eAppendix for Mediational E-values: Approximate Sensitivity Analysis for
Unmeasured Mediator-Outcome Confounding
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1 BACKGROUND

Motivation

Estimates of mediated effects can be biased in the presence of unmeasured mediator-outcome confounding,
even when the total effect can be estimated without bias. Sensitivity analysis allows researchers to assess the
possible extent of the bias with some assumptions about the strength of the unmeasured confounding. Often
assumptions are also made about the functional forms of the relationships between the variables or the type

or number of unmeasured confounders.

A recent method for sensitivity analysis in this context requires none of the latter type of assumptions. Ding
and VanderWeele showed that the magnitude of bias can be bounded with just two parameters that describe
the strength of confounding.! It is intuitive to think about the magnitude of unmeasured mediator-outcome
confounding in terms of the respective strengths of the relationships between confounder and outcome and
confounder and mediator. However, this method requires the latter relationship to be defined by the association
between confounder and exposure that is induced when conditioning on the mediator (i.e., collider bias). The
magnitude of this association is likely not readily known or estimated, but previous work has suggested that it is

similar in magnitude to either the effect of the confounder on the mediator or the exposure on the mediator.!?

The purpose of this study was to investigate to what extent an alternative parameter could be used in Ding
and VanderWeele’s method to perform approximate instead of exact sensitivity analysis for natural direct and

indirect effects.

Notation and definitions

We assumed a causal structure as represented in the following diagram. We use A to denote exposure,
M mediator, and Y outcome. Measured confounders of any of the relationships are denoted C, and the

unmeasured mediator-outcome confounder(s) U.
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In the above graph, the total effect of A on Y is identifiable conditional on C', but direct and indirect effects

are only identifiable if U is measured and also conditioned on. We assume A € {0,1} but could also consider



any two levels a and a*. Similarly, U is assumed to be a single discrete random variable, but the results hold

for any continuous U or vector-valued U. (See VanderWeele and Ding, 2016.%)

We use counterfactual notation in which Y, denotes the value of the outcome under exposure A = a and
mediator M = m, and M, the value of the mediator under exposure A = a. The counterfactual Y7 . denotes
the value of the outcome under exposure A = a and under the natural counterfactual value of the mediator

under A = a*.

For simplicity we omit C from the notation in this text; however, all statements hold conditional on measured

C.

The natural direct effect on the risk ratio scale is defined as

E[YlMO]

NDEtue = BYorr]
0

which, under identifiability assumptions, can be defined in terms of probabilities as

NDE B You2om P =1A=1,M=m,U=u)P(M =m|A=0,U=u)P(U =u)
eSS S P(Y =1|A=0,M=m,U=u)P(M=m|A=0,U=u)PU =u)
Similarly, the natural indirect effect on the risk ratio scale is defined as
E[YlMl]
NIE¢rye = ’
e E[YlMo]
which we can express as
NIE B You2m P =1A=1,M=m,U=u)P(M =m|A=1,U=u)P(U =u)
eSS PY=1[A=1,M=m,U=u)P(M=m|A=0,U=u)PU=u)

If we don’t measure U, however, we don’t directly observe all of these probabilities and cannot calculate

the true direct and indirect effects. We therefore calculate NDE ¢ as
Y. PY=1|A=1,m)P(m|A=0)
NDEg,s = =™
TS P(Y=1]A=0,m)P(m|A=0)
W PO =1[A=1muPu|[A=1m)}{>  P(m|A=0uP(u)}
X P =1 A=0,mu)P(u| A=0,m)} {3, P(m|A=0uP(u)}

m|A=1u)P(u
;{;P(Y —1|A=1,m,u) ZIZ(P(WL i i 17);;()@}{;13(771 | A= o,u)P(u)}

m|A=0,u)P(u
Z{ZU:P(Y —1[A=0,m,u) ZIZ(POL i E Ov)ZE)SU)}{Zu:P(m | A= o,u)P(u)}

Pim|A=1,u)P(u
Z{ZU:P(Y —1|A=1m,u) ZU(P(; e 17)u)(P()u>}{zu:P(m | A= o,u)P(u)}

Yom 2w PY =1]A=0m,u)P(m|A=0,u)P(u)




Similarly, we observe the NIE as

Y PY=1]|A=1,m)P(m|A=1)
NIEobs = S POY=1[A=1,m)P(m|A=0)
_ Ym {2 P =1A=1muPu|A=1m)} {3}, P(m|A=1uP(u)}
Yo A P =1[A=1mu)P(u| A=1,m)}{3,P(m|A=0uPu)}

Pim|A=1,u)P(u
Z{;P(Y —1|A=1,m,u) Zu(P(TL e 17)u)(P()u)}{zu:P(m | A= 1,u)P(u)}

- m|A=1,u)P(u
;{;P(Y —1|A=1m,u) ZI:(P(?L ) i 17);(13()@}{%:13(771 | A= o,u)P<u)}

Yom 2w P =11A=1M=mU=u)P(M=m|A=1,U =u)P(U =u)

Pim|A=1,u)P(u
Z{zujp(y —1|A=1m,u) Zu(PO?'”L A 17)u>;3u)}{zujp(m | A= o,u)P(u)}

Our assumption of the unbiasedness of the total effect is illustrated by the composition of the NIE and the
NDE. Because we assume the unmeasured confounder is independent of the exposure, it doesn’t bias the total
effect, and both the true and the observed values of the mediation effects can be multiplied together to obtain
the same total effect. The bias of the NDE and NIE is therefore the extent to which the observed value in the
numerator of the NDE and the denominator of the NIE deviates from the true value. On the ratio scale, we

can express the bias of these effects as

NDEobs _ NIEtrue
NDEtrue NIEObS

bias RR =

m|A=1u)P(u
;{;P(Y —1|A=1,m,u) ZIZ(P(; 2 i 1’);(})()@}{;13@ | A= O,u)P(u)}

Yo 2w P =1|A=1m,u)P(m|A=0,u)P(u)

The NIE and NDE can also be calculated on the risk difference scale, where NDE¢,e = E[Y1a1,] — E[Yoas,]
and NIEgwe = E[Yia,] — E[Yiag]- (We use the same notation to refer to the concepts on both scales; in the
rest of the text, context will make it clear whether we refer to the risk ratio or difference scale.) Expressions
for the true and unobserved effects in terms of the joint distribution of M, Y, and U can be derived similarly.

On this scale we are concerned with the absolute bias:

bias pp = NDEgps — NDE¢ye = NIEpe — NDEqps -



Results of Ding & VanderWeele, 2016

The bias due to unmeasured confounding, as defined above, was shown to have the sharp upper bound,

which we refer to as the bounding factor (BFy;yue):

b RRavim X RRyy|a=1,m)
ias Rr < .
RRavm + RRyya=1,m) — 1

On the risk difference scale, this means that the true effects can be bounded as follows:
NDEire > Y P(Y =1[A=1mP(M=m|A= ())/BFtrue —Pr(Y =1|A=0)

and

NIEtrueZPr(Y—l|A—O)—ZP(Y—1|A—1,m)P(M—m]A—O)/BFtrue.

m

The bounding factor depends on two values. The first is straightforward:

B B max, P(Y =1 A=1,m,u)
RRovia=tan = maxRRuyjaztm) = 00X S — 1 A= Lm,u)

The second value in the bounding factor is the one we are interested in finding an alternative for, due to its

unintuitive nature:

B Plu| A=1,m)
RRavim = max max Plu| A=0,m) "

As with the rest of the text, the above parameters are also conditional on measured C' if such confounders

have indeed been included in the analysis.

Since the bounding factor is guaranteed to be greater than 1, it is of little use when the bias is less than
1; that is, when NIEqps > NIEtue and NDEgps < NDEgye. In those cases, RR 4y can be replaced by the
reciprocal of the minimum risk ratio relating A and U, conditional on M this is equivalent to recoding the

exposure.

It was further shown that, for the bias to be of large enough magnitude to explain away one of NIEgps

or NDE,s (that is, the true value is 1), RRyy|(a=1,m) and RRpy must be at least as great as RR +

\/ RR x (RR — 1), where RR refers to NIEy,s or NDE,s. This is analogous to the E-value for unmeasured
confounding,® and we refer to it as the mediational E-value. If the bounding factor successfully bounds the
bias using some other parameter than RR s75/, then the mediational E-value can also be used to describe the

necessary magnitude of that alternative parameter as well.

Note that if any such bounding factor successfully bounds the bias on the risk ratio scale, it will also do so

on the risk difference scale, and vice versa.



Possible alternative parameters for the bounding factor

We considered a number of other parameters as possible alternatives for RR oy7ja7. If an alternative parameter
is greater than RR 4717, then the bounding factor constructed with that parameter will also be greater than
the true bounding factor, and will therefore bound the bias. In a similar setting but on the odds ratio scale,
Greenland showed that the magnitude of the bias due to conditioning on M tended to be smaller than the
conditional relationships between A and M given U and between U and M given A.2 This result led us to
investigate the feasibility of using in the bounding factor risk ratios relating A and M, both marginally and
conditionally on U, as well as risk ratios relating U and M. For both the A — M and U — M values, we chose
the maximum of four subsets: first, the marginal risk ratios; second, the marginal risk ratios for M =1 (i.e.,
excluding those relating probabilities for M = 0 in different strata); third, the stratified risk ratios; fourth, the

stratified risk ratios for M = 1.

max, P(M =m | A=a)
R pu—
Ram max min, P(M =m | A=a)
max, P(M =1|A=a)
min, P(M =1|A=a)
max, P(M =m | A=a,U=u)
RR =
AM|U = Maxmax ming P(M =m | A=a,U = u)
_ max, P(M =1|A=a,U = u)
RRap=1r = max ming P(M =1|A=a,U =u)
B max, P(M =m | U = u)
RRUM—mn%x min, P(M =m | U = u)
max, P(M =1|U =u)
min, P(M =1|U =u)
B maXuP(M:m|A:CL7U:U)
RRymia = max max min, P(M = m|A = a,U = u)
_ max, P(M =1]A=a,U = u)
RRyp=11a = max min, P(M =1 | A=a,U = u)

RRam=1 =

RRym=1 =

Though we considered these eight options, our focus was on RRy7p7—1|4 as it intuitively describes the strength
of confounding via the relationship between U and M, with obvious analogy to RRyy|(a=1,a)- If the bounding
factor using RRy =114 and RRyy|(a=1,m) bounds the bias, we can use the mediational E-value to describe
the relative increase in risk of the mediator comparing any two values of the unmeasured confounder, within
strata of exposure (and measured confounders), that would be necessary to explain away NIEg,s or NDEgps

(along with an equivalent increase in risk of the outcome).

In the case that M is not binary, the RRyp4 parameter could be used instead. However, we chose to
focus on RRyrpr—1j4 as a more conservative (as well as intuitive) choice; any time a bounding factor that uses

it bounds the bias, one using RRypr4 would as well.



2 METHODS

Data generation

We generated the necessary conditional probabilities of binary M, Y, and U to calculate the NIE¢ e,
NDE¢ e, and the bias of their observed values (see Section 6 for a list of these probabilities). As in the text
above, the joint distribution of the variables can be further assumed to be conditional on measured confounders
C'. For our main analysis we drew each of these probabilities independently from a Uniform(0,1) distribution.
We then used these probabilities to compute the NIE4 ue, NDEirue, NIEqLs, NDEghs, and the bias on both the
risk ratio and risk difference scales. We repeated this 5,000,000 times. We refer to the data generated in this

way as probabilities drawn from uniform distribution with no interaction restriction.

Other data-generating distributions

Allowing the probabilities to vary over any range results in many unrealistic situations, so we considered

several possibly more plausible restrictions.

Because the direction of the bias due to unmeasured confounding is influenced by the direction of the various
effects (see Section 4), we subsetted the data to those scenarios for which the direction of effects was constant
across strata. That is, we restricted the data to the ~ 11% with no qualitative interaction by U of the A — M
relationship, by A of the U — M relationship, by U of the M —Y relationship, or by M of the U —Y relationship.

We refer to this data as probabilities drawn from uniform distribution, restricted to no qualitative interaction.

Next, we redrew probabilities assuming a log-linear model for M with no interaction term. This corresponds

to the following model:

log(P(M =1|A=0a,U=u))=po+ fia+ Pou.
We forced the probabilities for M to fit the model by drawing three out of the four necessary values P(M =
1| A=a,U=u) from a Uniform(0,1) and then calculating the fourth based on the relationship

P(M=1|A=1,U=0) P(M=1|A=1,U=1)

PM=1]A=0,U=0) PM=1]A=0,U=1)"
Which of the four probabilities was to be missing was chosen randomly, and a set of probabilities was removed
ifany P(M =1 | A=a,U =u) > 1. We repeated this process so that we would have approximately 5,000,000
sets of probabilities. We then computed the true and observed effects and the bias, as above. We refer to this

data as that with a log-linear model for M.



As with the original data, we also separately restricted the dataset to the ~ 33% with no qualitative
interaction of any of the relationships (no interaction of U and A on M is implied by the model). We refer to

this data as that with a log-linear model for M, restricted to no qualitative interaction.

Comparisons

For each of the samples in the simulation, we computed the bias of the risk ratio as NDEgps/NDE .. We
know the bounding factor BFy,,e is greater than this value; we wished to see what proportion of the alternative
bounding factors were also greater than this bias. To do so we then computed the bounding factor with the true
RR 4p|m parameter and each of the possible alternatives. The true RRyy|(a=1,3r) was used in this calculation

for both the true and alternative bounding factors.

Finally, we compared how well the alternative bounding factors worked, evaluating in each case whether
the bounding factor was greater than the bias (which we inverted if less than 1), or, on the risk difference
scale, whether the correction with the bounding factor was greater than the absolute value of the bias. We
also assessed whether each of the alternative RRs was greater than RR 4yas (which would guarantee that the

bounding factor too was greater than BFye).

3 RESULTS

Overall results

As expected, there was no alternative parameter that could be used to create a BF that provided a bound
to the bias in all scenarios. However, the bound failed in only a small proportion of cases for several of the
alternative parameters (see eTable 1 for exact proportions), and under certain conditions for the data-generating

distribution, there were two that led to a true bound (see Section 4 for some analytic results).

Results using RRy7)/—1|4 in bounding factor

Although it did not consistently bound the bias, the BF constructed using RRyp—1ja (BFyar=1j4) is of
particular interest, as it more intuitively corresponds to the magnitude of the unmeasured confounding. eTable
1 shows that the bound failed in only 0.65% of cases (0.46% in situations with no qualitative interaction). The
number of failures was slightly higher among data that conformed to a log-linear model for M, at 2.18% overall

and 2.11% when restricted to no qualitative interactions of U and M on Y.

eFigure 1 shows the distribution of the true and alternative bounding factors in relation to the magnitude
of the bias. On average, the alternative bound was larger than the true on average, and the discrepancy

7



appeared larger when the joint distribution of the variables did not allow for qualitative interaction. However,
the direction of that relationship was not consistent; the alternative bound was of course smaller than the true
bound in the cases in which it was also smaller than the bias. There did not seem to be a particular magnitude
of bias at which the alternative bounding factor was more or less likely to fail under any of the data-generating

distributions.

That the strength of the bound was similar when constructed with the alternative parameter compared to
the true parameter is also demonstrated by eFigure 2. Overall, BFtye and BFyrp—14 corrected the mediated
effects to a similar extent on both the risk ratio scale. Ideally, the ratio of the corrected to true effect would
be 1; for bias of small magnitudes, BFyj/—1 4 tended to be weaker, so that the correction went too far. When
the bias was larger, it was more likely that the correction was not sufficient (i.e., it did not always successfully
bound the bias). The latter was more likely to be the case when M was generated according to a log-linear

model.

As shown in eTable 2, undercorrection (failure) by BFr3/—14 occurred less than 1% of the time when the
bias was less than 1.5 (on the ratio scale), less than 5% of the time when the bias was between 1.5 and 2, and
less than 10% of the time when the bias was greater than 2. On the additive scale (eTable 3), this corresponded

to less than 1% of the time when the bias was greater than 0.1.

When M was generated according to a log-linear model, undercorrection occurred slightly more frequently
and at smaller magnitudes of bias. On the risk difference scale, this meant that up to 10% of the time the
bound failed when the bias was greater than 0.1. In all scenarios, when BFy5/—1 4 did succeed in bounding

the bias, it was slightly more likely to be weaker than BF,e, resulting in greater overcorrection.

Even when BFyp/—;)4 failed, most of the time correcting with it left little residual bias (eFigure 3). In each
of the analyses, 80% of the time the bias remaining after correction was less than 1.2 (on the risk ratio scale).

Over 60% of failures resulted in residual bias of less than 1.1.

Similarly, on the risk difference scale, where the true mediated effect was subtracted from that corrected by
BFyar=1)a, the residual bias was minor. In situations with no qualitative interaction, over 70% of the time the
remaining bias was less than 0.05 on the difference scale when the bound failed, and over 90% of the time it

was less than 0.1 (eTable 4).



4 ANALYTIC RESULTS

True bounds using alternative parameters under certain conditions

Under somewhat mild conditions, both RRyari4 and RR gpsp can be shown to be greater than RR s7ar-
Since the BF is monotonically increasing in both RR parameters, replacing RR 4y7ps with either RRypz4 or

RRanu can in those cases result in an adequate, if weaker, bound.

We can rewrite

B Plul] A=1,m)
RRavim = max max Plu| A=0,m)

e {Pa =t} [ {Hao

For the BF with RRyrp4 to always work, we need to show that

S P(m|A=1,u) Pm|A=1) <P(M:m’\A:a’,U:u’)
m s \(P(m [ A=0,u) Pim|A=0)] ~P(M=m'|A=d,U =u")

for some m’,a’,u’, and u”.

Assume that m and wu indicate the values at which the left-hand side is maximized. In the case of the
binary U, letting u* denote the other value of U, which occurs with probability 1 — P(u), we can rewrite the

expression:
P(M=m|A=0,U=u)
{ P(M =m| A=0) }
PMM=m|A=1)
{P(M:m\Azl,U:u)}
_JPw)PM=m|A=0,U=u)+(1—-P(u)P(M=m|A=0,U=u")
_{ PM=m|A=0,U=u) }

PwPM=m|A=1U=u)+(1—-Pw)P(M=m|A=1,U=u")
{ PM=m|A=1,U=u) }

oo Az /

{P(U) +(1 —P(u))P(M:m | A= LU:u*)}

PM=m|A=1U=u)
Because we have said that the values m and u are those which maximize this expression, this implies that

P(M=m|A=0,U = u*)
P(MM=m|A=0,U=u)

P(M=m|A=1U=u"
PM=m|A=1U=u)

>



Denote with RRg and RR; the values % for A = 0,1, and RR" the value of RRyps14. We are

therefore trying to show that
P(u) + (1 — P(u))RRyg

P(u) & (1= P(u))RR, = % -

We can rewrite that expression
P(u) 4+ (1 — P(u))RRo < (P(u) + (1 — P(u))RR;)RR*
so that
P(u)(1 —RR")+ (1 — P(u)) (RRp — RR;RR*) < 0.

We can guarantee that the first term is not positive because there is clearly some RRyp4 > 1. In order for

the second term to be as well, so that their sum < 0, we need that RRg < RR{RR".

In the original notation, we can write that expression

P(IM=m|A=0,U=u")
P(M=m|A=0,U =)

P(M=m'|A=d,U="1)
P(M=m'|A=d,U=1u")

>
P(M=m|A=1,U=u")

PMM=m|A=1,U=u)

The condition required for this to hold is that the direction of the effect of RRrpr)4 is the same across values
of A; that is, that there is no qualitative interaction for the effect of U on M by A. In that case, we know that
the risk ratios in the numerator and the denominator of the right-hand side are either both > 1 or both < 1.
In the case where they are both > 1, take the left-hand side to be the numerator for the inequality to hold.
In the case where they are both < 1, take the left-hand side to be the inverse of the denominator. Under the

condition of no qualitative interaction by A, there is always a value of RRyyps14 such that RRyas4 > RR gy u-

Similarly, such a value of RR 4y is guaranteed when there is no qualitative interaction by U on the effect

of A on M. We can see this by ordering

P(M=m|A=1)
P(M=m|A=0)

PIMM=m|A=1U=u)
PM=m|A=0,U=u)

1<P(]\4:m|A:1,U:u)

<
“PM=m|A=0,U=u)

<

or
1>P(M:m\A:1,U:u)>P(M:m\A:1)>P(M:m\A:1,U:u*)
“TPM=m|A=0U=u) " PM=m|A=0) " P(M=m|A=0,U=u*)

One of these must hold if the no qualitative interaction condition holds, and the values m and u are those

R = mpempe {214 L0) /(000421

which maximize

10



If the numerator and denominator are both > 1, clearly RR oy = EE%;ZIQ:&UZZ;

P(M=m|A=0,U=u*)
P(M=m|A=1,U=u*)

satisfies RRAM|U >

RRp|ay- If the numerator and denominator are both < 1, then can be chosen so that

RRanu = RRav -

In conclusion, replacing RR 4p(ys in the bounding factor with RRyaza will be guaranteed to bound the
bias if the direction of the U-M effect is consistent across levels of A, and the same is true with RR 45/ as
a replacement if the A-M effect is consistent across levels of M. However, both of these parameters are less

intuitive with binary M than RRyp—1j4-

Direction of confounding

Unlike with a simple exposure-outcome relationship, the direction in which the NIE and the NDE are biased

due to unmeasured confounding of a mediator-outcome relationship is not necessarily intuitive.

However, we can look at the directions of the A — M, U — M, and U — Y relationships to predict the
direction of the bias. For simplicity, we will consider only situations in which the directions of the effects are
constant across strata of the other variables (qualitative interactions are generally more unpredictable in terms
of direction). If the A— M relationship is a “positive” relationship (thatis, P(M =1 A=1,U =u) > P(M =
1| A=0,U = u)), the NIEy, is generally overestimated (on an absolute scale — that is, NIEq,s > NIE¢;e)
when the direction of the U — M and U — Y effects are in the same direction (either both positive or both
negative) and underestimated with the two U effects are in opposite directions. If the A — M relationship is
negative and the two U effects are in the same direction, the NIE., is generally underestimated; it tends to

be overestimated if they are in different directions.

However, because the bias depends on the probabilities for M = 0 as well as those for M = 1, in order for
the bias to be guaranteed to go in the expected direction, we also must require that the “interaction” terms

for both M =1 and M = 0 are in the same direction. In other words, if

P(M=1|U=1A=1) PM=1[U=1A=0)
PMM=1|U=0,A=1) P(M=1|U=0,A=0)

then we need that
P(M:O|U:1,A:1)<P(M:0|U:1,A:0)
PM=0|U=0,A=1) PM=0|U=0,4A=0)

or vice versa with respect to the inequalities. We could also write the requirement as:
if RRyyrja=1 > RRyaja=o , then RRyja—1 > RRyjzja—o

and

if RRymia=1 < RRyja=o , then RRyypa—1 < RRyjrja—o

11



where Rz 4=, refers to the risk ratio of U on M = 0 for a given value of A. If neither of the two conditions

holds, the bias is likely but not guaranteed to be in the expected direction.

However, if the M = 0 relationship is in the opposite direction as the one that guarantees the confounding

direction as expected, then the BF using RRypr4—1 is guaranteed to hold.

For a given U — M direction of effect, only one of the sets of inequalities is possible. If the RR;; M|A=q I8 In
the opposite direction as the one that guarantees the expected direction, even though the direction of the bias

is not guaranteed, the BFyrp7—1)4 is guaranteed to hold.

Whether the over- or underestimation of the NIE,  results in a bias toward or away from the null value
of 1 depends of course on whether NIE{ . < 1 or NIE,, > 1. The direction of NIE,,c depends on the
A — M relationship and the M —Y relationships; if they are in the same direction, NIE;4e > 1, and if different

directions, NIEi; < 1.

Continuous M and U

We have considered binary M and U in the rest of the text and in the numerical analysis, as coarsened
versions of variables are often measured and analyzed in epidemiology and because it is often easier to concep-
tualize an unmeasured and hypothetical U as the variable that distinguishes between the highest and lowest
risk groups. We will show that when these variables are continuous, the bound may be less useful, and fur-
thermore that a bounding factor with an alternative parameter is trivially equal to that constructed from the

true RR gp|p parameter.

Let
M A p 1
~ Multivariate Normal ,
U 0 1 p
Then
U | m ~ Normal (p(m — A),1 — p?)
and

M]uNNormal(A—i—pu,l—pz) .

Because M and U are continuous, for the RR qyps and RRypr4 parameters we consider the generalized

relative risks
PU<u|A=1m)
PU<u|A=0,m)

RR Ay |p = maxmax
m u

12



and

RR . max, P(M <m|A=a,U=u)
UM|A T IEXINAX min, P(M <m|A =a,U = u)

In each case, the RR parameters are ratios of cumulative distribution functions of normal random variables
with different means but the same variance. In the numerator of RR 4y the mean is p(m — 1) and in the
denominator it is pm. In the numerator of RRyps4 the mean is a + pu and in the denominator it is a + pu*
where u # u*. Unless p = 0 (in which case U and M are independent, and U is not a confounder), there is no
finite maximum for either of the ratios. In this case, as one of the parameters in each is infinite, both the true
bounding factor and its alternative are simply RRyy|(a=1,a)- However, further statements about approximate
bias can be made in this context by considering all possible coarsenings of confounders that reduce bias to
within a small threshold of the true effect, with reasoning analogous to what is possible with E-values for total

effects (cf. VanderWeele et al., 2019%).

5 TABLES AND FIGURES

eTable 1: Frequencies in the various datasets with which the possible alternative parameters compared ade-
quately with the true RR 4737 parameter, and with which the bounding factor constructed with the alternative
parameter failed to bound the bias. The four columns refer to the four sets of data-generating assumptions:
uniform probabilities, a log-linear model for M, as well as a restriction to no qualitative interaction within
each.

Alternative RR > RR gy m Bias > bound
P(M|A,U) uniform  P(M|A,U) log-linear P(M|A,U) uniform  P(M|A,U) log-linear
Alternative Full Restricted Full Restricted Full Restricted Full Restricted

RRAvim 0.000000  0.000000  0.000000  0.000000
RRan 0427670 0.772424  0.869336  0.869013  0.106455 0.000581  0.001158  0.000376
RRam=1 0.335555 0.643411 0.759864  0.759529  0.147954  0.007304 0.005953  0.004846
RR Ay 0.856301  1.000000  1.000000  1.000000  0.000003  0.000000  0.000000  0.000000
RRAp=1py 0.670154  0.858100  0.759864  0.759529  0.003230  0.001315  0.005953  0.004846
RRya  0.418313  0.724908  0.828754  0.828197  0.120022  0.012376  0.012299  0.011695
RRym=1 0.331758 0.603611 0.747872 0.747164 0.165460 0.033009  0.021784  0.021057
RRyaa  0.865605  1.000000  1.000000  1.000000  0.000004  0.000000  0.000000  0.000000
RRyp=11a 0.663726  0.854724  0.747872  0.747164  0.006508  0.004635  0.021784  0.021057

eFigure 1: 10,000 randomly sampled pairs of bounding factors (BFtrueand BFyp/—1j4 for the same distri-
bution) relative to the actual bias (on the risk ratio scale). The further a point is from the diagonal line, the
weaker that bound is. The alternative bounding factors below the diagonal are smaller than the bias, so did
not successfully bound it.
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Bounding Factor

Bounding Factor

eFigure 1A. Probabilities drawn from uniform distribution
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eFigure 1B. Uniform probabilities, restricted to no qualitative interaction
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14



eFigure 1C. Log-linear model for M
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eFigure 1D. Log-linear model, restricted to no qualitative interaction
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eFigure 2: The extent of the overcorrection of the true bias by BF};ue is shown in red as the ratio of the
corrected to true NIE (on the risk ratio scale); values of 1 indicate perfect correction (note axis on log scale).
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There is no case in which the ratio of the corrected NIE to true NIE is on the wrong side of 1, because BF ;e
bounds the bias. However, because BFyp/—14 (whose corrected/true ratio is in blue) is not a true bound for
the bias, in some cases it fails to correct for it fully, particularly when the bias is large. Also, when the bias is
small, it tends to overcorrect relative to the true BF i ye.

eFigure 2A. Probabilities drawn from uniform distribution (RR scale)

BiasM: [1,1.05) BiasM: [1.05,1.15) BiasM: [1.15,1.3) BiasM: [1.3,1.5) BiasM: [1.5,2) BiasM: [2,Inf)
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eFigure 2B. Uniform probabilities, restricted to no qualitative interaction (RR scale)

BiasM: [1,1.05) BiasM: [1.05,1.15) BiasM: [1.15,1.3) BiasM: [1.3,1.5) BiasM: [1.5,2) BiasM: [2,Inf)
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eFigure 2C. Log-linear model for M (RR scale)
BiasM: [1,1.05) BiasM: [1.05,1.15) BiasM: [1.15,1.3) BiasM: [1.3,1.5) BiasM: [1.5,2) BiasM: [2,Inf)
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BF . True . Alternative
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eFigure 2D. Log-linear model, restricted to no qualitative interaction (RR scale)

BiasM: [1,1.05) BiasM: [1.05,1.15) BiasM: [1.15,1.3) BiasM: [1.3,1.5) BiasM: [1.5,2) BiasM: [2,Inf)

1T 11 ¢ ¥ ¢
FrErrTT

0.1 10.00.1 10.00.1 10.00.1 10.00.1 10.00.1
Corrected NIE/True NIE

BF . True . Alternative

pajewsalono JIN

pejewnsaiepun J|N

eTable 2: Distribution of the ratios of corrected to true NIE on the risk difference scale (inverted if NIE
overestimated) overall and in strata defined by the magnitude of the bias (intervals in top row). NIEs have
been corrected by both BFyye and the alternative BFyp—14. Values below 1 indicate that the corrected NIE
did not fully correct for the magnitude of the unmeasured confounding. Values much greater than 1 indicate
that the NIE has been extremely overcorrected.

eTable 2A. Probabilities drawn from uniform distribution (RR scale)
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Overall [1, 1.05) [1.05, 1.15) [1.15, 1.3) [1.3, 1.5) [1.5, 2) [2, 00)
%ile True Alt. True Alt. True Alt. True Alt. True Alt. True Alt. True Alt
st 1.01 101 1.00 1.02 1.02 103 1.04 1.00 1.05 094 1.06 0.83 1.08 0.58
5th  1.03 1.07 1.02 1.05 1.06 1.11 1.09 1.12 1.12 1.10 1.14 1.05 1.16 0.86
10th 1.06 1.12 1.03 1.09 109 116 114 120 1.17 1.20 1.21 1.18 1.24 1.05
25th  1.15 126 1.09 1.19 1.19 1.32 1.27  1.39 1.33 1.43 1.39 145 1.45 1.41
50th 137 158 1.24 142 142 1.65 1.56 1.79 1.67 1.88 1.77  1.95 1.90 1.99
75th  1.87 225 160 194 191 234 217 261 237 278 256 292 282 3.08
90th 2.86 3.53 235 293 288 3.66 335 418 3.73 448 4.08 4.77 456 5.14
95th 397 497 319 404 398 513 468 590 521 640 580 6.84 6.46 7.36
99th &8.63 10.96 6.82 868 &.60 11.26 10.21 13.18 11.41 14.47 1294 15.28 14.33 16.46
eTable 2B. Uniform probabilities; restricted to no qualitative interactions (RR scale)
Overall [1, 1.05) [1.05, 1.15) [1.15, 1.3) [1.3, 1.5) [1.5, 2) [2, o0)
%ile True Alt. True Alt. True Alt. True Alt. True Alt. True Alt. True Alt.
1st 1.00 1.01 1.00 1.02 1.01 1.03 1.02 097 1.03 0.88 1.03 0.74 1.04 0.48
5th  1.01 1.06 1.01 1.05 1.03 1.14 1.05 1.13 1.07 1.04 1.08 0.92 1.10  0.66
10th 1.02 1.10 1.01 1.08 1.06 1.22 1.09 125 1.11 1.19 1.13 1.08 1.15 0.83
25th 1.06 122 104 1.17 112 139 1.18 150 123 1.54 127 1.52 1.30 1.30
50th 1.18 1.49 1.12 137 127 173 138 196 148 2.08 1.57 214 1.68 2.25
75th  1.44 205 132 178 160 241 183 284 2.03 312 218 328 244 3.57
90th 198 3.11 1.71 256 225 371 270 451 3.08 503 334 534 393 5.69
95th 2.60 4.30 2.16 342 298 5.16 3.67 634 426 7.14 467 782 6.00 8.02
99th 5.25 9.25 4.05 697 6.25 11.24 7.70 13.97 &89 16.58 10.93 18.66 13.51 20.30
eTable 2C. Log-linear model for M (RR scale)
Overall [1, 1.05) [1.05, 1.15) [1.15, 1.3) [1.3, 1.5) [1.5, 2) (2, 00)
%ile True Alt. True Alt. True Alt. True Alt. True Alt. True Alt. True Alt.
1st 1.00 0.95 1.00 1.00 1.00 095 101 086 101 076 1.01 0.61 1.02 0.27
5th  1.00 1.01 1.00 1.01 1.01 1.02 1.02 094 1.03 083 1.04 0.70 1.06 0.43
10th 1.00 1.03 1.00 1.03 1.03 1.07 1.04 100 1.06 090 1.07 0.76 1.10 0.51
25th  1.01 1.09 1.01 1.08 1.07r 123 1.11 1.19 1.13 1.08 1.17 094 1.22 0.67
50th 1.07 128 1.04 123 1.18 153 127 159 133 148 139 1.33 1.51 1.00
75th  1.24 1.70 1.16 157 146 2.13 165 237 177 231 189 214 212 1.74
90th 1.64 2.56 145 227 203 327 244 382 268 393 289 371 332 3.16
95th 2.11 3.51 1.80 3.05 268 454 332 540 3.72 572 4.02 544 475 4.78
99th 4.14 7.52 329 632 544 984 6.95 12.03 7.92 12.69 893 12.19 10.42 11.58

eTable 2D. Log-linear model, restricted to no qualitative interaction (RR scale)
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Overall [1, 1.05) [1.05, 1.15) [1.15, 1.3) [1.3, 1.5) [1.5, 2) (2, 00)
%ile True Alt. True Alt. True Alt. True Alt. True Alt. True Alt. True Alt.

1st 1.00 096 1.00 1.00 101 095 101 08 1.01 076 1.01 061 1.03 0.30

5th 1.00 1.01 1.00 101 102 1.01 1.03 093 104 0.83 1.04 070 1.06 044
10th 1.00 1.02 1.00 1.02 1.03 106 105 099 1.06 0.8 107 076 1.10 0.51
25th 1.01 1.08 1.01 1l.07 107 1.21 1.11 116 114 106 1.17 0.92 1.22 0.66
50th 1.06 1.25 1.04 121 119 150 126 152 132 141 139 128 147 0.96
75th 122 163 1.14 151 146 207 163 225 173 213 183 199 202 1.62
90th 1.58 2.37 1.40 212 203 3.12 238 3.59 256 3.59 278 331 3.10 2.86
95th 2.00 3.21 1.71 280 268 430 324 5.05 353 530 383 479 427 424
99th 381 6.72 299 564 537 9.09 6.77 1093 7.62 12.13 8.08 10.52 880 8.93

eTable 3: Distribution of the absolute value of the differences between corrected and true NIE overall and
in strata defined by the magnitude of the bias (intervals in top row). NIEs have been corrected by both BFy,e
and the alternative BFyp/—1)4. Values below 0 indicate that the corrected NIE did not fully correct for the
magnitude of the unmeasured confounding.

eTable 3A. Probabilities drawn from uniform distribution (RD scale)

Overall [0, 0.005) [0.005, 0.01) [0.01, 0.025) [0.025, 0.05)  [0.05, 0.1) [0.1, 00)
%ile True Alt. True Alt. True Alt. True Alt. True Alt. True Alt. True Alt.

1st 0.00 0.00 0.00 o0.01 0.00 001 0.01 o001 0.01 001 001 0.00 0.02 -0.05

5th 0.01 0.03 0.00 0.02 0.01 0.03 002 0.03 002 004 0.03 0.04 004 0.03
10th 0.03 0.05 0.01 0.03 0.02 0.04 003 0.05 0.04 0.06 0.05 0.07 0.06 0.06
25th  0.06 0.10 0.02 0.06 0.04 0.08 0.05 0.10 0.07 0.11 0.09 0.13 0.11 0.13
50th 0.13 0.19 0.07 0.13 0.10 0.16 012 0.18 0.15 0.21 0.17 023 020 0.24
75th  0.27 037 0.18 026 021 030 024 034 028 039 033 043 041 0.51
90th 0.55 0.76 0.37 0.51 041 057 046 065 055 0.78 0.67 094 096 1.21
95th 096 130 0.60 081 0.67 093 077 1.09 092 130 114 157 1.62 2.03
99th 280 3.59 1.87 231 202 262 229 301 265 354 318 422 436 5.46

eTable 3B. Uniform probabilities; restricted to no qualitative interactions (RD scale)

Overall [0, 0.005) [0.005, 0.01) [0.01, 0.025) [0.025, 0.05) [0.05, 0.1) [0.1, o0)
%ile True Alt. True Alt. True Alt. True Alt. True Alt. True Alt. True Alt.

1st 0.00 0.01 0.00 0.01 o0.00 0.01 000 002 0.01 001 0.01 -001 001 -0.08

5th  0.01 0.03 0.00 0.01 0.01 0.03 001 004 0.02 005 0.02 005 0.02 0.00
10th 0.01 0.04 0.00 0.02 0.01 0.04 0.02 0.06 0.02 0.08 003 0.09 0.03 0.06
25th  0.03 0.09 0.01 0.05 0.02 0.08 0.03 010 005 0.14 0.06 0.16 0.07 0.15
50th 0.07 0.17 0.04 0.11 0.06 0.14 0.08 0.18 0.10 023 013 027 0.15 0.28
75th  0.16 0.32 0.10 0.21 0.13 0.27 0.15 033 020 041 024 048 032 0.53
90th 0.30 0.60 0.21 040 024 048 028 058 035 076 044 099 0.67 1.25
95th 044 098 031 059 035 073 040 092 050 125 0.67 1.63 1.08 2.08
99th 1.18 275 0.78 156 0.85 196 099 252 127 345 186 437 3.02 585
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eTable 3C. Log-linear model for M (RD scale)

Overall [0, 0.005)  [0.005, 0.01) [0.01, 0.025) [0.025, 0.05) [0.05, 0.1) [0.1, c0)
%ile True Alt. True Alt. True Alt. True Alt. True Alt. True Alt. True Alt.
1st 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 -0.02 0.00 -0.05 0.00 -0.23
5h 000 000 000 000 0.00 0.01 000 0.02 001 001 001 -0.02 0.01 -0.12
10th 0.00 0.01 0.00 0.01 0.00 002 0.01 003 0.01 003 0.01 001 0.02 -0.08
25th  0.01 0.04 0.00 0.02 0.01 0.06 0.02 007 003 0.09 004 008 0.04 0.01
50th 0.03 0.11 0.01 0.07 0.03 0.12 005 0.15 0.07r 0.18 009 019 009 0.13
75th  0.09 023 0.04 0.16 0.09 023 012 028 016 034 0.19 038 021 0.31
90th 0.21 046 0.12 034 019 044 024 052 029 065 035 079 045 0.65
95th 032 074 020 052 030 069 035 083 044 108 054 136 073 1.21
99th 0.84 216 053 1.49 0.74 1.97 0.89 2.35 1.12 291 1.37 3.72 2.03 3.66
eTable 3D. Log-linear model, restricted to no qualitative interaction (RD scale)
Overall [0, 0.005)  [0.005, 0.01) [0.01, 0.025) [0.025, 0.05) [0.05, 0.1) [0.1, c0)

%ile True Alt. True Alt. True Alt. True Alt. True Alt. True Alt. True Alt.

1st 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 -0.02 0.00 -0.05 0.00 -0.21
5h 000 000 000 000 0.00 001 000 001 o0.01 001 0.01 -0.02 0.01 -0.11
10th 0.00 0.01 0.00 0.01 0.00 002 0.01 003 0.01 003 0.02 0.00 0.02 -0.07
25th  0.01 0.04 0.00 0.02 0.01 0.05 0.02 007 003 008 004 007 004 0.01
50th 0.03 0.10 0.01 0.06 0.03 0.11 0.05 0.14 0.07r 0.18 0.08 0.18 0.09 0.12
75th  0.08 0.22 0.04 0.14 0.08 0.22 0.11 027 016 033 019 036 023 0.30
90th 0.19 042 0.10 0.30 0.17 040 022 048 029 060 037 072 052 0.63
95th 0.29 064 0.16 046 026 0.60 032 0.74 042 095 055 1.22 0.87 1.15
99th 0.71 1.84 039 1.27 057 165 0.73 2.03 1.05 2.52 1.50 3.24 242 343
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eFigure 3: Residual bias when BFp/—1)4 fails. Values near the diagonal indicate that almost none of the
bias has been removed after correcting the effects with BFyrp/—114. However, the vast majority have little bias
remaining after correction, as illustrated by the values of the deciles of residual bias.

eFigure 4A. Probabilities drawn from uniform distribution
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eFigure 4B. Uniform probabilities, restricted to no qualitative interaction
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Residual bias (log scale)

Residual bias (log scale)

eFigure 4C. Log-linear model for M
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eFigure 4D. Log-linear model, restricted to no qualitative interaction
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eTable 4: Distribution of the residual bias of on the risk difference scale after correction by BFypr—q)a,
among those cases in which the bound failed. That is, the first value in the first column shows that at least
10% of the time that the alternative bound failed, the corrected effect was less than 0.002 from the true effect.

Uniform probabilities Log-linear model

%ile No restriction No qualitative interaction No restriction No qualitative interaction

10th 0.002 0.002 0.001 0.001
20th 0.005 0.004 0.003 0.003
30th 0.009 0.008 0.007 0.005
40th 0.014 0.012 0.011 0.009
50th 0.020 0.017 0.017 0.014
60th 0.028 0.025 0.025 0.021
70th 0.040 0.035 0.038 0.031
80th 0.059 0.051 0.057 0.048
90th 0.096 0.079 0.096 0.079
Maximum 0.537 0.449 0.656 0.542
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6 COMPUTING CODE

The results can be replicated using the R code in this document. The code is also available at https:

//github.com/louisahsmith /mediational-e-values.

The size of the simulation can be controlled by the object N. Note that large N (e.g., greater than the
5,000,000 to produce the results in this paper) requires several hours of computing time and may overload a

personal computer.

In the code, the variable names correspond to the following probabilities:

b=P(M=1A=1,U=1)
c=P(M=1A=1,U=0)
d=P(M =1A=0,U=1)
e=P(M=1/A=0,U =0)
f=P(Y=1A=1,U=1,M=1)
g=P(Y=1A=1,U=1M=0)
h=P(Y =1A=1,U=0,M=1)
i=PY =1A=1,U=0,M =0)
j=P(Y=1A=0,U=1,M=1)
k=P(Y =1A=0U=1,M=0)
1=P(Y=1A=0,U=0,M=1)

n=P(Y =1]A=0,U=0,M =0)

(Strictly speaking, the bias we are interested in does not depend on P(Y =1| A =0, M = m,U = u) for any
m or u, but we included those values in order to calculate the true and observed NDEs and not just their ratio.
The marginal probability of the exposure, P(A = 1), is only useful for the calculation of one of the possible

RR alternatives and also does not directly factor into the bias or the effect sizes.)

For simplicity, we also computed the probabilities of each of A, M, U, and Y taking on values of 0. Since we
assumed that each is binary, P(U =0) = 1-P(U =1),P(M =0|A=1,U=1)=1-P(M =1A=1,U =1),

etc. In the code, those values are referred to as a_comp, b_comp, etc., for each of the above letters.
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The alternative RRs are labeled as follows:

RRau = RRAU|M
RRuy = RRyy |a=1,m)
RRam = RR 4p/
RRam_no0 = RR4p—1
RRam_strat = RR v
RRam_strat_no0 = RRAM:1|U
RRum = RRy s
RRum_noO = RRyy—1
RRum_strat = RRUM‘A

RRum_strat_no0 = RRUM:1|A

The following code was used to run the simulation and produce the tables and figures in the eAppendix.

File: functions.R

if (!lrequire("tidyverse")) {install.packages("tidyverse"); library(tidyverse)}
if (!require("xtable")) {install.packages("xtable"); library(xtable)}

# function for bounding factor from any two RRs
BF_func <- function(RRa, RRb) {

RRa * RRb / (RRa + RRb - 1)
b

# function to create dataset with NIE, NDE (true and observed), bias, etc.
# N: number of samples to draw

# loglin: whether M should be drawn according to loglinear model
make_data <- function(N, loglin = FALSE) {

# draw N sets of 14 probabilities from untiform(0, 1)
dat <- data.frame(matrix(runif(N * 14), ncol = 14))

# letter names correspond to probabilities
names (dat) <- letters[1:14]

dat$loglin <- "unrestricted"

# force to follow a loglinear model
if (loglin) {
dat <- dat %>%
mutate (
# randomly choose one probability to throw out
keep = runif (N),
b = case_when(keep < .25 ~d * ¢ / e, TRUE ~ b),
¢ = case_when(between(keep, .25, .5) ~ b *x e / d, TRUE ~ c),
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d = case_when(between(keep, .5, .75) ~ b * e / c, TRUE ~ d),
e = case_when(keep > .75 ~d * ¢ / b, TRUE ~ e),
loglin = "loglinear"

) h>h

select (-keep) %>%
# remove any impossible probabilities
filter(b<1 & c<1&d<1&e<1)

# make mew variables
dat %>%

# 1 - prob for P(var = 0)
mutate_if (is.numeric, funs(comp = 1 - .)) %>%

mutate (

# ratio of obs/true NDE
obs_true = ((1 / (b * a + ¢ * a_comp)) * (f * b *x a + h * ¢ * a_comp) *
(d * a + e *x a_comp) +
(1 / (b_comp * a + c_comp * a_comp)) *
(g * b_comp * a + i * c_comp * a_comp) * (d_comp * a + e_comp * a_comp)) /
(f *d*a+gx*d_comp *a+h*e*a_comp+ i* e_comp * a_comp),

# wvalues of true and observed effects

NIE_ true = (f * b * a + g * b_comp * a + h * ¢ * a_comp + 1 * c_comp * a_comp) /
(f xd*a+g=*d_comp*a+h*ex*a_comp+ i* e_comp * a_comp),

NIE obs = NIE true / obs_true,

NDE_true = (f * d * a + g * d_comp * a + h * e * a_comp + i * e_comp * a_comp) /
(j *d*a+k*d comp *a+1+%e=*a_comp+m* e_comp * a_comp),

NDE_obs = NDE_true * obs_true,

# make sure the bias > 1 so bound is sensical
bias = (obs_true > 1) * obs_true + (obs_true < 1) / obs_true,

# make loglin into a factor for later grouping
loglin = fct_recode(loglin,
"Unrestricted probabilities" = "unrestricted",
"Log-linear model" = "loglinear"

),

# create possible RRau wvalues

RRau_ miul =b * (d * a + e * a_comp) / (d * (b * a + ¢ * a_comp)),
RRau_miu0 = ¢ * (d * a + e * a_comp) / (e * (b * a + ¢ * a_comp)),
RRau_mOul = b_comp * (d_comp * a + e_comp * a_comp) /

(d_comp * (b_comp * a + c_comp * a_comp)),
RRau_mOu0 = c_comp * (d_comp * a + e_comp * a_comp) /
(e_comp * (b_comp * a + c_comp * a_comp)),

# create possible RRuy values
RRuy_miul = f / h,

RRuy_m1u0 = 1 / RRuy_mlul,
RRuy_mOul =g / i,
RRuy_mOuO = 1 / RRuy_mOul,

# create possible RRam values
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RRamm_aiml
RRamm_aOm1
RRamm_almO
RRamm_aOmO

# create possible RRam/u values

RRamc_almilul
RRamc_aOmiul
RRamc_almOul
RRamc_aOmOul
RRamc_almlu0
RRamc_aOm1u0
RRamc_almOu0
RRamc_aOmOu0

(b *xa+c*a_comp) / (d*a+ e * a_comp),
1 / RRamm_ailmi,
(b_comp * a + c_comp * a_comp) / (d_comp * a + e_comp * a_comp),
1 / RRamm_ailmO,

b/ d,

1 / RRamc_almilul,

b_comp / d_comp,

1 / RRamc_almOul,

c / e,

1 / RRamc_almiu0,

c_comp / e_comp,

1 / RRamc_almOuO,

# create possible RRum values
(b *n+d=*mn_comp) / (c *n+ e * n_comp),
1 / RRumm_ulmi,

RRumm_ulml =
RRumm_uOml =
RRumm_u1mO
RRumm_uOmO

# create possible RRum/a values

RRumc_almiul
RRumc_almiu0
RRumc_almOul
RRumc_ailmOu0
RRumc_aOmilul
RRumc_aOm1u0
RRumc_aOmOul
RRumc_aOmOu0

(b_comp * n + d_comp

1 / RRumm_ulmO,

b/ c,

1 / RRumc_aimiul,

b_comp / c_comp,

1 / RRumc_aimOul,

d / e,

1 / RRumc_aOmlul,

d_comp / e_comp,

1 / RRumc_aOmOul,

# look at interaction direction

AMdirection

c/e>1
/ e <1
/e >1
/e <1

o o o0

),
UMdirection
d/e>1
d/e<1
d/e>1
d/e<1
)
MYdirection
h/i>1
h/ic<1
h/i>1
h/i<1
),
UYdirection
g/ 1i>1

g/ 1i<1
g/ i>1
g/ 1i<1

Do

&
&
&
&

L5 =
o T ©
NN NN

I ISR |

L5

case_when(
b/d>1
b/d<1
b/d<1
b/d>1

R

R

R

R

case_when(
b/ >1 ~

o o o ol

<1
<1 ~
> 1
case_when(
f/g>1-~
f/g<1
f/g<1-~
f/g>1
case_when(
f/h>1
f/h<1

f/h<1
f/h>1

R

R

R

R

"A-M
"A-M
"A-M
"A-M

"U-M
"U-M
"U-M
"U-M

"M-Y
"M-Y
"M-Y
"M-Y

"U-Y
"U-Y
"U-Y
"U-Y

positive",
negative",
positive UO,
negative U0,

positive",
negative",
positive AO,
negative AO,

positive",
negative",
positive UO,
negative U0,

positive",
negative",
positive MO,
negative MO,
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negative
positive
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positive

negative
positive

* n_comp) / (c_comp * n + e_comp

LD
UL

A" ,
A"

Ui ,
Ulll

M1" ,
M1"

* n_comp),



Miint = case_when(
d/e>b/ c~ "AO > AL",
d/ e<b/c~ "AD < AL"
)
MOint = case_when(
d_comp / e_comp > b_comp / c_comp ~ "AO
d_comp / e_comp < b_comp / c_comp ~ "AO
Jo
Mint_directions = case_when(
Mlint == "AO > A1" & MOint
"Not consistent",
Mlint == "AO < Al1" & MOint =
"Not consistent",

A\

Al" R
A"

A

= "AO < AL" -

"AO > Alll -

TRUE ~ "Consistent interaction"
U
# summarize interaction directions
qual_int = case_when(

AMdirection %in}% c("A-M positive", "A-M negative") &
UMdirection %in’% c("U-M positive", "U-M negative") &
MYdirection %in’% c("M-Y positive", "M-Y negative") &
UYdirection %in’% c("U-Y positive", "U-Y negative") ~ "no qual",

TRUE ~ "qual"

)
) ©>%

select(-(a:n)) %>%
select (-(a_comp:n_comp)) %>%

mutate (
# choose RRs that match criteria
RRalu = pmap_dbl(select(., starts_with("RRau")), ~max(c(...))),
RRaOu = pmap_dbl(select(., starts_with("RRau")), ~1 / min(c(...))),
RRau = (obs_true > 1) * RRalu + (obs_true < 1) * RRaOu,

RRuy = pmap_dbl(select(., starts_with("RRuy")), ~max(c(...))),

RRam = pmap_dbl(select(., starts_with("RRamm")), ~max(c(...))),
RRam_noO = pmap_dbl(select(., matches("RRamm_a\\dm1")), ~max(c(...))),

RRam_strat = pmap_dbl(select(., starts_with("RRamc")), ~max(c(...))),

RRam_strat_noO = pmap_dbl(select(., matches("RRamc_a\\dmliu\\d")), ~max(c(..

RRum = pmap_dbl(select(., starts_with("RRumm")), ~max(c(...))),
RRum_noO = pmap_dbl(select(., matches("RRumm_u\\dm1")), ~max(c(...))),

RRum_strat = pmap_dbl(select(., starts_with("RRumc")), ~max(c(...))),

RRum_strat_noO = pmap_dbl(select(., matches("RRumc_a\\dmlu\\d")), ~max(c(..

# Create bounding factors with new RRs

BF_true = BF_func(RRau, RRuy),

BF_am = BF_func(RRam, RRuy),

BF_am_no0 = BF_func(RRam_noO, RRuy),

BF_am_strat = BF_func(RRam_strat, RRuy),
BF_am_strat_noO = BF_func(RRam_strat_noO, RRuy),
BF_um = BF_func(RRum, RRuy),
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BF_um_noO = BF_func(RRum_noO, RRuy),
BF_um_strat = BF_func(RRum_strat, RRuy),
BF_um_strat_noO = BF_func(RRum_strat_noO, RRuy)

) %
select (-(RRau_miul:Mint_directions)) %>%

mutate_at (
# for all the bounding factors, create indicators if they succeed/fatl
# to bound bias, as well as correct NIE and NDE by each
vars(starts_with("BF")),

funs(
fail = bias > .,
GT = . > BF_true,

NIE correct = ifelse(obs_true > 1, NIE obs * ., NIE_obs / .),
NDE_correct = ifelse(obs_true < 1, NDE obs * ., NDE obs / .)
)
) W%

select (-(RRalu:BF_um_strat_no0)) %>%
mutate (

# create some wariables for visualization/tables
NIE _direction ifelse(obs_true > 1, "NIE underestimated", "NIE overestimated"),
NDE_direction ifelse(obs_true < 1, "NDE underestimated", "NDE overestimated"),
Bias = cut(bias, c(1, 1.05, 1.15, 1.3, 1.5, 2, Inf), right = F),
qual_int = fct_recode(qual_int,

"No interaction restriction" = "qual",

"No qualitative interaction" = '"no qual"

)

# function to get frequencies of fatlure
sum_data <- function(dat) {

full res <- dat %>%
group_by(loglin) %>%
summarise_at(vars(ends_with("GT"), ends_with("fail")), mean) %>’
mutate(int = "any_int")

no_int_res <- dat %>%
filter(qual_int == "No qualitative interaction") %>%
group_by(loglin) %>%
summarise_at (vars(ends_with("GT"), ends_with("fail")), mean) %>%
mutate(int = "no_int")

rbind(full_res, no_int_res)

}

# function to make table 1
overall res <- function(res) {
GT <- res %>
arrange(loglin, int) %>
select(ends_with("GT")) %>%
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tO

fail <- res %>
arrange(loglin, int) %>’
select(ends_with("fail")) %>%
t0

tab <- cbind(GT, fail)
tab[1, 1:4] <- NA

addtorow <- list()
addtorow$pos <- list(0, 0, 0)
addtorow$command <- c(
"& \\multicolumn{4}{c}{Alternative $\\text{RR }> \\RRau$} & \\multicolumn{4}{c}{Bias \\textgre
"& \\multicolumn{2}{c{$\\pr(M | A, UD$ uniform} & \\multicolumn{2}{cH{$\\pr(M | A, UD$ log-1li
"Alternative & Full & Restricted & Full & Restricted & Full & Restricted & Full & Restricted )
)
rownames (tab) <- c(
"$\\RRau$", "$\\text{RR}_{AM}$", "$\\text{RR}_{AM=1}3",
"$\\text{RR}_{AM|U}$",
"$\\text{RR}_{AM=1|U}$", "$\\text{RR}_{UM}$",
"$\\text{RR}_{UM=1}$", "$\\text{RR}_{UM|A}$",
"$\\text{RR}_{UM=1|A}$"

tab <- xtable(tab,

digits = 6,

align = C("I‘", rep("c“, 8))
)

list(
x = tab,
comment = FALSE,
booktabs = TRUE,
include.rownames = TRUE,
add.to.row = addtorow,
include.colnames = FALSE,
table.placement = "H",
sanitize.text.function = function(x) x

# function to make figure 2
ratio_true_plot <- function(dat, loglin_val, qualint_val, tag) {
dat %>%
gather(key = BF, value = corrected, BF_um_strat_noO_NIE_correct, BF_true_NIE_correct) %>/
mutate (
ratio = corrected / NIE_true,
BF = fct_recode(BF,

"True" = "BF_true_NIE_correct",
"Alternative" = "BF_um_strat_noO_NIE correct"
)
) %%
filter(

loglin == loglin_val,
qual_int %in’ qualint_val
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) W>h
ggplot() +
geom_density(aes(ratio, col = BF)) +
scale_x_logl0(limits = c(.1, 10)) +
scale_y_continuous(expand = c(0, 0)) +
facet_grid(NIE_direction ~ Bias,
labeller = labeller(.rows = label value, .cols = label_both)
) +
theme_classic() +
theme (
legend.position = "bottom",
strip.background.x = element_blank(),
strip.background.y = element_rect(fill = "lightgrey", linetype = "blank")
)+
labs(
x = "Ratio of corrected NIE to true NIE (log scale)",

subtitle = tag
)

# function to make table 2
quant_rat <- function(dat) {

p <- c(0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99)

newdat <- dat %>%
gather (key = BF, value = corrected, BF_um_strat_noO_NIE_correct, BF_true_NIE_correct) %>%
mutate(
ratio = corrected / NIE_true,
BF = fct_recode(BF,
"True" = "BF_true_NIE_correct",
"Alternative" = "BF_um_strat_noO_NIE correct"
)
) W>%

mutate(ratiopos = case_when(obs_true > 1 ~ ratio, TRUE ~ 1 / ratio))

ratio_vals <- newdat %>%

nest (-BF) %>%

mutate(x = map(.$data, ~tibble(
q = paste0("q", p),
val = quantile(.$ratiopos, p)

1) W>%

select(-data) %>%

unnest () %>%

spread(q, val)

ratio_vals_bias <- newdat %>’

nest (-Bias, -BF) %>%

mutate(x = map(.$data, ~tibble(
q = paste0("q", p),
val = quantile(.$ratiopos, p)

1) W>%

select(-data) %>%

unnest () %>%

spread(q, val)
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tab <- cbind(t(ratio_vals[, -1]), t(ratio_vals_bias[, -(1:2)]1))

addtorow <- list()
addtorow$pos <- 1list(0, 0)
addtorow$command <- c(
" \\multicolumn{2}{c}{0verall} & \\multicolumn{2}{c}{[1, 1.05)} & \\multicolumn{2}{c}{[1.05,
"\\%ile & True & Alt. & True & Alt. & True & Alt. & True & Alt. & True & Alt. & True & Alt. &
)
rownames (tab) <- c("1st", "5th", "10th", "25th", "50th", "75th", "90th", "95th", "99th")

tab <- xtable(tab,
digits = 2,
align = c("r", rep("c", ncol(tab)))

)
list(
x = tab,
comment = FALSE,
booktabs = TRUE,
include.rownames = TRUE,
add.to.row = addtorow,
include.colnames = FALSE,
table.placement = "H",
sanitize.text.function = function(x) x
)

# function to make figure 2
resid_bias <- function(dat, loglin_val, qualint_val, tag) {

dat %>%

filter(

BF_um_strat_noO_fail,

loglin == loglin_val,

qual_int %inj qualint_val
) W>%
mutate (

ratio = BF_um_strat_noO_NIE correct / NIE_true,

residual bias = ratio * (obs_true < 1) + (1 / ratio) * (obs_true > 1),

residual_quantile = cut(residual_bias, quantile(residual_bias, p = seq(0, 1, .1)), include.]
) W>h
ggplot() +
geom_point(aes(bias, residual_bias, col = residual_quantile)) +
scale_y_logl0(breaks c(1, 2, 5, 10), labels = c(1, 2, 5, 10), expand
scale_x_logl0(breaks c(1, 2, 5, 10), labels = c(1, 2, 5, 10), expand
geom_abline(slope = 1, intercept = 0) +
scale_color_brewer (name = "Residual bias decile", palette = "Spectral") +
theme_classic() +
theme (legend.position = "bottom") +
labs(

x = "Bias (log scale)", y = "Residual bias (log scale)",

subtitle = tag

)

c(0, 0)) +
c(0, 0)) +

# function to make table 3
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resid_bias_add <- function(dat){

tab_any <- dat %>%
filter (BF_um_strat_noO_fail) %>%
mutate (
diff = BF_um_strat_noO_NIE_correct - NIE_true,
residual bias = diff * (obs_true < 1) + (-diff) * (obs_true > 1)
) ©>%
nest(-loglin) %>%
mutate(x = map(.$data, ~tibble(
q = paste0("q", seq(.1, 1, .1)),
val = quantile(.$residual_bias, seq(.1, 1, .1))
1)) W%
select(-data) %>%
unnest () %>%
spread(q, val) %>%
mutate_if (is.numeric, round, 3) %>%

tO

tab_no_int <- dat %>%
filter (BF_um_strat_noO_fail, qual_int == "No qualitative interaction") %>%
mutate(

diff = BF_um_strat_noO_NIE_correct - NIE_true,
residual _bias = diff * (obs_true < 1) + (-diff) * (obs_true > 1)
) >
nest(-loglin) %>%
mutate(x = map(.$data, ~tibble(
q = paste0("q", seq(.1, 1, .1)),
val = quantile(.$residual_bias, seq(.1, 1, .1))
1) W>%
select(-data) %>%
unnest () %>%
spread(q, val) %>%
mutate_if (is.numeric, round, 3) %>%

tO
tab <- cbind(tab_any[,1], tab_no_int[,1], tab_any[,2], tab_no_int[,2])[-1,]

addtorow <- list()

addtorow$pos <- list(0, 0)

addtorow$command <- c(
"& \\multicolumn{2}{c}{Uniform probabilities} & \\multicolumn{2}{c}{Log-linear model} \\\\ \\c
"\\%ile & No restriction & No qualitative interaction & No restriction & No qualitative interz

)
rownames (tab) <- c("10th", "20th", "30th", "40th", "50th", "60th", "70th", "80th", "90th", "Maxi

tab <- xtable(tab,
digits = 2,
align = c("r", rep("c", ncol(tab)))

list(
X = tab,
comment = FALSE,
booktabs = TRUE,
include.rownames = TRUE,
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add.to.row = addtorow,
include.colnames = FALSE,
table.placement = "H",
sanitize.text.function = function(x) x

# function to create other walues for paper (how many had interaction)
vals <- function(dat) {
dat %>%
group_by(loglin) %>%

summarise (
qual_int = "No interaction restriction",
n_noqual = n(),

resUM = mean(BF_um_strat_noO_fail)
) %>% rbind(
dat %>%

filter(qual_int == "No qualitative interaction") %>%
group_by(loglin) %>%
summarise (

qual_int = "No qualitative restriction",

n_noqual = n(),

resUM = mean(BF_um_strat_noO_fail)

)
) %>, arrange(loglin, desc(qual_int))

File: make.R
if (!require("drake")) {install.packages("drake"); library(drake)}
pkgconfig: :set_config("drake: :strings_in_dots" = "literals")
source("functions.R")
set.seed(1692)
N <- 25e5
plan <- drake_plan(

full_dat = rbind(make_data(N = N, loglin = FALSE),
make_data(N = round(N / .75), loglin = TRUE)),

res = sum_data(full_dat),
vals_4_rmd = vals(full_dat),
tablel = overall_res(res),

table2a = full_dat %>%
filter(loglin == "Unrestricted probabilities") %>%
quant_rat(),
table2b = full_dat %>%
filter(loglin == "Unrestricted probabilities",
qual_int == "No qualitative interaction") %>%
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quant_rat(),

table2c = full_dat %>%
filter(loglin != "Unrestricted probabilities") %>%
quant_rat(),

table2d = full dat %>%
filter(loglin != "Unrestricted probabilities",

qual_int == "No qualitative interaction") %>%

quant_rat(),

table3 = resid_bias_add(full_dat),
compare_correctedA = ratio_true_plot(

full dat,
"Unrestricted probabilities",

c("No interaction restriction", "No qualitative interaction"),
"eFigure 1A. Probabilities drawn from uniform distribution"
)
compare_correctedB = ratio_true_plot(
full dat,
"Unrestricted probabilities",
"No qualitative interaction",
"eFigure 1A. Uniform probabilities, restricted to no qualitative interaction"
Vs
compare_correctedC = ratio_true_plot(
full_dat,

"Log-linear model",
c("No interaction restriction", "No qualitative interaction"),
"eFigure 1C. Log-linear model for M"

)
compare_correctedD = ratio_true_plot(

full_dat,

"Log-linear model",

"No qualitative interaction",

"eFigure 1D. Log-linear model, restricted to no qualitative interaction"
) s

resid_plotA = resid_bias(
full_dat,
"Unrestricted probabilities",
c("No interaction restriction", "No qualitative interaction"),
"eFigure 2A. Probabilities drawn from uniform distribution"

) s
resid_plotB = resid_bias(
full_dat,
"Unrestricted probabilities",
"No qualitative interaction",
"eFigure 2B. Uniform probabilities, restricted to no qualitative interaction"
)s
resid_plotC = resid_bias(
full_dat,

"Log-linear model",
c("No interaction restriction", "No qualitative interaction"),
"eFigure 2C. Log-linear model for M"
i
resid_plotD = resid_bias(
full dat,

35



"Log-linear model",

"No qualitative interaction",

"eFigure 2D. Log-linear model, restricted to no qualitative interaction"
) s
eAppendix = rmarkdown: :render(

knitr_in("eAppendix.Rmd"),

output_file = file_out("eAppendix.pdf"),

quiet = TRUE
)

make (plan)

File: eAppendix.Rmd

title: "Tables and Figures for *Mediational E-values: Approximate Sensitivity Analysis for Unmec
output:
pdf _document

if (!require("drake")) {install.packages("drake"); library(drake)}

if (!require("xtable")) {install.packages("xtable"); library(xtable)}

if (!require("ggplot2")) {install.packages('"ggplot2"); library(ggplot2)}

if (!require("captioner")) {install.packages('"captioner"); library(captioner)}
if (!require("knitr")) install.packages("knitr")

knitr::opts_chunk$set(
message = FALSE,
warning = FALSE,
echo = FALSE,
fig.align = "center"

loadd(vals_4_rmd)

do.call(print, readd(tablel))

print(readd(compare_correctedA))

print (readd(compare_correctedB))

print (readd(compare_correctedC))

print (readd(compare_correctedD))

do.call(print, readd(table2a))

do.call(print, readd(table2b))

do.call(print, readd(table2c))
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do.call(print, readd(table2d))

print (readd(resid_plotA))

print(readd(resid_plotB))

print (readd(resid_plotC))

print(readd(resid_plotD))

do.call(print, readd(table3))

37



REFERENCES

1. Ding P, VanderWeele TJ. Sharp sensitivity bounds for mediation under unmeasured mediator-outcome

confounding. Biometrika. 2016;103:483-490.

2. Greenland S. Quantifying biases in causal models: Classical confounding vs collider-stratification bias.

Epidemiology. 2003;14:300-306.

3. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: Introducing the E-value. Ann

Intern Med. 2017;167:268-275.

4. VanderWeele TJ, Ding P, Mathur M. Technical considerations in the use of the E-value. Journal of

Causal Inference. 2019;in press.

38



	Background
	Motivation
	Notation and definitions
	Results of Ding & VanderWeele, 2016
	Possible alternative parameters for the bounding factor

	Methods
	Data generation
	Other data-generating distributions
	Comparisons

	Results
	Overall results
	Results using \text{RR}_{UM=1|A} in bounding factor

	Analytic results
	True bounds using alternative parameters under certain conditions
	Direction of confounding
	Continuous M and U

	Tables and Figures
	Computing code
	References

