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S1. Mathematical models that can be used to develop qAOPs 
S1.1. Bayesian Network Models 
A Bayesian Network modeling approach enables development of large network 

models that incorporate multiple, interacting AOPs to predict a common AO. In 

Bayesian qAOPs, connected KEs are assumed to be conditionally dependent, while 

the KEs without direct connection are independent, which simplifies the calculation of 

joint probability distribution over the events (MIE, KE, AO) of the network. This 

establishes response-response relationships that can vary from simple binary states 

(e.g. active vs non-active) to multiple categories, such as levels of potency. For 

example, Jaworska et al (Jaworska et al., 2013) applied a Bayesian Network 

modeling approach to predict dose-response relationships of chemicals tested in 

several in vitro assays representing different KEs within the AOP for skin 
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sensitization by using the categories non-sensitizer, weak, moderate or strong and 

extreme.     

 

Bayesian networks can be used to predict the likelihood that a KE or AO 

occurs based on the state of (other) KEs within the network, to classify chemicals 

based on responses of in vitro assays representing KEs, and even de novo inference 

of an AOP network structure based on experimental data and network learning 

algorithms (Carriger et al., 2016; Jaworska et al., 2013). To create Bayesian network 

models within a qAOP modelling context, an acyclic AOP network and a set of 

conditional probability tables for each KE in the network are required. Within a AOP 

network, a cycle is a path between KEs that traverses the same KE more than once. 

When a network is acyclic, there are no cycles present.  For further discussion of 

directed acyclic graphs, which many AOP networks can be categorized as, see 

Bang-Jensen and Jorgen (2008) . Conditional probability tables describe the 

probability that a downstream KE occurs given the degree of perturbation of an 

upstream KE. Probabilities relating the response relationships between upstream and 

downstream KEs can be derived from experimental data indicating causality (e.g. 

knock down of KE expression or pharmacological blocking of activity) or response-

response dependence (e.g. both upstream and downstream KE activities are 

measured in the same experiment over a concentration range or over a time series). 

Bayesian network approaches are flexible in that simple models with binary states 

(e.g. KEs as active/inactive or above/below a threshold)  can be developed rapidly 

and more complex models with greater fidelity developed if sufficient resources are 

available. 

 
S1.2. Regression Models 

If data describing the responses of two or more KEs measured in the same 

experiment is available, one can also develop regression models. Regression models 

are a large class of statistical models used to estimate the relationships between 

measured variables, (e.g. the outcome that one wants to predict and predictors 

(measured data that used to predict the outcome)). Values for parameters in the 

model are generally estimated by fitting the model to a subset of experimental data, 

while a different subset is used for validation. .  
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In an AOP context, the predictor variables could be measurements of 

particular KEs used to predict a downstream KE or an AO. Data for regression 

models should include measurements of at least two different KEs collected from the 

same experiment over a range of response-response relationships. For example, 

Miller et al. (2007) developed a regression model of fathead minnow plasma VTG and 

fecundity to predict population sustainability based on VTG levels in plasma. 

Regression models may be used alone, precede or be established secondary to 

other models such as ordinary differential equations (discussed in the following 

section), since they are easier to understand and do not require more sophisticated 

computational/modeling skills (Conolly et al., 2017).  

 

S1.3. Ordinary Differential Equation models 
Ordinary Differential Equation models (ODEs) can incorporate temporal effects 

and systems dynamics. For ODE-based qAOPs it is therefore necessary to 

understand how the elements of an AOP evolve over time). ODE modeling is 

particularly well suited to incorporating complex system dynamics, such as signaling 

cascades, feedback and feedforward loops and, in particular, the effect of time-

dependent perturbations (e.g. acute vs chronic). ODE models can be applied 

practically at any level of biological organization, from biomolecular interactions (e.g. 

steroidogenesis and signal transduction, Shoemaker et al., 2010; Cheng et al., 

2016)), to cellular dynamics (e.g. T-cell proliferation, Baker et al., 1997) to population 

dynamics (e.g. ecological modeling, Hallam et al., 1983)  

ODE-based models require detailed mechanistic knowledge but in many 

cases it may not be necessary (from a predictive standpoint) or even desirable (from 

a data needs or model coding and performance standpoint) to include all KEs and 

KERs, but rather to focus on the parts for which data availability enable ODE 

modelling and where it is required to answer the question of interest.  

  

S1.4. Agent or Individual Based Models  
Individual- or Agent-based models (ABMs) track the behaviors of individual 

agents over time and the aggregated properties of the agents describe key 

demographic metrics for populations, such as survival, production, and movement 

(Grimm and Railsback, 2005). Agents can represent a wide range of items including 

molecules, cells in tissues, and individuals within a population. They are particularly 
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useful when the individual differences between agents can lead to different 

responses to the same stimulus, for instance, when two animals of the same species 

have a different reaction to exposure to the same chemical. ABMs are also used 

when interactions among individuals are crucial to understanding the system, and 

when it is necessary to include adaptive behavior that could include physiology 

and/or energy budgets (DeAngelis and Grimm, 2014). In the AOP context, ABMs 

have been shown to be particularly useful for modeling AOs related to individual 

behavior and the translation of individual behavioral responses to adverse effects at 

the population level. For example, Murphy et al. included MeHg induced swimming 

behavior and reactive distance alterations, both key events measured on individual 

larval fish, into an ABM calibrated for Atlantic croaker and determined the effects of 

these behavioral alterations on cohort survival and growth, which are population 

relevant endpoints (Murphy et al., 2008). Because ABMs are models of individuals, 

they require substantial data at the level of individuals to make them more informative 

than models that assume all individuals of a similar grouping (eg., age) are identical 

(Caswell, 2001).  

 

S1.5. Dynamic Energy Budget Models 
Dynamic energy budget (DEB) models consider an organism as a system that 

assimilates energy and mass into an animal and describes how these are used 

internally to maintain or execute various physiological functions. DEB models are 

based on ODEs describing time varying measures of growth, reproduction, 

maintenance and other physiological function (Kooijman, 2010; Jager et al., 2014) - 

and the potential impact by environmental stressors. These ODE models are 

attractive because they are based on over 30 years of metabolic theory and are 

composed of relatively few parameters that can be used to describe a broad 

spectrum of species with diverse life history patterns. The DEBtox approach has 

been used to link external chemical concentrations to life history traits (Jager and 

Zimmer, 2012),and  to examine the toxicological effects of chemicals on a wide range 

of animals (eg effects of nonylphenol in marine polychaetes or uranium on C. 

elegans, (Jager and Selck, 2011; Goussen et al., 2015)). 

Recent work has focused on linking the mechanistic pathway based 

information in qAOPs to the energy partitioning information in DEB models. In this 

approach, either the qAOP is incorporated into the DEB model by altering the DEB 
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model itself to accommodate sub-organismal feedbacks, by adding a separate 

module to DEB to represent a qAOP, or by altering the DEB rates by statistical 

correlations from KEs (Murphy et al., 2018). Once parameter changes described by 

qAOPs are mechanistically linked to DEB, DEBs can then be used to examine how 

toxic chemicals change energetic tradeoffs amongst physiological processes and the 

impact on life history traits within a whole organism. The cross-talk between qAOP 

and DEB models would improve the predictive power of qAOP models, and place 

KEs into a framework that would allow for extrapolation to population level effects by 

embedding them into ABMs (Martin et al 2013).  

 

S1.6. Population models 
The impact on the population represents the ultimate target and regulatory concern 

for decision making particularly in the field of ecotoxicology. Hence, qAOP models 

may need to incorporate appropriate population models that estimate the impact of 

individual performance on the dynamics and structure of a population, via impacts on 

individual survival and reproduction (Kramer et al., 2011). They may be applied to the 

final trajectories of diverse AOPs that will converge at the level of the individual, 

usually in the form of survival, growth or reproductive effects. Population models may 

accommodate multiple AOs from single or multiple stressors (Diamond et al., 2013), 

but can also allow us to bridge suborganismal/organismal KEs by e.g. extrapolating 

the effects of contaminants on behavior to population endpoints (Murphy et al., 

2008). Population models take on many forms, such as unstructured ordinary-

differential equation models (e.g. logistic population growth; Barnthouse, 2004)), 

structured demographic models such as matrix projection models (Miller et al., 2007), 

and individual based models (Railsback et al., 2009). There are many reviews that 

discuss the use of appropriate population models for different purposes related to risk 

assessment (e.g. (Galic et al., 2010) and many of these models can be potentially 

linked to AOPs as well.  
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