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This Supplementary Material consists of three sections. Section 1 details the numerical
calculation of the mutual information and the procedure used to determine parameters that
maximize the mutual information. Section 2 provides a detailed derivation of the low-noise ap-
proximations for the conditional activation probability distributions. Lastly, Section 3 presents
numerical calculations showing that the results presented in the manuscript are robust to pa-
rameter choice.

1 Numerical calculation of mutual information

Optimization of mutual information

Maximization of the mutual information for each mechanism is performed using the Limited-
memory Broyden-Fletcher-Goldfarb-Shanno for Bounded (L-BFGS-B) constrained optimization
algorithm [1], as implemented in SciPy v1.1.0. Additionally, we augment this algorithm with a
multi-start procedure as follows. For each optimization parameter, we assign three initial values
of 10−4, 1, and 104 and maximize the mutual information for each possible combination of initial
conditions. Following this procedure, we also start the optimization of the hybrid mechanism
at each of the parameter sets that maximize the information of the two special cases. For each
mechanism, the parameterization that maximizes the information over all initial conditions is
taken to be the optimal parameterization. This procedure allows for broad sampling of the
parameters space and results in maxima that are robust to specific choices of initial conditions
for the optimization procedure.

Convergence of simulations upon discretization refinement

The numerical calculation of the mutual information requires the discretization of the prior prob-
ability distributions. The two-dimensional uniform priors considered in this work are discretized
into an NX ×NY rectangular array of equally spaced bins, where (X,Y ) = (u,C0) for the case
in which u is the quantity of interest, and (X,Y ) = (c, C0) when c is the quantity of interest.
To compute the mutual information the initial parameterization of the priors are transformed
into distributions over (u, c). This requires rebinning of the discrete priors, i.e., transforming
(u,C0) → (u, c) or (c, U0) → (u, c). The number of bins used for the rebinning is NB. In all
cases, we choose NX = NY = NB = N . To ensure that the discretization is not introducing
significant error into the calculation of the mutual information we have tested the convergence
of the mutual information as a function of increasing N . In particular, we calculate the error as

Error(N) =
|I(N)− I(Nmax)|

I(Nmax)
, (S1)
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where I is the mutual information and Nmax is the finest discretization tested, which is N = 200.
Fig. S1 shows that the error becomes smaller than 0.5% for all mechanisms in the case of u being
the quantity of interest when N = 100. The same is shown for the case in which c is the quantity
of interest in Fig. S2. Hence we have used N = 100 for the discretization throughout this work.
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Supplementary Figure S1: Mutual information (left) and error in mutual information (right) as
a function of number of bins, N , used to discretize the prior distribution for the case in which
free unfolded protein, u, is the quantity of interest. For N = 100, which is the quantity used
for all results in the main text, the percent error is below 0.5%. The data points are calculated
using the following parameters: umin = 103, umax = 104, C0,min = 103, C0,max = 104, NI = 100.
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Supplementary Figure S2: Mutual information (left) and error in mutual information (right) as
a function of number of bins, N , used to discretize the prior distribution for the case in which
free chaperone, c, is the quantity of interest. For N = 100, which is the quantity used for all
results in the main text, the percent error is below 0.5%. The data points are calculated using
the following parameters: cmin = 103, cmax = 104, C0,min = 103, C0,max = 104, NI = 100.

2 Asymptotic approximation for the conditional activation prob-
ability

This section provides a detailed derivation of the low-noise approximation for the conditional
activation probability distributions given by Equation (18) (case 1) and Equation (19) (case 2)
in the main text.

Case 1: Quantity of interest is u

To approximate the integral on the right-hand-side of Equation (17) we will use a saddlepoint
approximation, but first it is useful to change coordinates from (u,C0) → (u, µ) [2]. Equation
(17) then becomes

p(nA|u) =

∫ µmax

µmin

p(nA|u, µ)q(µ|u)

(
∂µ

∂C0

)−1
dµ, (S2)

where µmin(u) = µ(u,C0,max) and µmax(u) = µ(u,C0,min), and the explicit dependence of µ on
u and C0 has been omitted. q(µ|u) is the prior distribution transformed into (u, µ) coordinates
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and conditioned on u given by

q(µ|u) =


1

∆µ
for µmin < µ < µmax

0 otherwise

with ∆µ = µmax − µmin. The right-hand-side of equation (S2) can be readily recast in a form
appropriate for a saddlepoint approximation

p(nA|u) =

∫ ∞
−∞

f(µ|u)√
2πσ2

e−
1
σ2
g(µ), (S3)

where

f(µ|u) = −q(µ|u)

(
∂µ

∂C0

)−1
, (S4)

g(µ) =
(nA − µ)2

2
, (S5)

and the bounds of the integral (after switching their order) can be extended to (−∞,∞) since
the prior p(µ) is zero everywhere outside of the support. The saddlepoint approximation relies on
a local maxima of the integrand, which is given by solving ∂g/∂µ|µ=µc = 0, leading to µc = nA.
In the limit σ → 0, The saddlepoint approximation of Equation (S3) is then

p(nA|u) ≈ e−
1
σ2
g(µc) f(µc|u)√

2πσ2

√
2πσ2

(∂2g/∂µ2)|µc
= f(nA|u). (S6)

Hence, all that is needed now is to compute the explicit form of f(µ|u). For the hybrid mecha-
nism, µ is given explicitly by

µ(u,C0) =
NIA(u)

1 + βC0 +A(u)
, (S7)

where
A(u) = γ

[
αu2 + (1 + α)u+ 1

]
. (S8)

Computing the Jacobian for the coordinate transformation, we obtain

∂µ

∂C0
= − NIβA(u)

(1 + βC0 +A(u))2
. (S9)

Noting that

C0(µ, u) =
1

β

(
NIA(u)

µ
− (1 +A(u))

)
, (S10)

we obtain (
∂µ

∂C0

)−1
= −NIA(u)

βµ
. (S11)
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Then, substituting Equation (S11) and the uniform prior distribution into Equation (S4), we
obtain

f(µ|u) =


NIA(u)

∆µβµ
for µmin < µ < µmax

0 otherwise

where µmin(u) = µ(u,C0,max) and µmax(u) = µ(u,C0,min). The final step is to normalize f(µ|u)
to make it a probability density function. The normalization constant is

Z(u) =

∫ µmax

µmin

f(µ|u)dµ (S12)

=
NIA(u)

∆µβ
[lnµmax(u)− lnµmin(u)] . (S13)

Hence the low-noise approximation to the conditional activation probability for the hybrid mech-
anism is

p(nA|u) ≈ f(nA|u)

Z(u)

=


[
nA ln

(
µmax(u)

µmin(u)

)]−1
for µmin(u) < nA < µmax(u)

0 otherwise,

(S14)

as given by Equation (18) in the main text.

Case 2: Quantity of interest is c

For the case in which c is the quantity of interest, the procedure remains essentially the same,
though some expressions differ. In particular, the saddle point approximation leads to

p(nA|c) ≈
fc(nA|c)
Zc(c)

(S15)

=
1

Zc(c)

[
−q(µ|c)

(
∂µ

∂U0

)−1]∣∣∣∣∣
µ=nA

, (S16)

where Zc is a normalization constant. µ can be written in terms of (c, U0) as

µ(c, U0) =
NIγ (αU0 + 1 + c)

1 + c (1 + β) + βc2 + γ (αU0 + 1 + c)
. (S17)

Differentiating Equation (S17) with respect to U0 and transforming coordinates in order to
eliminate U0 leads to (

∂µ

∂U0

)−1
=
NI(1 + c)(1 + βc)

γα(NI − µ)2
. (S18)
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Combining Equation (S18) with the uniform prior distribution give

fc(µ|c) =


NI(1 + c)(1 + βc)

∆µγα(NI − µ)2
for µmin < µ < µmax

0 otherwise

where now µmin = µ(c, U0,min) and µmax = µ(c, U0,max). The normalization constant is given by

Zc(c) =
NI(1 + c)(1 + βc)

∆µγα

∫ µmax

µmin

1

(NI − µ)2
dµ

=
NI(1 + c)(1 + βc)

∆µγα

∆µ

(NI − µmax)(NI − µmin)
, (S19)

which leads to

fc(µ|c)
Zc(c)

=


(NI − µmax)(NI − µmin)

∆µ(NI − µ)2
for µmin < µ < µmax

0 otherwise.

Evaluating Equation (S20) at µ = nA gives the low-noise approximation for the conditional
activation probability presented in Equation (19) of the main text.
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3 Robustness of results to model parameters

Effect of sensor copy number on mutual information

In the manuscript, we assumed the sensor copy number to be NI = 100. This is on the order
of the Ire1 copy number found in yeast [3]. However, here we demonstrate that the main
qualitative results of the work are independent of this choice. Fig. S3 shows heatmaps of the
maximal mutual information between u and nA for each mechanism when NI = 50 (top row)
and NI = 200 (bottom row). While the number of sensor molecules increases the amount of
information for a given prior distribution, it does not change the observation that the unfolded
protein-mediated sensor and hybrid sensor mechanisms provide significantly more information
than the chaperone-mediated sensing mechanism.

Similarly, Fig. S4 shows heatmaps of the maximal mutual information between c and nA for
each mechanism when NI = 50 and NI = 200. Again, the observation that the chaperone-
mediated sensor and the hybrid mechanism perform significantly better than the unfolded
protein-mediated mechanism remains true. Hence, the number of sensors can increase the chan-
nel capacity of the sensing system, but does not change the relative performance of the different
mechanisms.

Supplementary Figure S3: Heat maps showing mutual information for different ranges of the
uniform prior distribution when u is the quantity of interest. The top row is for NI = 50 and
the bottom row is for NI = 200. The left, middle and right columns correspond to the unfolded
protein-mediated, chaperon-mediated and hybrid mechanisms, respecively. The data points are
calculated using the following parameters: umin = 103, C0,min = 103.
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Supplementary Figure S4: Heat maps showing mutual information for different ranges of the
uniform prior distribution when c is the quantity of interest. The top row is for NI = 50,
middle row is for NI = 100 and the bottom row is for NI = 200. The left, middle and right
columns correspond to the unfolded protein-mediated, chaperon-mediated and hybrid mecha-
nisms, respecively. The white cirles and white triangles correspond to the conditional activation
probabilities shown in Fig. 5 of the main text. The data points are calculated using the following
parameters: cmin = 103, U0,min = 103.

Effect of umin, cmin and C0,min on mutual information

The heatmaps shown in Fig. 1 of the main text assume values for the lower limits of the uniform
prior distributions in (u,C0) and (c, C0), respectively, and show the effect of varying the upper
limits. Here we show that the choice of lower limits (umin, C0,min) and (cmin, C0,min) does not
qualitatively change the results. Fig. S5 shows heat maps for the cases (umin, C0,min) = (102, 102)
(top row) and (umin, C0,min) = (104, 104) (bottom row) when u is the quantity of interest.
Comparing these data with the heatmap in Fig. 1 in the main text shows that the lower limit
on the prior distribution does not alter the relative effectiveness of the sensing mechanisms. In
fact, the magnitude of the mutual information is approximately equal for corresponding points
on the heat maps, regardless of (umin, C0,min). This is the result of the parameters dictating the
shape of the response curve being optimized for each case independently, effectively normalizing
the absolute scale of the prior distribution.
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Similarly, Fig. S6 shows the effect of varying cmin and U0,min on the channel capacity when c
is the quantity of interest. Changing the absolute value of the range of the prior does not alter the
result that the chaperone-mediated sensor and the hybrid sensor outperform the unfolded-protein
mediated sensor. Hence, the results of this work are independent of the choice of (cmin, U0,min).

Supplementary Figure S5: Heat maps showing mutual information for different ranges of the
uniform prior distribution when u is the quantity of interest. The top row is for umin = 102 and
bottom row is for umin = 104. The left, middle and right columns correspond to the unfolded
protein-mediated, chaperon-mediated and hybrid mechanisms, respecively. The data points are
calculated using N = 100.
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Supplementary Figure S6: Heat maps showing mutual information for different ranges of the
uniform prior distribution when c is the quantity of interest. The top row is for cmin = 102 and
bottom row is for cmin = 104. The left, middle and right columns correspond to the unfolded
protein-mediated, chaperon-mediated and hybrid mechanisms, respecively. The data points are
calculated using N = 100.
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