Title: Growth hormone (GH) upregulates melanocyte inducing transcription factor (MITF) expression and activity via JAK2-STAT5 and SRC signaling in GH receptor (GHR) – positive human melanoma.

Authors: Reetobrata Basu¹, Prateek Kulkarni^{1,3}, Yanrong Qian¹, Christopher Walsh⁴, Pranay Arora⁴, Emily Davis^{1,2}, Silvana Duran-Ortiz^{1,3}, Kevin Funk^{1,3}, Diego Ibarra^{1,2}, Colin Kruse^{1,3}, Sam Mathes¹, Todd McHugh¹, Alison Brittain^{3,4}, Darlene E. Berryman^{1,4,5}, Edward O. List¹, Shigeru Okada^{1,4}, John J. Kopchick^{1,4}

Affiliations: ¹*Edison Biotechnology Institute, Ohio University (OU),* ²*Dept. of Chemistry and Biochemistry, OU,* ³*Molecular and Cellular Biology (MCB) Program, Dept. of Biological Sciences, OU,* ⁴*Dept. of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH,* ⁵*The Diabetes Institute, Ohio University, Athens, OH*

SUPPLEMENTARY FIGURES

Sup-Fig 1: Drug treatment induced autocrine GH expression correlates with ABC-transporter expression in human melanoma cells \rightarrow DOX = Doxorubicin; VEM = Vemurafenib; CRI = Crizotinib; CAB = Cabozantinib

Sup-Fig 1: Drug treatment induced autocrine GH expression correlates with ABC-transporter expression in human melanoma cells: (A-D) – Human melanoma cells SK-MEL-28 were treated with anti-cancer compounds and RNA expressions was compared with respective untreated controls, at 2, 6, 12, and 24-hr timepoints by RT-qPCR with corresponding pre-validated primers (sequence in supplementary table 1) for target genes. Changes in GH are shown in Fig-1. Here changes in expression of ABC-transporters with time, to doxorubicin (A), vemurafenib (B), crizotinib (C) and cabozantinib (D) treatments are shown. RNA expressions were quantified by RT-qPCR and normalized against expression of bTUB and ACTB as reference genes [*, p < 0.05, Wilcoxon sign rank test, n = 3].

Sup-Fig 1E: GH treatment directly upregulates ABC-transporter proteins in human melanoma cells: F – Human amelanotic melanoma cells SK-MEL-28 were treated with increasing doses (0, 50, 250ng/mL) of recombinant human growth hormone (GH) for 48-hr and cell lysate was analyzed by western blot for ABC-transporters ABCB1, ABCC1, and ABCG2. Image quantification was done using ImageJ and results were normalized against GAPDH expression.

Sup-Fig 2: GH treatment directly upregulates MITF and MITF target RNA expressions in human melanoma cells: (A-B) – Human melanotic melanoma cells SK-MEL-30 were treated with increasing doses (0, 50, 100, 200ng/mL) of recombinant human growth hormone (GH) and heatmap showing changes in RNA expressions at 6, 24, and 48-hr timepoints were analyzed for GH, GHR, MITF and a number of MITF-targets, as well as ABC-transporters ABCB5, ABCG2 (A); Identical experiment was performed in presence of 200nM doxorubicin (B). Numbers inside boxes indicate fold-change in gene expression compared to GH untreated control. Similar set of experiments for amelanotic melanoma cells SK-MEL-28 is shown in Sup-Fig 2. Further, using melanotic melanoma cells MALME-3M (C) and MDA-MB-435 (D), we treated with either doxorubicin (dox), or cisplatin (cis), or vemurafenib (vem) for 24-hr timepoint only, in absence / presence of 50ng/mL GH along with siRNA-mediated GHRKD. Drug-specific response was seen, and GHRKD suppressed expression of multiple MITF-targets. Similar experiments with MDA-MB-435 cells is shown in Sup-Fig 3. RNA expressions were quantified by RT-qPCR and normalized against expression of β TUB and ACTB as reference genes [*, p < 0.05, Wilcoxon sign rank test, n = 3].

٨		6-h				24-h				48-h			
A	SKMEL20	0.6H	50 GH	100 GH	200 GH	0.6H	50 GH	100 GH	200 GH	лен	50 GH	100 GH	200 GH
	GHI	10	10	04	0.5	10	0.9	0.6	0.6	12	12	11	11
	GHB	10	11	13	0.7	0.9	11	0.5	15	10	0.9	12	0.8
	MITE	1.0	1.1	1.3	1.2	0.8	0.8	0.8	1.0	0.5	0.5	0.6	0.7
	PGC1a	1.0	1.2	1.4	1.4	0.8	0.9	0.9	1.2	0.6	0.7	1.0	0.9
	PMEL	1.0	1.0	0.9	1.2	1.0	0.7	0.9	1.0	1.2	1.0	0.7	1.4
	UCP1	1.0	1.1	1.5	0.9	1.0	1.3	1.2	1.1	1.3	1.2	1.0	1.1
	TYR	1.0	1.1	0.8	0.5	1.0	0.8	0.7	0.9	0.6	0.5	0.6	0.8
	TYBP1	1.0	0.9	1.0	0.9	0.8	0.9	0.8	1.0	0.7	0.6	0.6	0.8
	MLANA	1.0	0.7	1.0	1.0	1.4	1.2	1.3	2.1	1.0	1.2	0.7	0.9
	ABCB5	1.0	1.4	1.4	1.3	1.9	1.7	1.8	2.1	0.9	1.2	1.3	1.2
	ABCG2	1.0	0.8	0.7	0.8	0.8	0.7	0.8	1.0	1.0	0.9	1.0	0.8
	HIF1a	1.0	1.3	1.0	0.7	0.8	0.7	0.7	0.9	1.2	1.1	1.1	1.2
	BCL2	1.0	1.6	1.4	1.1	1.6	1.9	1.5	1.5	1.0	0.9	1.3	0.8
	BRCA1	1.0	1.0	0.8	1.1	2.9	2.8	2.2	2.5	2.1	1.4	1.2	1.2
	OCT	1.0	0.9	1.0	1.2	1.6	1.3	1.2	1.4	1.2	1.0	0.9	1.1
	MET	1.0	0.8	1.0	1.0	0.7	0.7	0.7	0.9	0.6	0.5	0.6	0.7
	CUKNIA	1.0	0.7	1.5	1.1	0.8	1.2	0.9	1.5	1.6	1.8	1.7	1.9
R		6-h				24-h				48-h			
		0GH	50GH	100GH	200GH	0GH	50GH	100GH	200GH	OGH	50GH	100GH	200GH
	SKMEL30	doz	doz	doz	doz	doz	doz	doz	doz	doz	doz	doz	doz
	GHI	1.0	1.0	0.7	1.0	1.0	1.7	1.5	1.4	1.0	1.4	1.2	1.4
		1.0	1.0	1.4	1.9	1.0	1.4	1.6	2.1	10	1.0	2.0	2.5
	PCC12	1.0	1.0	0.3	1.7	1.0	0.5	0.5	2.1	1.0	11	1.0	1.3
FOLD	PMEI	10	2.0	21	2.0	1.0	11	11	1.4	10	12	12	12
		10	10	0.9	0.8	10	13	12	11	10	12	13	11
10.0	TYB	10	11	13	17	10	0.9	0.9	12	10	0.7	0.8	13
2.5	TYBP1	1.0	1.0	1.3	1.6	1.0	0.9	11	12	1.0	1.4	12	1.5
1.3	MLANA	1.0	1.6	1.9	4.1	1.0	1.2	1.6	2.1	1.0	1.1	1.8	2.4
1.0	ABCB5	1.0	1.8	1.8	1.9	1.0	2.2	2.0	1.7	1.0	1.7	2.2	2.5
0.8	ABCG2	1.0	0.9	0.7	0.8	1.0	1.0	0.9	1.0	1.0	1.2	1.0	1.2
0.4	HIF1a	1.0	1.2	1.2	1.4	1.0	0.7	1.0	1.4	1.0	1.2	0.9	1.0
0.2	BCL2	1.0	1.0	1.0	1.3	1.0	1.3	1.1	2.0	1.0	1.3	0.8	1.1
0.1	BRCA1	1.0	0.8	1.2	1.7	1.0	0.9	1.2	1.4	1.0	1.2	1.0	1.6
FOLD							0.0						
1 OLD	OCT	1.0	1.2	0.8	1.4	1.0	0.6	0.9	1.0	1.0	1.0	0.6	0.8
DECREASE	OCT MET	1.0 1.0	1.2 1.4	0.8 1.1	1.4 1.2	1.0 1.0	0.6	0.9 1.2	1.0 1.5	1.0 1.0	1.0 1.2	0.6 0.8	0.8 1.0

Sup-Fig 2: GH treatment directly upregulates MITF and MITF target RNA expressions in human melanoma cells

Sup-Fig 2: GH treatment directly upregulates MITF and MITF target RNA expressions in human melanoma cells

С

MALME-3M / 24-hr / TYR

□ control ■+GH ■+GH+GHRKD

MALME-3M / 24-hr / MET □control ■+GH ■+GH+GHRKD 6.0 Rel. RNA level 7.0 0.0 DMSO dox cis vem

MALME-3M / 24-hr / TYRP1 □ control ■+GH ■+GH+GHRKD

MALME-3M / 24-hr / BCL2

MALME-3M / 24-hr / PMEL □ control ■+GH ■+GH+GHRKD 3.0 3.1 2.0 1.0 0.0 0.0

MALME-3M / 24-hr / PGC1A

MALME-3M / 24-hr / DCT □control ■+GH ■+GH+GHRKD

15.0

12.0

5.0

4.0 3.0 2.0

1.0 0.0

DMSO

Rel. RNA level

Rel. RNA level

MALME-3M / 24-hr / CDKN1A

□ control ■+GH ■+GH+GHRKD

dox

cis

vem

MALME-3M / 24-hr / MLANA

□ control ■+GH ■+GH+GHRKD

MALME-3M / 24-hr / BRCA1 □ control ■+GH ■+GH+GHRKD

Sup-Fig 2: GH treatment directly upregulates MITF and MITF target gene expressions in human melanoma cells → MDA-MB-435

MDA-MB-435 / 24-hr / MITF

MDA-MB-435 / 24-hr / TYR

MDA-MB-435 / 24-hr / MET

MDA-MB-435 / 24-hr / TYRP1

MDA-MB-435 / 24-hr / BCL2

MDA-MB-435 / 24-hr / DCT

□ control ■+GH ■+GH+GHRKD

MDA-MB-435 / 24-hr / CDKN1A

MDA-MB-435 / 24-hr / PGC1A

0.0 DMSO dox cis vem

MDA-MB-435 / 24-hr / BRCA1

Sup-Fig 4: GH enhances MITF target PGC1A expression and activity in human melanoma: Human melanoma SK-MEL-28 cells show GH dose dependent (0, 50, 200ng/mL) increase in glycolysis (ECAR, extracellular acidification rate) in absence of chemotherapy. In presence of chemotherapy (200nM doxorubicin) the glycolytic increase was suppressed. (B) Mitochondrial OX-PHOS regulator PGC1A RNA expressions +/- GH, +/-doxorubicin treatments were quantified by RT-qPCR and normalized against expression of bTUB and ACTB as reference genes [*, p < 0.05, Wilcoxon sign rank test, n = 3].

Sup-Fig 5: bGH mice melanoma tumors have higher endogenous GH production compared to WT mice tumors

B16F10 mouse melanoma xenografts

Sup-Fig 6: Melanoma stage specific deaths in GHR-high and GHR-low male and female melanoma patients in TCGA dataset

TCGA-melanoma

TCGA-melanoma

Sup-Fig 7: Bioinformatic analysis: GHR, MITF, and MITF target genes co-express and strongly cluster (green box) in the CCLE dataset Cancer Cell Line Encyclopedia (CCLE); 967 samples

Sup-Fig 8: Bioinformatic analysis: TCGA datasets analyzed in the context of high (above mean) and low (below mean) GHR expressions show upregulated MITF, MITF targets, and ABC transporter expressions in the GHR-high cohort in both males and females

TCGA-melanoma-female

GHR-low GHR-high

gene

Sup-Fig 9: GH regulated MITF and MITF target gene regulation proceeds via JAK2-STAT5 and SRC regulated pathways → SK-MEL-28

Sup-Fig 9: GH regulated MITF and MITF target gene regulation proceeds via JAK2-STAT5 and SRC regulated pathways: Human melanoma cell MDA-MB-435 (Fig 8), SK-MEL-28 (here) and SK-MEL-30 (Sup-Fig 10) were treated with /without doxorubicin in presence of GH as well as different intracellular signaling pathway inhibitors. After 24-hr treatments, RNA expression for target genes (GH, MITF and MITF targets) was quantified by RT-qPCR and normalized against expression of β TUB and ACTB as reference genes [#,*, p < 0.05, Wilcoxon sign rank test, n = 3; * *indicates comparison against corresponding -GH controls while # indicates comparison against corresponding +GH controls in DMSO and doxorubicin treated groups*].

Sup-Fig 10: GH regulated MITF and MITF target gene regulation proceeds via JAK2-STAT5 and SRC regulated pathways: Human melanoma cell MDA-MB-435 (Fig 8), SK-MEL-28 (Sup-Fig 9) and SK-MEL-30 (here) were treated with /without doxorubicin in presence of GH as well as different intracellular signaling pathway inhibitors. After 24-hr treatments, RNA expression for target genes (GH, MITF and MITF targets) was quantified by RT-qPCR and normalized against expression of β TUB and ACTB as reference genes [#,*, p < 0.05, Wilcoxon sign rank test, n = 3; * *indicates comparison against corresponding -GH controls while # indicates comparison against corresponding +GH controls in DMSO and doxorubicin treated groups*].

RT-qPCR Ct values

	MDAMB435	SKMEL28	SKMEL30	MALME3M
GHR	26.1	25.4	26.1	25.1
PRLR	30.6	29.4	30.3	30.8
GAPDH	15.1	15.6	14.9	15.5

Sup-Fig 12: siRNA-mediated GHR knock down (GHRKD) in human melanoma cells:

GHR mRNA level

□scr-siRNA ■GHR-siRNA

Primer List

ABCA8

R

torget gone	primar direction			primer	
larget gene			target gene	direction	sequence (5'-3')
GAPDH	P			F	GATGTATGAAGGCTTTGGTC
OAIDII	F		Actb	R	TGTCGACTTTTATTGGTCTC
GHR	R	GTGGAATTCGGGTTTATAGC		F	CGTATATAAGAAGGCACTAACC
Onix	F	CAGTACCTTTCTACCACTTTAG	Abcc2	P	CAATCTGTAAAACACTGGACC
MITE	R	CCTCTTTTTCACAGTTGGAG	ADUUZ		
	F	GGTTCATCCTGAAACCAAAG		F	GICIAICGIAAGGCICIIIIG
PRL	R	CTTCAGGAGCTTGAGATAATTG	Abcc1	R	GACCAGATCATGTTAATGTACG
	F	GATTCCACTCTAATAAGCCC		F	AAGAGCCAGTCTATGTTACC
TYRP1	R	CTGTTACAAAGTGTTCCCAG	Abcg2	R	AAACTCCAGCTCTATTTTGC
	F	GGAAAAGAAAGTTTGCCAAG		F	GCTCTAAAGCAGAAGAACTG
EGFR	R	ATGAGGACATAACCAGCC	Abcb8	R	CCAAGACCATACAGTTGAAAG
	F	CATGTGAATTTTCTCCTGGAC		F	AAACAAAGTCATCCTGTTCG
MET	R	ATCTTCTTCCCAGTGATAACC	Abcc/	P	CAGAAAGTTCTTGATCCTCC
	F	ACAGCACCTAGTTTAGGAAG	ADUU4		
UCP1	R	CTGTACGCATTATAAGTCCC		Г Р	TCCAGTCTGTTTTCTAATGC
	F	GCAGACCTAGATTCAAACTC	Gn	R	ICGAACICITIGIAGGIGIC
PPARGC1A	R	CATCCCTCTGTCATCCTC		F	ACTGTCCAGTGTACTCATTG
	F	CTGGGATATGTGCAATTACG	Ghr	R	CTGGATATCTTCTTCACATGC
ABCA1	R	CCATACAGCAAAAGTAGAAGG		F	GACAAACAAGAAAACGAAGC
	F	CCATATGCTATGGGAATCATC	laf1	R	ATTTGGTAGGTGTTTCGATG
ABCA6	R	AGCTGAGAAATCTTCTTTCC	Ű	F	CATCGGAACTATTCTTGCTG
	F	TGTTCAAAATCATGTGAGGC	Abch5	R	ACATTCAGGTACAAATCCAG
ABCA5	R	TTCAACTGTATAATGGCAGC	Abcbb	E	CTTCTTCCCTACCTACATTC
	F	AGGCTGATTGGATCATAGTG	Tubbr		CHIGHLOGGIACCIACATIG
ABCC6	R	GTTTCTCCTTCTCCTCTATCTC	cadu I	R	CATGITCATCGCTTATCACC
	F	GGTTTACTTTGTCTCATCCC		F	ATGACTGAGTACCTGAACC
ABCC8	R	TCTGTATTGCTCCTCTCAAG	Bcl2	R	ATATAGTTCCACAAAGGCATC
	F	TTTTCTGGTGGTTCACAAAG		F	TCTAACCTTGGAATCGTGAG
ABCC3	R	GGATCTGTCCTCTTCCTTTAG	Brca1	R	GAGTCTAGTTCAATGTAGACAG
1000/	F	ATGGAGATAGGAATATCGTGC		F	CTGACAGATTTCTATCACTCC
ABCC4	R		Cdkn1a	R	TTAAGACACACAGAGTGAGG
10TD	F	GAUGAUATGGAGAAAATUTG	Calanta	5	TTCATCTCTCACACCAACCAAC
ACTB	R		Det		
CAPPUL	F		DCl	ĸ	IGIATIGAAGAAAAGCCAGC
GAPDH	к г			F	CIGAICAICIGACCAAAACIC
TVD	г		Hif1a	R	CGTGCTGAATAATACCACTTAC
LIK	R E			F	AGCAGATGTGGAATTTTGTC
BCI 2	Г		Tyr	R	AAATCCTTCCAGTGTGTTTC
DOLZ	F			F	AGAACCTTGATGGACAAAAG
BRCA1	R	TTTCCAAGGAAGGATTTTCG	Mlana	R	TTCTCTTGAGAAGACAGTCG
BROAT	F	CAGCATGACAGATTTCTACC	iniana	F	CATTAGCCCTCTACTGGATG
CDKN1A	R	CAGGGTATGTACATGAGGAG	Pmol	P	CTTTCAATACCCTCCACAATC
OBINITI	F	TAGCTTGGATGACTACAACC	FILE		CITICATACCCIGGACAAIG
DCT	R	TTCCTGAAACTGAAGGTAGAG		F	GUTAAAGAGAGGGCAGAAAAAG
201	F	AGCCTTGATGGATAAAAGTC	Mitt	R	GCATGICIGGATCATTIGAC
MLANA	R	CGATGATCAAACCCTTCTTG		F	CTTTTTCAAAGGGTTTGTGG
	F	GAAACTACTAGTGCCACATC	Ucp1	R	CTTATGTGGTACAATCCACTG
HIF1A	R	GGAACTGTAGTTCTTTGACTC		F	CTTTCCTCATGAGTGTGTTG
	F	CTCAACATCAGGGTGGAG	Abca9	R	GTCCAAATGTATAAGCTGGG
ABCD1	R	CTCTGCGGGATGTAGAAC			
	F	TAGAGAGCTACCTATCCCTG			
PMEL	R	GAACCTGTAATACTTTCCGTAG			
	F	ACAGCACCTAGTTTAGGAAG			
UCP1	R	CTGTACGCATTATAAGTCCC			
	F	CCCAGCTTATACATTTGGAC			
ABCA9	R	ACCAACATGAAAAGAGTAGC			
	F	TCATTATGGCCCTTTTCTTG			

TTAAGAAAGCCAAAGCTACC