is available a posteriori requiring only the untethered graph and a proposed
reconstruction. Proportionality between the two indicates that levG,G′ could serve as a noisy proxy for Df as a quality metric. (b) An example Tutte reconstruction (red solid
lines) compared with re-computed Voronoi tessellation (orange dotted lines) and re-computed Delaunay triangulation (orange solid lines). Edge discrepancy denoted with black
arrows. (c) Iteratively adjusted embedding (red solid lines) compared with re-computed Voronoi tessellation (orange dotted lines) and re-computed Delaunay triangulation
(orange solid lines).
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Fig. S14. Estimated algorithmic complexity based on run times as a function of λ (shown as log-log plots) for the four reconstruction techniques. All algorithms exhibit apparent
polynomial time typical case complexity (worst case performance was not considered). (a) Tutte embedding approach scales according to ≈ O(λ1.61) and was the best
performing of the four approaches followed closely by (b) spring relaxation which scales according to≈ O(λ1.75). (c) This was followed by the total topological distance matrix
method that scales according to ≈ O(λ1.93), and the worst-performing was the peripheral topological distance matrix method scaling according to ≈ O(λ3.31). Each
condition (λ) value was simulated independently n = 3 times for a fixed ρ = 500 sites per polony.
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Fig. S15. Concept for bipartite network formation. (a) Two types (a and b) polonies are seeded whose interactions (b) are restricted to cross-complementary 3’ end overlap,
prohibiting self-interactions. (c) The resulting network has gaps where self-adjacency events occur, however the overall structure of the network should be preserved in
cross-pairing events. (d) The final network can be represented in bipartite format showing an absence of intra-species linkages. This approach means that all reads would
deliver information about polony adjacency.
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