
Appendix A. Constitutive parameter coupling

A.1. Derivations of the C1-a coupling

The Guccione parameters are identified by matching the simu-
lated deformed mesh(s) to the fitted mesh(s) from the MRI
frame(s). However, from the current clinical data, the Guccione
parameters cannot be reliably identified using only the ED frame
in the sense that an increase of C1 can be compensated for by a de-
crease of C2–C4 or a.

To explicit reveal this problem, our goal is to find the coupling
direction d in C1-a space (if any) along which two sets of different
parameters would render the same (or very similar) mechanical
simulation. In the following analysis, the hydrostatic tensor term
can be safely eliminated. From the numerical solution perspective,
given the same external loading conditions (external forces) and
temporary trial solution of a strain tensor (displacement DOF),
the whole stress tensor (deviatoric plus hydrostatic) should be al-
ways the same as long as the deviatoric stress tensors are the same.
This is because the solver for the hydrostatic term is only con-
cerned with the strain and residual stress, not the material
parameters.

For notations, T is the deviatoric second Piola–Kirchhoff stress
tensors. E is the Green–Lagrangian strain tensor.
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where � is the operator for element-wise product (or Hadamard
product).

The material elastic tensor K for Guccione’s constitutive law is
defined as:
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The coupling direction d in C1-a space (if it exits) is defined
where the directional gradient of K along d is a zero-tensor. Intui-
tively the material response (stress–strain relationship) is the same
along this (local) direction.

@Ki
@C1

@Ki
@a

 !
� d ¼ 0; i ¼ 1; . . . ;9: ðA:3Þ

These nine conditions from the above equations are combined to be
one constraint independent of r2–r4:
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A.1.1. The existence of the coupling direction
The coupling direction d exists if and only if Eq. (A.4) has a solu-

tion. The term @Q
@a in Eq. (A.4) can be further expanded by using Eqs.

(8) and (13), i.e.
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where rij denotes the corresponding elements of rightmost matrix
in Eq. (A.2), and Eij are the Green–Lagrange strains in fiber (f :¼ 1),
sheet (s :¼ 2) and sheet normal (n :¼ 3) directions. The second term
@Eij

@a is varying at different ðC1;aÞ points, and thus dependent on the
coupling direction d which we are solving for. Therefore Eq. (A.4)
is non-linear.

The solution of a non-linear equation does not necessarily exist.
Thus the ‘‘zero-coupling direction’’ (the direction along which the
deformation is exactly the same) may not exist. However, as evi-
denced by Fig. A.10 and reported by Xi et al. (2011a), there does ex-
ist a ‘‘principle-coupling direction’’ – the direction along which the
change is very close to zero and significantly smaller than other
directions.

A.1.2. The approximated exponential coupling curve
If we ignore the second non-linear term in @Q

@a, that is,
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Eq. (A.4) can be simplified as
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Therefore the coupling curve in ðC1;aÞ space roughly has the tan-
gent direction d ¼ ðC1

a � 1
1þQ Þ

T , which indicates the curve is

C
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where b is a constant.
Note that we ignored the second non-linear term in Eq. (A.6)

and use the assumption that the slope of the curve 1
1þQ is constant

when we derive the approximated yet simple curve expression (Eq.
(A.8)). While these are mathematical approximations, in practice it
already provides a good agreement with the coupling curves fitted
numerically (see Fig. A.10).
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A.2. The landscape of minimization objective function

The landscape of objective function using only the ED measure-
ment (i.e., the Eq. (19) when i = n) with respect C1-a and r3—r4 are
shown in Fig. A.10 and Fig. A.11 respectively. These landscape
empirically demonstrated that, from the parameter estimation
point of view, C1 and a are coupled while r3 and r4 are relatively
uncoupled.

A.3. The theoretical implication of incorporating multiple
measurements

C1 and a are coupled which sufficiently render the optimization
problem effectively ill posed. However, the coupling relationships
at different deformation state are different, because 1

1þQ is depen-
dent on the strains. Thus we can improve our estimation by com-
paring the simulated deformations with multiple displacement
measurements instead of only the end-diastolic one.

The theoretical implication of incorporating incorporating mul-
tiple measurements is intuitive. The Guccione constitutive law is a
Fung-type or exponential-type strain energy function. Its linear
(C1) and exponential (a) coefficients are coupled at one measure-
ment point, but differently coupled across multiple measurements.
Fig. A.12 shows changes of the Guccione strain energy with respect

to C1-a, where the increase of measurement points improves the
identifiability of the parameters.

Appendix B. Estimation of diastolic active tension

B.1. Motivation of accounting for diastolic AT in the model

Fig. B.13 shows the constitutive parameter estimation results
without accounting for AT in the model, which, in turn, motivates
the necessity of adding an AT component into the model to explain
the deformation fields. These results are the estimation of four
reformulated Guccione parameters – C1, a, r3 and r4
ðr2 ¼ 1� r3 � r4Þ, using observations of meshes fitted to different
MRI frames or synthetically simulated meshes. Since C1-a is cou-
pled and cannot be uniquely identified from one displacement
measurement, Fig. B.13a, b, d and f show C1-a (coupling) curves, in-
stead of only one unique (C1, a) point. These exponential C1-a lines
are fitted separately, in log space, to a set of equally optimal
parameters points (refer Fig. A.10 and Xi et al., 2011b for more de-
tails of the C1-a curve and its fitting).

The in silico results (Fig. B.13a–c) are the estimation results
from synthetically simulated meshes. In Fig. B.13a, varying LV
endocardium pressure (0–2 kPa) are applied as loading conditions
with zero AT within simulation, and C1-a relationship is estimated
separately from each of these measurements. In Fig. B.13b and c,
the synthetic meshes are simulated with the same pressure
(2 kPa) and varying AT (0–8 kPa), a C1-a relationship is estimated
separately from each of these measurements (Fig. B.13b), together
with corresponding r3–r4 estimation results (Fig. B.13c).

The results for the healthy and diseased cases (Fig. B.13d–g) are
obtained from the meshes fitted to different MRI frames. In this
estimation process, the reference mesh is set to be the begin-
ning-of-diastole frame (defined in Section 2.5 as the 1st diastolic
frame whose LV pressure is assumed to be zero). This is because
when AT is not considered in the model, the LV is unloaded if
and only if LV cavity pressure is zero.

The result for the in silico case indicates that the inclusion of AT
in the measurement would shift the C1-a curve in parallel, as well
as changing the r2 (the stiffness ratio in fiber direction) consis-
tently. This behavior is hardly noticeable in the healthy case, but
is clearly demonstrated in the disease cases, which motivates the
needs of considering AT for estimating parameters in the disease
cases.
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Fig. A.10. Parameter optimization and C1-a curve fitting. (a) The landscape of objective function using only the ED measurement (i.e., the Eq. (19) when i = n) with respect to
C1-a for patient case 1. This landscape is obtained from our two-step optimization process. The color represents the magnitude of the objective function in mm. The dark blue
valley indicates a straight line with equal optimal parameter fits. (b) A linear line in the log-scale space with the form of a 
 log(C1) + log(a) = b is fitted to optimal fitting valley
in (a). This line in the log-space corresponds to the curve of Ca

1a ¼ b in (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. A.11. Objective function plot with respect to r3 and r4 for patient case 1. The
color represents the magnitude of objective function in mm. The correlation
between r3 and r4 is 0.53. Unlike the strong C1-a coupling, the optimization problem
in r3–r4 space is better posed.
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Fig. A.12. Changes of the Guccione strain energy with respect to C1-a, averaged over 1, 2, 3 and 4 ‘‘measurement point(s)’’. The optimization problem becomes less ill defined
with the increase of measurement constraints. This reveals the possibility of obtaining a unique global minimum solution of parameter estimation when incorporating
multiple measurements.
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Fig. B.13. Constitutive parameter estimation without accounting for AT in mechanical model, showing that the C1-acurves (subplots a, d, b and f) and r2 ¼ 1� r3 � r4

(subplots c and g) estimated from different MRI frames are not constant. All the models assume zero AT as part of the parameter estimation process. The ‘‘with AT’’ plots refers
to AT added to the in silico simulation (figure b) or assumed in the patient data (figure f), and please refer to Section B.1 for details.
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B.2. Illustration of the criterion of selecting reference frame

Since each early diastolic MRI frame is initially assumed to be
the reference frame in Algorithm 1, we use the physiological con-
straints on AT to devise a criterion (defined in Eq. (20)) to retro-
spectively choose which MRI frame should be the most correct
reference frame. This criterion implies that AT is monotonically
decreasing during diastole and non-negative (since a positive AT
denotes a contracting force).

To demonstrate this idea, the same in silico case as previously
described in Fig. 9 is used. In this in silico case, the measurement
used are the six simulated LV meshes, which are produced by the
mechanical model using a linearly increasing LV pressure (0.33,
0.67, 1.00, 1.33, 1.67 and 2.00 kPa) and exponentially decaying
AT (8.00, 2.35, 0.68, 0.21, 0.05, and 0 kPa). The volume of these sim-
ulated meshes (the ground-truth PV curve) is shown in Fig. 9c. The
AT estimation method (Algorithm 1) is applied and the estimated
AT is shown in Fig. 9a and b, in which the AT 1–4 corresponds to
the AT estimated using 1st, 2nd, 3rd and 4th frame as the reference
frame (i.e., when k = 1, 2, 3, 4 in Algorithm 1).

According to the AT criterion defined in Eq. (20), frame 2 is se-
lected as the reference frame and AT 2 of Fig. 9b is selected as the
AT estimation result, which in turn, produces a very small error be-
tween estimated and ground-truth AT. Note that AT 3 and AT 4 also
satisfy the criterion. However, as stated previously in the text
explaining the AT criterion, only the first frame satisfying the crite-

rion should be selected. The reason for this is demonstrated by
Fig. 9a where the simulated PV curves using the mostly plausible
reference frame (i.e., PV 2) should the one tangent to the ground-
truth PV curve at the ED point. Subsequent PV curves (PV 3 and
4 using frame 3 and 4 as reference frame) would overestimate
the stiffness in constitutive parameters (i.e., the slope of PV curve)
while the PV curve before (PV 1) would underestimate the stiffness
(see Fig. B.14).
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(c) PV curves (PV1-4) of the in-silico purely LV inflation simulations without AT.

Fig. B.14. In-silico AT estimation using different frames as the reference frame (a and b) and the corresponding simulated PV curves using estimated parameters without
accounting for AT (c). In subplots (a) and (b), AT 1–4 are the in silico AT estimation results using the 1st, 2nd, 3rd and 4th measurement as the reference frame. In subplot (c),
the corresponding PV 1–4 are produced by the pure passive inflation with estimated constitutive parameters and reference state. The difference between each of PV 1–4
curves and the ground-truth PV curve in subplot (c) corresponds to the sign of AT 1–4 in subplot (a). That is, AT are estimated to effectively match the ground-truth PV curve
of the in silico measurements. The positive AT decreases the volume of LV while the negative AT increases the volume of LV (e.g., see AT 1 and PV 1). Note that the volume
curves in subplot (c) are only for schematically illustrating the meaning of the sign of AT, and the actual minimized objective function for estimating the parameters is based
on the 3D displacement of the LV (Eq. (19)), which is similar but not identical to the objective function based on LV volume.
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