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1. Data structure for the integrated PL measurements 

Photoluminescence Data structure: PL data was acquired using the excitation at 200, 220, 240, 260, 

280, 300, 320 and 340 nm, respectively for the following pH 3, 5, 7, 9, 11, 13. One spectrum, i.e., 

intensity vs. wavelength is stored in one-dimensional vector of length (n, the number of data point 

acquired in spectral range 1: n). Consequently, all the spectra was put together to form the two 

dimensional (2D) matrix; i.e., D (48 x n) of size (samples x n) containing the entire PL data set. Each 

row in the 2D data matrix represents one spectrum. Since, the data have good signal to noise ratio, no 

additional data processing was done.   

 

2. ML techniques for PL Data analysis 

(i) Principal Component Analysis (PCA): Principal component analysis entrust on the fact that the 

wavelength is the variable space (feature space) and it is interrelated, i.e. correlation exist. Each 

principal component (PC) is a linear combination of all the original feature variables. The first PC 

contributes the maximum variance in the dataset, and second PC is uncorrelated (orthogonal) to the first 

PC and account for the next possible variance and so on. Although, there can be as much as number of 

PC as the feature variable, however, the first few PC are of great importance and remaining have noise 

or minimal information and if can be discarded have not much impact on the given dataset. The PCA 

analysis of D matrix resulted to two-sub matrix of S (score) and L (loading) using NIPAL algorithm 

[1].  

D = CST  

where D, ST, C and E are the data set (PL spectra), loading (spectral profile), and score matrix, 

respectively. 

(ii) Multivariate Curve Resolution- Alternating Least Squares (MCR-ALS): MCR is useful for 

resolving the spectroscopic data featuring peaks that contain relevant spectral profile (ST), even 

estimating the concentration (C) from mixture spectra [2]. Since, the PL spectrum of as synthesized C-

QDs is quite broad, MCR-ALS was performed to extract the possibility of the other peaks. The MCR-

ALS with non-negative constrained was performed using MCR-ALS tool [2].  The major hindrance for 

the MCR-ALS is that ones must know the expected number of components in advance to optimize the 

MCR-ALS regression. An incorrect choice can lead to overestimation (inclusion of noise) and 

underestimation (loss of information). PCA was used to choose the number of components with 

objectivity. The number of components using PCA was found to be two. MCR-ALS was optimized for 

the extraction of two spectral component using  

D = CST + E 
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where D, ST, C and E are the data set (PL spectra), loading (spectral profile), score matrix and E 

(residual), respectively. 

(iii) Sparse Nonnegative Matrix Factorization (NMF): For the sparse NMF, a recently developed 

technique by Shiga et Al. (hierarchical alternating least squares (HALS) algorithm) was used [3]. Unlike 

to the MCR-ALS, spares NMF automatically optimize the number of components with the choice of 

automatic relevance determination penalty term “prior” (ARD) along with the desired orthogonal 

constrained (NMF-ARD-SO). Soft orthogonal constraint with ARD prior, overcome the limitation of 

MCR-ALS; i.e. no knowledge required for the number of component selection and overlap peak if any 

can be resolve with appropriate soft or hard orthogonal constraint. Sparse NMF was optimized for a 

soft orthogonal constrained (0.1) with exponential prior [3].  

 

 

3. Distribution of the diameters of as synthesized C-QDs. 

Figure S1. Distribution of the diameters of as synthesized C-QDs. The average diameter and standard 

deviation of C-QDs were 3.90 and 0.91 nm, respectively. More than 97 % of C-QDs have diameter in 

the range of 2.4 – 5.9 nm. 
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4. Higher resolution TEM image of C-QDs. 

 

Figure S2. Higher resolution TEM image of C-QDs shows that C-QDs have crystalline structure and 

the distance between the lattices fringes is 0.21 nm assigned to (100) plane. 

 

 

 

5. Point beam EDS spectra of as synthesized C-QDs. 

  

Figure S3. Point beam EDS spectra of as synthesized C-QDs. No other trace element was detected 

other than carbon and oxygen. 
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6. Colloidal stability of as synthesized C-QDs. 

 

Figure S4. C-QDs shows no sign of turbidity even after 15 months of storage in ambient condition. 

(A) Optical image of Freshly synthesized C-QDs dispersed in water under daylight exposure, (B) 

Optical image of C-QDs dispersed in water under daylight exposure (after 15 months storage), (C) 

Optical image of Freshly synthesized C-QDs dispersed in water under UV exposure, (D) Optical image 

of C-QDs dispersed in water under UV exposure (after 15 months storage). 

 

 

7. Optimization of the pyrolysis process parameters for the synthesis of C-QDs. 

 

Figure S5. Symmetric and Asymmetric peaks of CH2 as an indicator to optimize the pyrolysis process 

parameters (sensor to distinguish the insufficient carbonization). FTIR spectra taken from a typical C-

QDs synthesis trial at 300 ºC for 3 hours. The presence of CH2 peaks in FTIR at 2921 and 2851 cm-1 

shows incomplete pyrolysis of ground fennel powder. 
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8. XPS analysis of as-synthesized C-QDs  

 

Table S1. XPS analysis of as-synthesized C-QDs 

S.No. Element Peak position BE (eV) 
Atomic concentration 

(%) 

1 C 1s 285 71.2 

2 O 1s 531 28.8 

 

 

 

 

Table S2. Peak fitting results obtained after deconvolution of carbon peak 

Peak Assignment 
Peak position 

BE (ev) 
FWHM (eV) 

Atomic 

concentration 

(%) 

C 1s C-sp 2 284.60 0.98 70.2 

C 1s C-O 286.16 1.17 20.6 

C 1s C=O 287.20 1.89 9.20 

 

 

 

 

Table S3. Peak fitting results obtained after deconvolution of oxygen peak 

 

Peak 

 

Assignment 

Peak position 

BE (ev) 

FWHM (eV) Atomic 

concentration 

(%) 

O 1s Phy absorbed O2 529.13 1.80 11.5 

O 1s OH/C=O, O-C=O 531.10 1.73 88.5 
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9. Normalized PL emission spectra of C-QDs. 

Figure S6. Normalized PL emission spectra of C-QDs excited at various wavelength (240 – 340 nm). 

PL emission spectrum of C-QDs was independent to the excitation wavelength (no redshift was 

observed). 

 

10. Thin Layer chromatography of C-QDs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7.  Thin layer chromatography (TLC) of as synthesized C-QDs. TLC shows a single 

luminescent band. 
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11. Effect of pH on PL of as synthesized C-QDs (Environmental stability). 

Figure S8.  Effect of pH on PL of as synthesized C-QDs (acidic to basic pH). PL of carbon quantum 

dots (Normalized) in strong acidic (pH 3) and basic media (pH 13) shifts towards the shorter and longer 

wavelength, respectively. However, the shift is not very significant as can be seen in the zoomed image 

of PL (excited wavelength 260 nm).  

 

12. PCA analysis of as synthesized C-QDs. 

Figure S9. PCA classified group-I (labeled with red color) comprising the normalized PL spectrum at 

pH 3,5,7,9,11 and 13, respectively (excitation wavelength 200 nm). 
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Figure S10. PCA classified group-II (labeled with blue color) comprising the normalized PL spectrum 

at pH 9, 11 and 13, respectively (excitation wavelength 320 nm). 

Figure S11. PCA classified group-III (labeled with maroon color) comprising the normalized PL 

spectrum at pH 7, 9, 11 and 13, respectively (excitation wavelength 260 nm). 
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