Adaptation of the group A *Streptococcus* adhesin Scl1 to bind fibronectin type III repeats within wound-associated extracellular matrix: implications for cancer therapy

Dudley H. McNitt¹, Soo Jeon Choi¹, Jessica L. Allen², River A. Hames², Scott A. Weed², Livingston Van De Water^{3#}, Rita Berisio^{4#}, Slawomir Lukomski^{1*}

 ¹Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
²Department of Biochemistry, Program in Cancer Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
³Departments of Surgery and Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
⁴Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy

[#]Both authors equally contributed to this work

***To whom correspondence should be addressed:** Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Heath Sciences North, PO Box 9177, Morgantown, WV 26506, USA. Tel: +1 304 293 6405; fax +1 304 293 7823; email: slukomski@hsc.wvu.edu

Supplementary Information

Table S1

Sequences of Scl-V chimeras. Inserted loops are underlined and in bold. Sequence identities and root mean square deviations from Scl2.3 structure are given in the last two columns.

	Scaffold	Loop	Sequence of chimeras	Seqid	R.m.s.d.
				(%)	(Å)
Scl.chi1	Scl2.28	Scl1.1	DEQEEKAKVRTELIQELAQ <u>KYPEVSNEKFWE</u>	35.8	1.1
			<u>RKWYGTYFKE</u> LTYLQEREQAENSWRKRLLK		
			GIQDHALD		
Scl.chi3	Scl2.28	Scl1.28	DEQEEKAKVRTELIQELAQ <u>KEYPKASEEKFW</u>	35.4	2.5
			ESSFWGRRYFNELTYLQEREQAENSWRKRL		
			LKGIQDHALD		
Scl.chi2	Scl1.1	Scl2.28	EVSSTTMTSSQRESKIKEIEESLK <u>GLGGIEKK</u>	33.0	2.6
			NFPTLGDEDLDHTYMTKLEDFQKELKDFTE		
			KRLKEILDLI		
Scl.chiC	Scl2.28	Scl1.1	DEQEEKAKVRTELIQELAQGLGGIEKKNFPER	40.3	1.1
			<u>KWYGTYFKE</u> LTYLQEREQAENSWRKRLLKG		
			IQDHALD		

Figure S1

Fig. S1. Specificity of anti-ECM antibodies and background controls.

A. Antibodies against TnC (BC-24), EDA containing (IST-9) or EDB containing (C6) isoforms of cFn, as well as anti-fibronectin monoclonal antibody (IST-4), were analyzed by western immunoblotting of commercial preparations of cFn. Molecular weights, in kDa, are shown for PageRulerTM Plus protein ladder.

B. Immunofluorescent control images. 1 μ g of BSA, 2 μ g of plasma fibronectin (Sigma), or CAF-deposited matrices, were prepared on glass coverslips and incubated with primary mAbs, outlined in Fig. S1A. Secondary Ab conjugated with Alexa Fluor® 568 was used for detection. A representative image of BSA background (using anti-EDB antibody, C6) is shown in upper left panel, secondary only background on CAF-deposited ECM on upper right panel, and plasma fibronectin coatings in the bottom two rows. Images were taken using Nikon A1-R confocal microscope with 60x objective; representative images are shown from 2 independent experiments, imaging 10 arbitrary fields per coverslip.

Figure S2

Fig. S2. Scl1-mediated GAS biofilm formation on ECM deposited by cancer-derived fibroblasts (CAFs). WT GAS strains M1 and M41, and their isogenic $\Delta scl1$ mutants were compared for biofilm formation.

A. Assessment of biofilm formation on rEDB-coated surfaces. M1 and M41 WT and their $\Delta scl1$ isogenic mutants were compared. Biofilm formation was evaluated spectrophotometrically following crystal violet staining. Graphic bars indicate the mean OD_{600nm} normalized against BSA controls. Statistical analysis was calculated using Student's two-tailed *t*-test from three independent experiments (N=3±SD); ***P≤0.001.

B. Microscopy imaging of GAS biofilms formed on CAF-derived ECM. GFP-expressing M41 WT and $\Delta scl1$ mutant strains were grown for 24 h on CAF-ECM matrix deposited on glass coverslips. Twodimensional orthogonal views of GAS biofilms are representative of Z stacks from 10 fields within a single experiment. Average vertical thickness is indicated in micrometers below two-dimensional orthogonal views, taken from 10 arbitrary fields per experiment.

Fig. S3. Scl1-mediated GAS attachment to and biofilm formation on ECM deposited by bone osteosarcoma cells. WT GAS strains M1 and M41, and their isogenic $\Delta scl1$ mutants were compared for attachment and biofilm formation on the ECM produced by osteosarcoma Saos-2 cells.

A. Representative image of Ponceau S staining of ECM network deposited by Saos-2 cells.

B. Characterization of the ECM deposited by Saos-2 cells by ELISA. The presence of total Fn, EDA/cFn, EDB/cFn, and TnC was assessed with specific anti-ECM mAbs and secondary HRP-conjugated antibody. Graph bars indicate the mean OD_{415nm} from three independent experiments, each in triplicate wells (N=3±SD). Dashed line indicate threshold OD_{415nm} +2SD values recorded for BSA control wells.

C. GAS attachment on Saos-2-derived ECM. Isogenic GFP-GAS strains were inoculated onto Saos-2derived matrices, allowed to attach for 1 h, and imaged using fluorescent confocal microscope with 100x objective. *Top*, representative images of attached GAS were taken in 20 fields. *Bottom*, quantification of GAS attachment with WT binding set as a 100%. Bacteria were counted in 20 fields and the average was calculated. Statistical analysis was calculated using Student's two-tailed *t*-test from two independent experiments, each performed in duplicate wells (N=2±SD); **P \leq 0.01, ***P \leq 0.001. Statistical significance evaluates the difference between adherence to Saos-2-derived matrices by the WT and their respective isogenic Δ scl1 mutants. Each symbol represents one imaged-field.

D. GAS biofilm formation on Saos-2-derived ECM. Isogenic GAS strains were inoculated onto Saos-2-derived matrices and grown for 24 hours. Bacterial biomass was evaluated spectrophotometrically following crystal violet staining. Graphic bars indicate the mean OD_{600nm} normalized against BSA controls. Statistical analysis was calculated using Student's two-tailed *t*-test from three independent experiments (N=3±SD); ***P≤0.001.