
Supplemental Material

Variant calling pipeline (eDiVA-Predict)

Sample-wise analysis:

1. Read alignment with BWA mem, chimeric read filtering, and sorting by

chromosome and position

2. Local realignment with GATK RealignerTargetCreator and IndelRealigner

3. Duplicate marking with Picard Markduplicates

4. Base quality recalibration with GATK BaseRecalibrator

5. Variant calling with GATK HaplotypeCaller

6. Split SNV and INDELs to be processed independently

7. Quality control for SNVs and INDELs using GATK 3.3

8. Select high quality variants and generate final call file in VCF format

a. Filters to exclude SNPs with GATK VariantFiltration tool:

i. clusterWindowSize 10 

ii. "MQ < 30.0 || QUAL < 25.0 " 

iii. "DP < 5 || DP > 400 || GQ < 15

b. Filters to exclude Indels with GATK VariantFiltration tool:

i. QD < 2.0 || FS > 200.0 || ReadPosRankSum < -20\" 

ii. "DP < 5 || DP > 400 || GQ < 15”

Multi-Sample calling for families and trios:

1. Merge the individual variant call files to obtain all variant positions across the

family

2. Re-genotype all samples at all variant positions using GATK HaplotypeCaller

3. Annotate multi-sample VCF file using eDiVA-Annotate.
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Comparison of pathogenicity classifiers on additional benchmark datasets:

We compared eDiVA-Score on five datasets downloaded from 

http://structure.bmc.lu.se/VariBench/GrimmDatasets.php

Composed of:

• Filtered subset of HumVar (Adzhubei et al., 2010). 

• Filtered subset of ExoVar (Li et al., 2013). 

• Filtered subset of VariBench (Nair and Vihinen, 2013). 

• Filtered subset of predictSNP (Bendl et al., 2014).  

• Filtered subset of SwissVar Dec. 2014 (Mottaz et al., 2010).  

We calculated the ROC curve for each dataset independently, and for the joint set of

the five datasets. These datasets have been commonly used in several benchmarks.

They  are  composed  of  mostly  rare,  non-synonymous  SNPs.  Each  dataset  defines

differently the criteria to assign a variant to the pathogenic or not-pathogenic class,

thus providing benchmarking set with different rules than the one used for training.

We  observed  that  M-CAP  and  Revel  perform  substantially  better  than  in  the

previously described benchmarks using ClinVar or HGMD variants (Supplemental

Figure 2). From Suppl. Fig. 2, we observed how scores such as Revel and M-CAP

achieve better ROC than eDiVA-Score. This is justified by the fact that such scores

have  been  expressly  developed  for  rare  SNPs,  thus  are  better  suited  to  discern

between pathogenic and neutral variants in these subsets.



This  result  highlights  the  different  fields  of  applicability  of  eDiVA-Score  versus

Revel or M-CAP. The first is a general-purpose score to classify all variants, without

specific focus on rare nonsynonymous SNPs. Revel and M-CAP, instead focus on rare

variants with impact on the amino acid sequence. It is an expected consequence, then,

that Revel and M-CAP perform better on evaluation datasets close to the problem

they address, rather than ranking all variants.

Exomiser benchmark parameters

- PhenIX prioritization mode

- Autosomal Recessive inheritance mode for compound heterozygous and 

recessive homozygous variants

- Autosomal Dominant inheritance mode for dominant de novo variants

- No filter by allele frequency 

- Keep only PASS values

- Variants sorted by decreasing value of the combined score (variant + gene)

- HPO terms: extracted from ClinVar annotation of the variants

Imperfect HPO phenotype generation

The algorithm we used to generate an imperfect HPO ID set, starting from the full 

characterization in ClinVar is the following. We altered each list of disease-associated

HPO IDs by uniformly sampling between a set of alterations. Each HPO ID in the list 

could be substituted with:

- The same HPO ID  [in this case no alteration]

-  One HPO ID among the ancestors of the current HPO ID [i.e. choosing a less 

specific HPO ID than the true one]
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- One HPO ID among the descendants of the current HPO ID [i.e. choosing a 

more specific HPO ID than the true one]

- One random HPO ID [something that could be unrelated to the disease]

- Nothing [in this case the HPO ID is removed 
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Gene-HPO association estimation algorithm:

In order to estimate the correlation of a gene with the user-defined set of phenotypes

(HPO-IDs)  we  adapted  the  Maximum  Information  Content  Ancestor  (MICA)

algorithm  from  [1]. We  extended  the  MICA  algorithm  to  get  a  finer-grained

evaluation of similarities/differences among nodes of two sub-trees of the graph. With

the original MICA criterion, distance from node A to all nodes from a MICA sub-tree

not containing node A is the same. In this way the farther a node  (HPO ID) is in the

graph, the less it is considered similar.  This implementation returns similarity values

between 0 and 1 against a fixed reference value, eliminating the need to rescale every

time the algorithm is run using different terms as in [1], and making different runs

directly comparable.

In brief, we first build a graph used for calculating Gene-HPO associations in three 

steps:

 Build a directed acyclic graph (DAG) of HPO terms based on the information 

from [2]. 

 Define the information content (IC) of each node t i (i.e. HPO ID) as

I C (t i)=− log 2 (f ti ), where fti is the frequency of t i, or any of its descendants, in

the gene-HPO associations from [3]. This way, specific HPO terms associated 

with few genes have higher IC than HPO terms associated to a large number of

genes. Parental nodes typically have lower IC than their child nodes and the 

root node of the DAG has IC=0.

 All edges in the graph are weighted byE t
1
,t

2
=|( IC (t1 )− IC (t2) )|+1000*

Next, we define the similarity between HPO terms as the shortest distance between 

their nodes (t1 , t2 ), passing through the MICA of the two nodes, rescaled by the 

maximum possible distance in the graph: 

S (t1 ,t 2)=1−[ IC (t1 )+IC (t2 )−2 · IC ( MICA (t1 , t2 ) )]/( 2 ·maxt∈DG ( IC ) )
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This formula ensures a similarity of 1 when the nodes are the same, and of 0 when 

two nodes are as far as possible in graph. This formula also enables assignment of 

different similarity values to all nodes descending from MICA (a ,b ), with similarity 

decreasing when node b gets more specific.

Finally, we estimate the association between a gene G, and a disease phenotype set D,

as:

sim (Q →D )=avg(∑t
1
∈Q

maxt2∈D S (t 1 ,t 2))

Where Q is the set of HPO terms associated to the gene G, extracted from [3].

[1] Köhler, S., Schulz, M., Krawitz, P., Bauer, S., Dölken, S., Ott, C., Mundlos, C., 

Horn, D., Mundlos, S. and Robinson, P. (2018). Clinical Diagnostics in Human 

Genetics with Semantic Similarity Searches in Ontologies. Am J Hum Genet. 2009 

Oct 9; 85(4): 457–464.

[2] http://purl.obolibrary.org/obo/hp.obo

[3] http://compbio.charite.de/jenkins/job/hpo.annotations.monthly/lastStableBuild/

artifact/annotation/ALL_SOURCES_ALL_FREQUENCIES_genes_to_phenotype.txt 

* The weight correction value 1000 was chosen to statistically ensure the passage

through  the  MICA  node  when  using  an  approximation  (heuristic)  algorithm  for

calculating the path between two nodes. In brief, we applied an optimized shortest-

path algorithm, which needs to ignore the directionality of nodes to work properly,

and does not guarantee the passing through MICA. We tested the passage of MICA

empirically on 1’000’000 random node pairs. Using a weight correction value of 1000

we always obtained the same path as expected by the exact algorithm, meaning that

we expect  a  maximal  error  rate  of  1e-6.  Without  the  shortest-path  algorithm,  the

computation time would increase approximately one thousand fold.
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Supplemental Figure 1: eDiVa flowchart showing data processing from Fastq files to causal variant

lists, including read alignment, variant calling, variant annotation, pathogenicity classification, causal

variant prioritization, and output generation. eDiVA is available as stand-alone software or as a web

service.
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Supplemental Figure 2: Allele frequency distribution for variants used for training and benchmarking.

A) AF of variants in (TN) negative training set (including ClinVar ‘benign’ and random GnomAD

variants), B) AF of variants in (TP) positive training set (including ClinVar ‘pathogenic’ variants), C)

AF of HGMD variants not labeled ‘DM’ or ‘DM?’, and D) AF of HGMD variants labeled ‘DM’ or

‘DM?’.



Supplemental Figure 3: Correlation matrix for features used to train the eDiVA-Score model with each
other and with the outcome (correct labelling of TPs vs. TNs). Strong positive correlation is indicated
by dark blue (and fraction of pie chart fill-in), while strong negative correlations are indicated by dark
red (and fraction of pie chart fill-in). Strong positive correlation (although < 0.8) is observed only for
MutationAssessor and Condel, for PhastCons Primates and Mammals, as well as for PhastCons and
PhyloP. As expected no strong negative correlation between features is found. 
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Supplemental Figure 4: eDiVA-Score random forest model: A): estimated importance of features used

in the model (extracted with varImp command), and B): distribution of values for top-9 features used

in the model, comparing pathogenic variants from ClinVar against random GnomAD variants.
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Supplemental Fig. 5 : ROC curve on independent variants from HGMD (DM and DM? as pathogenic)
and 100k variants  from GnomAD as  benign  comparing  eDiVA-Score  against  all  six  conservation
scores annotated by eDiVA. We found that conservation itself is a good predictor, but integration of
different sources of information leads to substantially improved results.
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PhastCons Mammals      AUC=79.09
PhastCons Vertebrates   AUC=81.55
PhastCons Primates      AUC=73.32
PhyloP Mammals          AUC=82.97
PhyloP Vertebrates      AUC=86.16
PhyloP Primates         AUC=71.71
eDiVA                          AUC=96.35

131

132
133
134

135
136



Supplemental Figure 6: Benchmarking of pathogenicity classifiers, Precision-Recall curves on A) set

of 63,712 variants from HGMD (TP) and 100,000 from GnomAD (TN) where all tools provided a

prediction value B) set of 96,569 variants from HGMD (TP) and 100,000 from GnomAD (TN) after

setting missing prediction values to 0, C)  subset of rare variants (AF<1%) from set B.
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Supplemental  Figure  7:  Violin  plot  of  the  trio-simulations  to  evaluate  the  impact  of  1000GP
information on eDiVA results. The rank distribution is only mildly affected by the lack of population
AF information  from 1000Genomes,  demonstrating  that  the  eDiVA model  is  not  overfitted  to  AF
information from 1000GP.
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Supplemental Figure 8 : Violin plot of the trio-simulations to evaluate the impact of incomplete and
imperfect phenotyping (HPO term annotation) on eDiVA’s performance. We altered the complet set of
HPO IDs of a gene obtained from ClinVar by randomly choosing for each HPO ID among the options
i/ keep HPO ID, ii/ remove HPO ID, iii/ choose a random HPO ID, iv/ choose a random ancestor in
the  HPO  ontology,  v/  choose  a  random  descendant  in  the  HPO  ontology.  We  compared  the
performances of  eDiVA without HPO annotation  (eDiVA),  eDiVA with complete HPO annotation,
(eDiVA_HPO) and eDiVA with incomplete/imperfect  HPO annotation (HPO_imperfect). We found
that an incomplete HPO description negatively affects the ranking of causal genes, but is still superior
to prioritization without phenotypic information.
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Supplemental  Figure 9:  Distribution of  the number of  candidate genes reported by eDiVA for 35

parent-child trios affected by rare diseases.  Results are plotted separately by inheritance type and

colored by the studied disease (i.e. Ataxia, Immunodeficiency, Myasthenia). In more than 90% of the

cases eDiVA reports less than 30 candidate variants. For recessive homozygous and dominant de novo

inheritance only one to five candidates are reported in the majority of cases. Outliers in dominant de

novo inheritance mode are typically caused by low quality or low coverage WES data for one of the

parents.



Supplemental Figure 10: Distribution of the number of candidate variants reported by Phen-Gen for
35 parent-child trios affected by rare diseases. Results are plotted separately by inheritance type and
colored  by  the  studied  disease  (i.e.  Ataxia,  Immunodeficiency,  Myasthenia).  Phen-Gen  reports  a
median  of  36  candidate  genes  for  recessive  and  a  median  of  52  candidate  genes  for  dominant
inheritance modes. 
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Supplemental Tables

Supplemental Table 1: Default variant filter parameters of eDiVA used for WES analysis. Parameters

for inheritance modes supported for parent-child trios differ in maximum population AF threshold, the

zygosity requirements for each sample, and the minimum CADD score.

Filter
Recessive

homozygous
Dominant de novo

Compound
heterozygous

Maximum variant frequency in
healthy population

3% 1% 2%

Exonic or splicing function X X X

Exclude if synonymous SNV X X X

Exclude if unknown amino acid
change

X X X

Exclude if segmental duplication
> 0

X X X

CADD >=0 >19 >=0

Zygosity requirements

Child | Parent | Parent

1/1 0/1 0/1 0/1 0/0 0/0 0/1 0/0 0/1

0/1 0/1 0/0
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Supplemental  Table  2:  Number  of  semisynthetic  cases  per  inheritance  type  simulated  for

benchmarking of disease variant prioritization methods. Pathogenic variants obtained from ClinVar

have been integrated in WES data of a parent child trio (CEPH family from Coriell) to obtain a total of

6811 cases for which phenotypic information was available in form of HPO terms. Genotypes for each

inheritance mode are shown.

Inheritance
Number
of cases

Simulated genotypes

NA21891 NA12892 NA12878

Homozygous recessive 3353 0/1 0/1 1/1

Dominant de-novo 2592 0/0 0/0 0/1

Compound heterozygous1 866
0/1
0/0

0/0
0/1

0/1
0/1

1
Each compound pair is composed of two variants located in the same gene with a distance 

grater than three base pairs.
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Getting started using the eDiVA platform:

Create login at www.ediva.crg.eu     

To create a login, please specify a valid email address and choose a user name and

password. The account will be active immediately after signup and can be used to

login to eDiVA. Alternatively, a guest user is available for testing purposes. Data in

the guest user workspace may be deleted without warning. The guest account is not

intended  for  performing  analysis  on  access-restricted  data,  as  any  other  user  can

access the results.

Guest account:

username: guest

password: ediva_test
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eDiVA Analysis. 

eDiVA’s causal variant analysis consists of three steps:

  1) Uploading the variant file in VCF format,

  2) Functional annotation of the variants and ranking by eDiVA’s pathogenicity score

  3) Prioritization using segregation and clinical information (phenotypes).
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After logging into eDiVa, start with uploading the VCF file containing variants for a

single case, a parent-child trio or a larger family. Trio and family variants need to be

provided as multi-sample VCF file. The uploaded files will appear in the workspace

section, which occupies the lower half of the browser page. The workspace will also

contain all result files generated by eDiVA. 

Second, select the VCF file in drop down menu of the Step 2: Annotate section and

press the Run button. The annotation step will require a few minutes to compute and

an email is sent once the step is finished. You can also press the reload button of the

browser  after  a  few  minutes  and  the  annotated  variant  file  should  appear  in  the

workspace section.
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Third, select the annotated variant file in the drop down menu of the Step 3: Prioritize

section and press the Submit button. Pressing the Submit button of Step 3 will load a

new page for causal variant prioritization analysis.

Here, select the inheritance type for your experiment, or select ‘all’ for running all

possible analyses in one go. The following inheritance modes are supported:

 Dominant_denovo

 Dominant_inherited

 Recessive

 Xlinked

 Compound  
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Second, select the type of segregation analysis (single case, trio or family) and select

the samples that are affected by the disease. Finally, please use the text box to specify

the disease phenotypes in form of HPO terms (one HPO ID per line). Follow the link

next to the text box to use the HPO term search interface to obtain suitable HPO

terms.

Finally,  genes  can  be  excluded  from causal  variant  prioritization  by selecting  the

predefined  blacklist  containing  genes  frequently  appearing  as  false  positives  (i.e.

genes that appeared as incidental findings in many studies of different diseases). In

addition a custom blacklist  of genes can be defined, which will  also be excluded.

Press the submit button to start the analysis. This will bring the user back to eDiVA’s

workspace page, were the result file of the prioritization will be found after a few

minutes of computation. An email is sent to the user once the computation has been

finished.

The  analysis  results  will  appear  in  the  workspace  as  a  .zip  file  containing  all

processed data. The main result file is “variant_prioritization_report.xlsx” which is an

excel spreadsheet containing all candidate variants organized by inheritance type (e.g.

one sheet per inheritance type). The zipped file also contains the intermediate analysis

files in csv format containing unfiltered annotated variants, which are useful in case

no suitable candidate gene is found in the excel file. For each inheritance type there

are two main files and a result log file:
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-  filtered  .{inheritance}.csv  :  containing  the  candidate  variants  for

{inheritance}

- unfiltered.{inheritance}.csv: containing all annotated variants, specifying for

each variant the reason for being excluded or included, the HPO relatedness

score,  and  the  final  ranking  (i.e.  columns:  inheritance,  filtered,

HPO_relatedness, final rank columns).

- .job.log :  containing the execution log file for the prioritization process.

Example case 

eDiVA comes with an example case for quickly testing the tool with a few clicks. On

the homepage please click the button “Load test data” to populate your workspace

with a multi-sample VCF file. 

Next,  please  follow  the  instructions  for  variant  annotation  (step  2)  and  variant

prioritization (step 3) as described above.

In order to test the prioritization algorithm, we used a healthy trio (CEPH) and spiked

in  causal  disease  mutations  from  ClinVar  for  three  inheritance  types:  recessive

homozygous (Biotinidase deficiency), dominant de novo, (Pallister-Hall syndrome),

and  compound  heterozygous  (Familial  hypokalemia-hypomagnesemia).  In  step  3

(prioritization) please use the following subset of the ClinVar reported HPO terms for

the respective disease and inheritance types you wish to test:
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-    Recessive  homozygous:  HP:0000407,  HP:0000572,  HP:0000648,  HP:0001051,

HP:0001250,  HP:0001251,  HP:0001252,  HP:0001263,  HP:0001987,  HP:0002014,

HP:0002240, HP:0002506, HP:0008872

-  Dominant  de  novo:  HP:0000028,  HP:0000110,  HP:0001360,  HP:0001511,

HP:0004322, HP:0012165

-  Compound  heterozygous:  HP:0000128,  HP:0000848,  HP:0000934,  HP:0001250,

HP:0002027,  HP:0002900,  HP:0002917,  HP:0003127,  HP:0003324,  HP:0003470,

HP:0005567  

For each inheritance type you can run the prioritization analysis as explained before,

specifying NA12878 as affected and NA12891 and NA 12892 as unaffected. Please

include the relevant HPO terms in the text field (one HPO ID per line) to run the

analysis.
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