
Supplementary Methods 
 
1. Data preprocessing, variant detection, filtering and annotation 
 
Exome-seq was performed by Puente et al. (2015) as described in their original paper.              
Briefly, 3 μg of genomic DNA were used for paired-end sequencing library construction,             
followed by enrichment in exomic sequences using the SureSelect Human All Exon 50Mb kit              
(Agilent Technologies). Next, DNA was pulled down using magnetic beads with streptavidin,            
followed by 18 cycles of amplification. Sequencing was performed on an Illumina GAIIx or on               
a HiSeq2000 sequencer (2x76bp). Reads were previously aligned to the reference genome            
(GRCh37.75) using bwa [1]. We performed duplicate read removal, sorting and indexing            
using samtools [2]. Base quality score recalibration was made with BamUtil [3] using a              
logistic regression model. 
 
Samtools parameters were the following: “C=50”; “d=250”, “Q=13”, “R”, “O”, “e=10”,           
“F=0.002”, “h=100”, “m=1”, “o=20”. The remaining parameters were run as in default mode.             
Next, VarScan2 [4] was run on paired-end mode with default parameters and the             
“strand-filter” option. For somatic variant detection, variants were filtered according to the            
following specifications: Fisher’s p-value for variant frequency distribution between tumor          
and normal samples below 0.05, minimum coverage of 10x in tumor and control samples              
and a minimum mutation VAF of 10%. We discarded those mutations with a VAF in the                
control above 5%, more than 5 absolute reads covering the variant in the control and less                
than 5 variant reads in the tumoral sample (note that a small contamination of the control                
sample by CLL leukocytes is expected).  
 
Platypus2 [5] was run with the following specifications: "minVarFreq=0.02", "minReads=2",          
"maxReads=8000", "assemble=1", "minBaseQual=20", "trimSoftClipped=1",    
"minPosterior=20", "sbThreshold=0.01", "badReadsWindow=15" and    
"badReadsThreshold=15". Variants labeled by platypus as “HapScore”, “SC”, “strandBias”         
and “MQ” were discarded. A minimum of 10 reads covering a position and 2 reads covering                
a variant were set for calling, a minimum genotype quality (GQ) of 20 Phred, genotype               
likelihood (GL) below -3, maximum homopolymer run (HP) below 11, minimum variant            
quality adjusted per read depth (QD) above 2 and minimum median minimum base quality              
for vases around variant (MMLQ) above 10. Somatic variants were selected according to the              
following filters: Fisher p-value for variant frequency distribution between tumor and normal            
samples below 0.05, a minimum variant allele frequency (VAF) of 10% and at least 5 reads                
covering the variant. We discarded those mutations with a VAF in the control above 5%,               
more than 5 absolute reads covering the variant in the control and less than 5 variant reads                 
in the tumoral sample. 
 
Variants from the two different callers were normalized and fused into single vcf files using               
CombineVariants functions implemented in the Genome Analysis Toolkit (GATK) [6].          
Mutations were annotated using the Variant Effect Predictor (VEP) [7] and converted to MAF              
format [8]. Each mutation was annotated to dbSNP and ExAC databases. Mutation plots             
were produced  using maftools [9].  
 
2. Driver detection tools 

2.1 MuSiC2 Analysis 



We ran Music2 [10] analysis on coding and non-coding regions covered by Agilent             
Exome SureSelect All Exon v4 kits with at least x10 depth in tumor and control               
samples. The GC-adjusted Convolution Test test was used as a measure of            
significance. Genes mutated in at least 4 patients with a Benjamini-Hochberg           
(BH)-adjusted p-value <0.1 were selected as potential new drivers. A similar           
procedure was used to analyzed intron mutation enrichment. Exome-seq also covers           
intronic regions in the neighbourhood of the exons, and mutations at these levels             
may be functional. To analyze gene enrichment in intronic mutations, we created            
background mutation statistics including all intronic regions that were covered with at            
a 10x depth in both tumor and normal samples.  

 
2.2 OncodriveFM Analysis 
We ran OncodriveFM [11] analysis with default parameters. Putative drivers were           
considered if they were mutated in at least 4 patients and had BH-adjusted p-values              
<0.1. 

 
2.3 OncodriveClust 
OncodriveClust [12] analysis for detection of mutation “hotspots” was run as           
implemented in maftools with default parameters. We set a mutation threshold of 4             
events and a BH-adjusted p-value <0.1 in order to consider new drivers.  

 
2.4 mutation3D analysis 
Missense mutations were analyzed using mutation3D [13] to find genes whose           
missense mutations co-occur on specific tridimensional domains of the protein. The           
algorithm was run with the following parameters: minimum missense mutation          
number of 3, minimum number of mutations per cluster of 2, maximum intracluster             
distance of 20Å and MPQS >1.1. A BH-adjusted p-value threshold of 0.1 was             
selected as significance threshold. 

 
2.5 CRAVAT analysis 
We analyzed non-synonymous mutations with the CRAVAT pipeline [14], which          
included both the Cancer-Specific High-throughput Annotation of Somatic Mutations         
(CHASM) [15] and the Variant Effect Scoring Tool (VEST) [16] methods. Both of             
them are based on machine-learning (ML) classification of tumorigenic mutations          
based on a known set of driver mutations. Significant genes were selected as those              
with a BH-adjusted composite p-value <0.05. 

 
Silent mutations at putative driver genes were analyzed with Human Splicing Finder [17] in              
search for donor or acceptor cryptic splice sites. Putative drives affecting less than 4 patients               
(circa 1% of the whole sample) and with more than 1 splice-neutral silent mutation were not                
considered for this analysis unless otherwise specified in the text. Genes were assessed for              
expression in lymphoid tissues using the Human Protein Atlas [18], and those without             
expression were discarded, except in the case of known human cancer drivers.  
 
3. Low frequency putative drivers 
 



CHASM and VEST methods were used to prioritize candidate driver mutations according to             
their predicted functional impact. Low frequency mutated genes present in less than 4             
patients and with at least 2 linkely functional mutations (BH-adjusted p-value <0.25) were             
considered likely to be drivers if: 1) they represented >50% of the detected mutations in that                
gene; 2) the gene is expressed in lymphoid tissues and 3) had no synonymous mutations in                
the same gene, except for the case of BCR and PTPN11, which are known CLL drivers. 
 
4. Pathways Analysis 
PathScore analysis [19] was run with default mutation background frequency. To limit            
potential false findings due to false mutations we discarded all those that had a MAF above                
0.01 in the Non-Finish European Population of ExAc. Significantly mutated pathways were            
labeled as those with Bonferroni adjusted p-value <0.1.  
 
5. Mutation visual inspection and validation 
Mutations were manually visualized using the Integrative Genomics Viewer [20]. For           
validation purposes, we used a subset of 88 whole genome sequencing (WGS) data that              
had matched exome sequencing data. We visually analyzed the subset of mutations falling             
at candidate driver genes (those that obtained BH q-values <0.25 in driver detection method,              
including intronic mutations, as well as those mutations in the list of new putative              
low-frequency drivers). 
 
7. Code availability 
The software used for this analysis is available in public repositories. Interested readers can              
contact the first author of this manuscript in order to obtain any further information. 
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