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Supporting Information

S1 Derivation of results for linear fitness

S1.1 Fitness

In the main analysis, we assumed fitness to be linearly dependent on the number of loci adapted to the current

environment. Linear fitness measures the Hamming distance (number of mismatched bits) dH of x to the

currently selected optimum aj , j 2 {1, . . . , k}, for each of the k blocks (traits) of length `, and the genotype’s

fitness is directly proportional to the number of matching alleles, defined as

f(x) = 1�
P

B2B dH(x[B], a[B])

Fmax

, (S1)

where x[I] denotes a bit string (genotype) x consisting only of the values at the indices i 2 I ✓ {1, . . . , n}, and

B =
Sk

m=1

�
(m � 1)`+ 1, . . . ,m`

 
is the index set of all blocks. Note that in the first model, only one block is

under selection, while other blocks have undefined target sequences and thus do not contribute to the fitness.

Fmax represents the maximum Hamming distance possible between the current genotype and the threat, and

thus allows scaling of the fitness between 0 and 1. To scale the fitness equally for all three models, we define

Fmax = ` in the first model and Fmax = k` = n in the other two models. Note that in simpler terms, fitness is

also directly proportional to the fraction of adapted loci F = f = x
` if only a single trait is under selection, or

F = f = X
n if all traits are under selection.

S1.2 Single trait under periodic selection

Here we focus on a single trait encoded by ` loci and assume that alleles denoted 1 are adaptive, while alleles

denoted 0 are not. Each iteration, one mutation occurs in the genome of length n. During the strong-selection

phase, any mutation occurring in a trait is either positive and fixes in the population within a short time (one

iteration) with probability p, or negative and does not fix in the population. In the presence of selection pressure,

the number of adapted loci x is increasing and the expected increase in fitness—drift—in one iteration is

�(x) = p
`� x
n

. (S2)

Assuming that steps are small (n is large), we can approximate the discontinuous process by a continuous (and

integrable) path, stating dx
dt ⇡ �(x). Therefore, we can calculate the expected number of adapted alleles at time

t1:
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dx
dt

=
p
n
(`� x)

Z x1

x0

dx
`� x

=

Z t1

t0

p
n
dt

� log(`� x)
���
x1

x0

=
p
n
(t1 � t0)

log

✓
`� x0
`� x1

◆
=

p
n
�t

`� x0
`� x1

= e
p
n�t

x1 = `� (`� x0)e
� p

n�t , (S3)

where x1 and x0 denote the number of adapted alleles at time t1 and t0, respectively, and �t = t1 � t0. The

expected gain of adaptive alleles is thus

��t(x) = x1 � x0 = (`� x0)(1� e�
p
n�t) . (S4)

In the absence of selection, all mutations within the trait are e↵ectively neutral and fix with a probability

of 1/N . The expected gain of alleles 1 under no selection pressure is given by the di↵erence between 0 alleles

mutating and fixing in the population, `�x
Nn , and alleles 1 mutating to 0 and fixing, x

Nn :

dx
dt

=
`� x
Nn

� x
Nn

=
`� 2x
Nn

. (S5)

The expected number of adaptive alleles at time t1 is

Z x1

x0

dx
`� 2x

=

Z t1

t0

1
Nn

dt

�1
2
log(`� 2x)

���
x1

x0

=
1

Nn
(t1 � t0)

log

✓
`� 2x0
`� 2x1

◆
=

2
Nn

�t

`� 2x0
`� 2x1

= e
2

Nn�t

x1 =
`
2
�
✓
`
2
� x0

◆
e�

2

Nn�t . (S6)

Thus, the expected change in the number of adapted loci for arbitrary �t is
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��t(x) = x1 � x0 = (1� e�
2�t
Nn )

✓
`
2
� x0

◆
. (S7)

Equation (S3) shows that the number of adapted alleles converges to ` in the presence of selection, while

equation (S5) shows that in its absence it converges to `/2, which is expected, as all alleles are neutral in the

absence of selection.

If we assume that a trait is periodically under selection pressure for ⌧1 iterations but the selection is then

absent for ⌧0 iterations, we can find the maximum expected number of adapted alleles (at the end of the selection

period) and its minimum (at the end of the no-selection period), denoted by xmax and xmin, respectively, and

thus their magnitude x�:

xmax = `� (`� xmin)e
� p

n ⌧1 and

xmin =
`
2
�
✓
`
2
� xmax

◆
e�

2

Nn ⌧0 .

Defining A = e�
p⌧1
n and B = e�

2⌧0
Nn and solving the system of equations leads to

xmax =
1

2
A(1�B) + (1�A)

1�AB
` , (S8)

xmin =
1

2
(1�B) + (1�A)B

1�AB
` , (S9)

and the magnitude of oscillations is

x� = xmax � xmin =
(1�A)(1�B)

1�AB
` . (S10)

The fraction of adapted alleles is easily obtained by dividing the number of adapted alleles by the maximum

possible number of adapted alleles `.

To find the maximum time required for the population to climb the fitness peak (all alleles are adapted), we

use the variable drift theorem and the expected progress to the optimum when a trait is under selection (S2).

Theorem 1 (see Methods; Johannsen 2010) applies to the decreasing the number of zeros y = `�x (the number

of remaining mutations that need to be accumulated), thus, h(y) = py
n :
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Topt 
1

h(1)
+

Z `

1

1
h(y)

dy

 n
p
+

Z `

1

n
py

dy

 n
p
(1 + log `) , (S11)

where we assumed a worst-case scenario, no adapted loci at the beginning, or Topt  n
p (1 + log `

2
) if we

assumed that half of the loci were adapted by chance.

To find the maximum expected time required for the population to get to the proximity of the fitness peak

(for instance, 90% alleles adapted), we use generalised version of the variable drift theorem (A2):

T90  1
h(a)

+

Z `

a

1
h(y)

dy

 n
pa

+

Z `

a

n
py

dy

 n
p
(
1
a
+ log

`
a
) , (S12)

assuming that the required distance from the peak is a = 0.1`

 n
p
(10 + log 10) , (S13)

To find the time it takes to lose adaptation completely (from 100% of adapted alleles to 50%), we find the

time necessary to gain `/2 zeros in the trait. In each iteration, the expected gain of zeros is �y = `�2y
Nn = h(y).

Now we substitute z = `/2� y and use the variable drift theorem, where h(z) = 2z
Nn :

Tmax  1
h(a)

+

Z b

a

1
h(z)

dz

 Nn
2

+

Z `/2

1

Nn
2z

dz

 Nn
2

+
Nn
2

log
`
2

 Nn
2

✓
1 + log

`
2

◆
, (S14)

where a = 1 is the last step before reaching y = (1/2)` and b = `/2 is the maximum number of zeros we have

to accumulate.
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S1.3 Multiple traits under periodic selection

We consider the following three scenarios of time dependent fitness landscapes:

1. Scenario 1: There is a single optimal response to all threats; adaptation to any given threat is independent

of adaptation to any other threat (Figure S1A).

2. Scenario 2: Threats have di↵erent optimal responses, but adaptations to any two threats overlap in all except

two traits (Figure S1B).

3. Scenario 3: Threats have conflicting optimal responses; better adaptation to one threat implies worse adap-

tation to all other threats.

(A) Scenario 1 (B) Scenario 2

Fig. S1: Scheme of the first two scenarios. Di↵erent colors represent di↵erent directions of selection. In the first
scenario, the optimum is a plane, defined only by a single trait. In the second scenario, the optimum is only one
point, a tip of an arrow.

We implement these scenarios as follows: let, for all i, gi : {0, 1}i ! R be a monotone function, that is, we

assume, for all x, y 2 {0, 1}i with 8j  i : xj  yj , that gi(x)  gi(y). For each model, we define a collection

(fi)ik of k fitness functions on {0, 1}n (or, for Model 3, on {1, . . . , k}n), where k is a parameter of the model;

we suppose that k divides n and write k` = n.

1. Scenario 1: For i  k and all x 2 {0, 1}n,

fi(x) = g`

⇣
x
⇥
{1 + i`, . . . , (i+ 1)`}

⇤⌘
.

Note that each fi only depends on a single part of the bit string, and the parts on which the di↵erent fi

depend on are disjoint. The all-1 bit string is optimal for each i.
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2. Scenario 2: For i  k and all x 2 {0, 1}n,

fi(x) =

0

@
kX

j=1

g`

⇣
x
⇥
{1 + i`, . . . , (i+ 1)`}

⇤⌘
1

A� 2g`
⇣
x
⇥
{1 + i`, . . . , (i+ 1)`}

⇤⌘
.

Note that the term which is subtracted twice already appeared once in the sum; subtracting it twice leads

to this term being minimized (rather than maximized). For each of the di↵erent i, we have that they depend

on all bits, and setting the bits to 1 is optimal except for those in {1+ (i� 1)`, . . . , i`}, which need to be set

to 0. Thus, setting bits to 0 is in conflict with what is better for all other i-s.

3. Scenario 3: For i  k and all x 2 {1, . . . , k}n,

fi(x) = gn([x]=i)

where [x]=i is the bit string of length n which is set to 1 for all those positions j where xj = i. Note that

each i has as optimum the all-i string, and every non-i is equally bad.

S1.4 Scenario 1: Selection acting at di↵erent traits in di↵erent environments

We assume k traits encoded by ` non-overlapping biallelic loci, represented by a bit string of length n = k`

divided into k blocks. At each time point t 2 N, the fitness of an individual is given by a function ft of a number

of suitable alleles (represented by ones) encoding the trait under selection, and is independent of all the other

traits.

1 1 1 1 1 1 1 1 1 1 - - - - - - - - - - - - - - - - - - - -

Trait 1 Trait 2 Trait 3

Optimal response 1

- - - - - - - - - - 1 1 1 1 1 1 1 1 1 1 - - - - - - - - - -

Trait 1 Trait 2 Trait 3

Optimal response 2

Fig. S2: In this scenario, only one trait is under selection at each time. Other traits do not contribute to fitness
and thus do not have a unique optimal response.

As there is no correlation between di↵erent environments and traits are completely independent, we can

treat this scenario as k single-traits scenarios. Each trait experiences selection pressure during time period ⌧ ,

and no selection during (k� 1)⌧ (see Figure S3). Substituting this time periods into equations for a single trait

scenario (5), (6) and (7), we can estimate the oscillations in the fraction of adapted loci, by stating ⌧1 = ⌧ and

⌧0 = (k � 1)⌧ :
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Fig. S3: The number of adapted loci and fitness varies in time. Di↵erent background colours represent di↵erent
environments (k = 10). Upper figure: number of adapted loci of randomly selected three traits. If a trait is under
selection, all loci quickly adapt. However, if no selection pressure is applied, adaptation is slowly lost. Bottom
figure: fitness or fraction of loci that are adapted.

fmin =
1

2
(1�B) + (1�A)B

1�AB
, (S15)

fmax =
1

2
A(1�B) + (1�A)

1�AB
, (S16)

and the magnitude of the oscillations is

f� =
1

2
(1�A)(1�B)

1�AB
, (S17)

where A = e�
p⌧
n and B = e�

2(k�1)⌧
Nn .

Furthermore, equations (8) and (9) derived for the single-trait scenario can be directly used to determine

the maximum expected time necessary for a trait to climb the fitness peak or to lose the adaptation completely.

Thus, if the environment oscillates with periods longer than n
p (1 + log `), the population has enough time to

climb the fitness peak. If the period is longer than nN
2
(1 + log 3`

2`+2
), adaptations to individual threats are

forgotten and only half of the alleles remain adapted in expectation.

Frequent environmental change

Another extreme case of environmental change is the environment changing every iteration, i.e., at the same

time scale as new mutations appear in the population. To simplify the analysis, we focus at the whole genome

at once. In the following theorem, we state the expected level of adaptation (expected number of adapted loci)

to which the population converges if the environment changes at the same timescale as new mutations occur
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Fig. S4: The dependence of the level of adaptation on the period of environmental change. Green depicts the
expected maximum, red the expected minimum, blue the size of oscillations. Lines show analytical results, dots
the simulation results. Mean and standard deviation of 100 periods, taken after stable oscillations were achieved.
k = 10, ` = 50, N = 100, p = 0.9.

in the genome. Furthermore, we provide an estimate of the number of adapted alleles as a function of elapsed

time since the beginning of adaptation, assuming no loci were originally adapted. In the proof of the theorem,

we first estimate the expected change—drift �(X)—in the number of adapted alleles across the whole genome,

denoted by X. By finding a threshold value of X allowing for positive drift, we can determine the number of

one bits (adapted alleles) of the whole genome.

Theorem 5 Let Y (t) be the number of 1-bits in the current genome of the SSWM in any iteration t 2 N when applied

to the uncorrelated blocks problem with a constant k � 2 number of blocks, where the current block is chosen uniformly

at random in every iteration, i.e., ⌧ = 1. Then for any constant " > 0, there exists a constant c > 0 such that

Pr

✓
max

1tecn
Y (t) � (1 + ")

n(k � 1 +N(k"+ p))
2(k � 1) +Np

◆
= e�⌦(n) .

Furthermore, for any � 2 (0, 1), SSWM obtains a genotype with at least

n(k � 1 +Np(1 + �)/2)
2(k � 1) +Np

1-bits in expected time at most

knN�

(1� �)(2(k � 1) +Np)
.

Proof Let Yi(t), i 2 [n/k] [ {0} be the number if 1-bits in the i-th block of SSWM at time t. We apply Hajek’s

theorem (2.8) to Y (t) :=
Pk

i=1
Yi(t), i.e., the total number of 1-bits in the bit string, and define �(t + 1) :=

Y (t+ 1)� Y (t).
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To check condition (C1), we let p be the probability that SSWM accepts a new genotype when the fitness

has increased by one, and 1/N the probability that SSWM accepts a genotype with identical fitness.

E [�(t+ 1) | Y (t)] =
kX

i=1

✓
1
N

◆✓
1� 1

k

◆✓
n/k � Yi(t)

n
� Yi(t)

n

◆
+ p

✓
1
k

◆✓
n/k � Yi(t)

n

◆

=
kX

i=1

k � 1 +Np
Nk2

� 2(k � 1) +Np

Nkn
Yi(t)

=
1
Nk

✓
k � 1 +Np� 2(k � 1) +Np

n
Y (t)

◆
. (S18)

The first part of equation (S18) describes the probability of a neutral mutation occurring and fixing in the

population, while the second part describes the probability of positive mutations occurring in the selected trait

and fixing in the population.

Hence, for an arbitrary constant " > 0, if

Y (t) � n(k � 1 +N(p+ k"))
2(k � 1) +Np

=: a(n),

then the drift is

E [�(t+ 1) | Y (t)]  �".

Condition (C2) is trivially satisfied because the number of 1-bits changes by at most one. Assuming that

Y (0)  a(n), Hajek’s theorem (2.8) implies for any t � 0 that

Pr (Y (t) � a(n)(1 + ")) = e�⌦(n) . (S19)

Note that a(n) > n(1 + ")/2, hence by a Cherno↵ bound, the assumption Y (0)  a(n) holds with probability

e�⌦(n) because the initial genotype is sampled uniformly at random. The first statement now follows by a union

bound with respect to the time t.

For the second statement, it su�ces to note that for "2 := (1� �)p/(2k)

Y (t) <
n(k � 1 +N(p� k"2))

2(k � 1) +Np
=: b(n) (S20)

the expected drift from (S18) is bounded by

E [�t+1;Yt < b(n) | Yt] > "2. (S21)
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Hence, the expected time to reach b(n) 1-bits starting from a uniformly chosen genome is by the additive drift

theorem at most

E


b(n)� Y (0)

"2

�
=

b(n)� n/2
"2

=
nN(p� 2k"2)

"2(4(k � 1) + 2Np)
=

knN�

(1� �)(2(k � 1) +Np)
.

A little oversimplified, Theorem 5 implies that the population quickly obtains approximately

⇡ n(k � 1 +Np)
2(k � 1) +Np

adapted alleles. However, from this level, it takes exponential time to adapt significantly more alleles.

The following proposition states that there is a simple linear relationship between the expected number of

adapted alleles and the expected fitness.

Proposition 1 Let F (t) be the fitness and Y (t) be the number of adapted alleles of SSWM in any generation t 2 N

when applied to the uncorrelated blocks problem, where the current block is chosen uniformly at random in every

generation (i.e., ⌧ = 1). Then

E [F (t)] = E [Y (t)] /k . (S22)

Proof The fitness F (t) equals the number of adapted alleles in the current block in generation t. For all i 2 [k],

let Yi(t) be the number of adapted alleles in block i at time t, and Y (t) =
Pk

i=1
Yi(t) be the total number of

adapted alleles in the genome. Let the random variable K(t) 2 [k] denote the current block in generation t.

Since, the current block is chosen uniformly at random in each generation, the expected fitness conditional on

the number of adapted alleles in each block is

E [F (t) | Y1(t), . . . Yk(t)] =
kX

i=1

Pr (K = i)Yi(t) =
kX

i=1

Yi(t)/k = Y (t)/k . (S23)

Finally, by the tower property of expectation,

E [F (t)] = E [E [F (t) | Y1(t), . . . , Yk(t)]] = E [Y (t)] /k . (S24)

As the environment changes every iteration, all adapted alleles are uniformly distributed across the all traits,

resulting in the expected number of adapted alleles in a currently selective trait x(t) = X(t)
k :

x ⇡
n(k�1

N + p)

k(2(k�1)

N + p)
. (S25)

We can obtain this result also by substituting ⌧ = 1 into equations (S16) and (S15) and assuming that n is

large enough such that A ! 1. Limits of both equations lead to equation (S25).
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(A) Number of traits. (B) Number of loci in 1 trait. (C) Probability of fixations.

Fig. S5: Time to find the temporal optimum in scenario 1, and its dependence on various parameters. Red lines
depict analytical results, blue dots simulation results. Mean and standard deviation of 100 independent trials.

S1.5 Scenario 2: Selection acting at all traits, with partial overlap between di↵erent environments

In this scenario, each trait is under selection at all times and every mutation that occurs is either positive and

fixed with probability p, or negative and does not fix. Selection acts in one direction (denoted as ‘principal

direction’) on all traits except one trait specific for each environment, which is then under selection in opposite

direction (Figure S6). As there are k di↵erent threats, the number of alleles 1 increases during time (k� 1)⌧ , it

decreases during time ⌧ .

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Trait 1 Trait 2 Trait 3

Optimal response 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Trait 1 Trait 2 Trait 3

Optimal response 2

Fig. S6: In this scenario, all traits are under selection at all times. However, optimal responses to all threats are
similar to each other.

As all traits are independent, we can begin by looking at a single trait. As in the previous scenario, we

estimate the expected increase in number of ones if this trait experiences selection in the principal direction

�(x) = p
`� x
n

, (S26)

and their decrease when trait is experiencing selection pressure in the opposite direction

�(x) = �p
x
n

, (S27)

where x is a number of ones in a given trait.

Following the approach as in the single-trait scenario, using equation (S26), we can estimate the expected

gain of ones in a trait that is under selection in the principal direction. The increase is given by equation (S3),

where �t = (k � 1)⌧ :
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x1 = `� (`� x0)(e
� p

n (k�1)⌧ ) ,

�t(x) = (`� x0)(1� e�
p
n (k�1)⌧ ) ,

where x0 and x1 denote the number of alleles 1 at the beginning and the end of the period, with selection

acting in principal direction.

Similarly, using equation (S27), we can calculate the expected gain of alleles 0 (or rather loss of alleles 1)

when a trait experiences selection in the opposite direction during time ⌧ :

�x =
dx
dt

= � p
n
x

Z x1

x0

dx
x

=

Z t0+⌧

t0

� p
n
dt

log(x)
���
x1

x0

= � p
n
⌧

x1 = x0(e
� p

n ⌧ ) . (S28)

Expected loss of alleles 1 is thus

�t(x) = x1 � x0 = x0(e
� p

n ⌧ � 1) . (S29)

We can find the minimum and the maximum number of ones that each trait is expected to reach by solving

the following set of equations

xmax = `� (`� xmin)(e
� p

n (k�1)⌧ ) and

xmin = xmaxe
� p

n ⌧ .

Defining A = e�
p⌧
n and B = e�

p(k�1)⌧
n = A(k�1) and solving the equations leads to

xmax =
(1�B)`
1�AB

=
1�Ak�1

1�Ak
` and

xmin =
A(1�B)`
1�AB

=
A�Ak

1�Ak
` .

Note that the expressions above give us only the minimum and the maximum number of ones in each trait,

or, dividing by `, the minimum and maximum fraction. To find the minimum, maximum and the magnitude

of fitness oscillations, we cannot simply compare the gain and the loss of alleles in a single trait, as all the
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other traits are in various stages of adaptation. Furthermore, one trait is always under selection in the opposite

direction, and alleles denoted 0 contribute positively to the fitness and are thus adaptive in this trait. Hence,

to find the total fraction of the alleles that are adaptive, we have to sum them up over the number of periods

that passed since the change in the selection direction.

The maximum fraction of alleles that are adaptive at the and of each period is

fmax(⌧) =
1
n

"✓
1� A�Ak

1�Ak

◆
`+

k�1X

i=1

✓
`+

✓
A�Ak

1�Ak
`� `

◆
Ai
◆#

=
1
n

"✓
1� A�Ak

1�Ak

◆
`+ (k � 1)`+ `

k�1X

i=1

✓✓
A�Ak

1�Ak
� 1

◆
Ai
◆#

=
`
n

"
k � A�Ak

1�Ak
+

A�Ak

1�Ak

k�1X

i=1

Ai �
k�1X

i=1

Ai

#

=
`
n

"
k +

A�Ak

1�Ak

 
�1 +

k�1X

i=1

Ai

!
�

k�1X

i=1

Ai

#

=
`
n


k +

A�Ak

1�Ak

✓
�1 +

A�Ak

1�A

◆
� A�Ak

1�A

�

=
`
n


k � 2(A�Ak)

1�Ak

�

= 1� 2
k
· A�Ak

1�Ak
, (S30)

where the first term in the first line is the fitness contribution of a trait that is under selection in the opposite

direction. Using the same approach, it is possible to calculate the expected minimum fitness, right after the

environmental change.

We expect that the trait that was longest under selection pressure in the principal direction will come under

selection pressure in the opposite direction. Thus, its fitness contribution will be given only by ` � xmax loci.

The trait that was under selection in the opposite direction until now will contribute only xmin loci. Other traits

had already from 1 to k � 2 periods of selection in the one direction, thus their contribution can be found by

using equation (S3) with a time of i · ⌧ , where i is the number of periods that each trait spent under selection

in the principal direction.
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fmin(⌧) =
1
n

"
`� xmax + xmin +

k�2X

i=1

A�Ak

1�Ak
`

#

=

0

@

⇣
A�Ak

⌘

1�Ak
�

⇣
1�Ak�1

⌘

1�Ak
+

⇣
kAk+1 � 2Ak+1 �Ak +A2 �Ak + 2A

⌘

A (Ak � 1)
+ 1

1

A `
n

=
`
⇣
kAk � 2Ak�1(k � 2)

⌘

n (Ak � 1)

= 1� 2
k
· 1�Ak�1

1�Ak
, (S31)

where A = e�
p⌧
n . Resulting oscillations in fitness are

�f(⌧) = fmax(⌧)� fmin(⌧)

= 1� 2
k
· A�Ak

1�Ak
� 1 +

2
k
· 1�Ak�1

1�Ak

=
2
k
· (1�A)(1�Ak�1)

1�Ak
. (S32)

Frequent environmental change

To find out what happens if the environment changes frequently, i.e., every iteration, we can substitute ⌧ = 1

into the equations (S30), (S31) and (S32). However, to get a better idea how the resulting state depends on the

number of loci ` and traits k, we assume that n >> p and thus A ! 1 and find the limit of the minimum and

maximum fitness/fraction of adapted loci across all traits:

lim
A!1

fmax(1) = lim
A!1

fmin(1) =
(k � 1)2 + 1

k2

=

�
k2 � 2k + 2

�
`

kn
= 1� 2(

1
k
� 1

k2
) . (S33)

See Theorem 7 for a proof that, after a su�ciently long time, the fraction of adapted alleles converges into

the solution above, regardless of the initial state, if the environment changes frequently.

Rare environmental change

To find the time necessary for the adaptation, we denote the number of alleles matching the current threat

(regardless whether they are ones or zeros) X, and determine the expected change in each iteration

� =
(n�X(t))p

n
. (S34)
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We define decreasing number of all non-matching alleles h(Y ) = Y p
n and use the variable drift theorem:

Topt 
1

h(1)
+

Z
2`

1

1
h(Y )

dY

 n
p
+

Z
2`

1

n
pY

dY

 n
p

�
1 + log(2`)

�
,

where we assumed that at the beginning, 2` loci were not adapted, or

Topt 
n
p
(1 + log n) , (S35)

where we assumed that no loci were adapted at the beginning. Thus, the equation above sets a limit to the

maximum expected adaptation time in this scenario.

Upon environmental change after this time, 2 traits are expected to be completely maladapted, thus the

fitness is reduced by 2/k. See Theorem 9 for the proof.

(A) Number of traits. (B) Number of loci in 1 trait. (C) Probability of fixations.

Fig. S7: Time to find the temporal optimum in scenario 2, and its dependence on various parameters. Red lines
depict analytical results, blue dots simulation results. Mean and standard deviation of 100 independent trials.

S1.6 Scenario 3: Adaptations in di↵erent environments are completely antagonistic

In this scenario, we assume that all traits are under selection at all times. However, every environment requires

a specific response (allele) at each locus, thus there are as many alleles per locus as there are threats. Threats

are completely dissimilar, adaptation to one of them means maladaptation to the rest of them (Figure S8).

As all traits are under selection in the same direction, we look at the whole genome at once. The probability

of a positive mutation occurring is n�X
n(k�1)

, where X is the total number of alleles across all traits adapted to

the current threat, and the factor (k � 1) comes from the fact that only one in (k � 1) possible mutations at

each locus is positive in a given time. As all traits are under selection in the same direction, we can apply the
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A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

Trait 1 Trait 2 Trait 3

Optimal response 1

B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B

Trait 1 Trait 2 Trait 3

Optimal response 2

Fig. S8: All traits are under selection at all times. Optimal responses to all threats are not compatible.

same approach as we used for a single trait to the whole genome. Thus, the expected gain of adaptive alleles in

each time step is

�X =
p(n�X)
n(k � 1)

. (S36)

The expected number of adaptive alleles after time period ⌧ is

dX
dt

=
p

n(k � 1)
(n�X)

Z X1

X0

dX
n�X

=

Z t0+⌧

t0

p

n(k � 1)
dt

log(n�X)
���
X1

X0

=
p

n(k � 1)
(⌧)

log

✓
n�X0

n�X1

◆
=

p

n(k � 1)
⌧

n�X0

n�X1

= e
p

n(k�1)
⌧

X1 = n� (n�X0)e
� p

n(k�1)
⌧ , (S37)

where X1 and X0 denote the number of adapted alleles at the beginning and the end of the period ⌧ ,

respectively. The expected gain of adaptive alleles is thus

�t(X) = (n�X0)(1� e�
p

n(k�1)
⌧ ) . (S38)

Again, we assume that a trait is periodically under selection pressure in one direction for ⌧ iterations, but

under selection in a di↵erent direction (we have k directions, as there are k alleles per locus) for (k � 1)⌧

iterations, thus the expected change of alleles of a particular type (denoted by X) in each time step is

�X = � pX

n(k � 1)
� X(k � 2)

Nn(k � 1)
, (S39)

where the first part is a loss due to positive mutations occurring and fixing, while the second part captures the

loss of alleles due to neutral mutations to other possible alleles. In time (k � 1)⌧ , the change is
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dX
dt

= � X

n(k � 1)

✓
p+

k � 2
N

◆

Z X1

X0

dX
X

= �
Z t0+(k�1)⌧

t0

p+ k�2

N

n(k � 1)
dt

log(X)
���
X1

X0

= �
p+ k�2

N

n(k � 1)
(k � 1)⌧

log

✓
X1

X0

◆
= �

p+ k�2

N

n
⌧

X1

X0

= e�
p+

k�2

N
n ⌧

X1 = X0e
�

p+
k�2

N
n ⌧ , (S40)

where X1 and X0 denote the number of type X alleles at the beginning and the end of the period, when this

allele was not suitable for the environment.

The expected loss of adaptive alleles is thus

�t(X) = X0 �X0e
�

p+
k�2

N
n ⌧ = X0(1� e�

p+
k�2

N
n ⌧ ) . (S41)

We can find the maximum expected number of adapted alleles in the whole genome (at the end of the selection

period) and its minimum (at the end of the no-selection period), denoted by Xmax and Xmin, respectively, and

thus their magnitude X�:

Xmax = n� (n�Xmin)e
� p

n(k�1)
⌧ and

Xmin = Xmax(e
�

p+
k�2

N
n ⌧ ) .

Defining A = e�
p⌧

n(k�1) and B = e�
pN+k�2

Nn ⌧ and solving the system of equations leads to

Xmax =
1�A
1�AB

n and (S42)

Xmin =
(1�A)B
1�AB

n , (S43)

and the magnitude of oscillations is

X� =
(1�A)(1�B)

1�AB
n . (S44)
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The total fraction of adapted loci can be found by dividing the results above by n, as we were looking at

the whole genome.

Rare environmental change

As before, we use variable drift theorem to find the maximum expected time to adapt all loci across all traits.

Defining h(Y ) = pY (t)
n(k�1)

,

Topt 
1

h(1)
+

Z n

1

1
h(Y )

dY

=
(k � 1)n

p
+

Z n

1

(k � 1)n
pY

dY

=
(k � 1)n

p
(1 + log n) , (S45)

where we assumed the worst case scenario, when no adaptive alleles are present at the beginning. After

this time, it is expected that all loci are adapted to the current threat, and if the environment changes, the

population is completely maladapted to the environment.

(A) Number of traits. (B) Number of loci in 1 trait. (C) Probability of fixations.

Fig. S9: Time to find the temporal optimum in scenario 3, and its dependence on various parameters. Red lines
depict analytical results, blue dots simulation results. Mean and standard deviation of 100 independent trials.

S2 Adding stochasticity to environmental change

To simplify the calculations above, we assumed that the environment changes periodically and di↵erent threats

follow in the same order. However, as our results are expectations, they apply to more general scenarios as well,

where di↵erent threats arise in random order. We still assume that they are all equally likely and of the same

length. In such a case, each environment repeats in expectation every (k � 1)⌧ iterations, and our results hold.

However, the variance in the minimum and the maximum fraction of adapted alleles is increased.

Figure S10 shows analytical results (solid line) and simulations of threats arising in random order.
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(A) Scenario 1 (B) Scenario 2 (C) Scenario 3

Fig. S10: Minimum (red), maximum (green) and magnitude of the fitness oscilations (blue) in all three models,
when environments change in random order. Lines depict analytical calculations, dots mean and standard
deviation of 200 periods taken after stable oscilations were achieved.

S3 Generalized fitness landscape—non-linear fitness

Here, we generalize our results by relaxing assumptions on the fitness landscapes. We assume the fitness to be

an arbitrary monotone function increasing with the size of the mutation e↵ects, and thus larger mutations are

more likely to get fixed in the population. Several cases of epistasis can be incorporated into the model.

We develop a general framework for the analysis of an arbitrary monotone fitness function, then work out

another specific saturating fitness function.

S3.1 Probability of a given state

The following lemma is due to Randall (2006) and will be used in the upcoming proofs. It says that, after a

mixing time of at most ⌧("), the probability to be in either state of a two-state Markov chain is only by " o↵

from its stationary distribution. This lemma is useful to determine the fraction of adapted alleles in all three

scenarios and is independent of the fitness function, as it only deals with probabilities of fixations.

Lemma 1 Assume a two-state Markov chain (Figure S11) with transition probabilities x and y. For all t 2 N, let

x(t) and y(t) be the probabilities of being in state 0 and 1 at time t, respectively, and let x⇤ = limt!1 x(t) and

y⇤ = limt!1 y(t). Then

x⇤ =
y

x+ y
and

y⇤ = 1� x⇤ .

Further, for " > 0, let ⌧(") denote the first point in time such that, for all t � ⌧("), |x(t)�x⇤|  " and |y(t)�y⇤|  ",

and let p⇤ = min{x⇤, y⇤}. Then

⌧(") = O

 
1

x+ y
log

✓
1
p⇤"

◆!
.
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0 11� x

x

1� y

y

Fig. S11: Markov chain with two states, representing the value of any bit.

In the lemma above, state 0 means that a position has a specific value, and state 1 that it is not this specific

value. The lemma then states that the transition probabilities x and y are (after a certain mixing time) very

close to the limit probabilities of being in state 1 or 0, respectively.

S3.2 Saturating fitness

In this example, we assume that the fitness landscape is saturating due to some kind of epistasis, with adaptive

mutations having diminishing fitness e↵ects where new adaptive mutations contribute less to the trait value

than the previous ones resulting in fitness gain diminishing with the number of adapted loci in each trait. Note

that fitness contributions across traits are additive:

f(x) = 1�
P

B2B 2dH(x[B],a[B])

F
, (S46)

where F = k · 2`. Note that the fitness here is scaled to go from 0 to 1� 1/F .

We derive our results for extreme scenarios of environmental change, when the environment changes fre-

quently, every iteration, or rarely, after the population fully adapted to the current threat. While analytical

calculations only deal with these special cases, numerical simulations provide insight into scenarios with inter-

mediate frequencies of environmental change.

Further, we assume that the probability of fixation is given by the fitness contribution, thus the probability

of fixation of the first positive mutation is the largest, denoted pmax, and the probability of the fixation of the

last positive mutation is the smallest, denoted p1. Neutral mutations fix with probability p0 = 1/N .

S3.3 Scenario 1: Selection acting at di↵erent traits in di↵erent environments

For saturating fitness

f(x) = 1�
P

B2B 2dH(x[B],a[B])

F
, (S47)

we use Lemma 1 to derive bounds on the expected fraction of alleles that are adapted. The transition probability

x to mutate from allele 0 to allele 1 is px
nk + (k�1)p0

nk , where the first term is the probability that the locus

is currently under selection, mutates and is fixed with probability given by probability px dependent on its

contribution, while the second term is the probability that it mutates when the trait is not under selection



Surfing on the seascape: Adaptation in a changing environment S21

(neutral mutation). This transition probability can be bounded by

1
nk

�
p1 + (k � 1)p0

�
 x  1

nk

�
pmax + (k � 1)p0

�
. (S48)

Mutation from allele 1 to allele 0 can occur only if no selection is present, and is thus given as y = k�1

nk p0.

According to Lemma 1, we get the probability x⇤ that a locus is adapted

p1 + (k � 1)p0
2(k � 1)p0 + pmax

 x⇤  pmax + (k � 1)p0
2(k � 1)p0 + p1

. (S49)

If we assume the linear scenario, p1 = pmax, and the expected probability that the locus is adapted (which is

equal to the fraction of adapted alleles) goes to 1 for small k and to 0.5 with increasing k, which is in agreement

with our previous calculations.

From equation (S49), we can derive bounds on the expected fitness F . If p0 < p1 << pmax, the upper bound

on the fraction of adapted alleles approaches 1. On the other hand, the lowest fraction of adapted alleles is

expected when p0 ⇡ p1 ⇡ pmax, setting the lower bound of the expected alleles to be > 0.5. Thus, the expected

fitness is

2` � 2`/2  F  2` (S50)

or, if we want to express it as scaled fitness,

1� 2�`/2  F  1 . (S51)

We now bound the maximal fitness that can be obtained in the case of saturating fitness. Following Section

S3.2, the fitness at time t is given by

F (t) = 1� 2`�Yi(t)

k2`
= 1� 1

k2Yi(t)
, (S52)

where Yi(t) is the number of 1-bits in the ‘active block’ in iteration t. We assume that the fixation probabilities

of positive mutations are monotonically decreasing in the fitness, and at most pmax.

Theorem 6 Let F (t) be the saturating fitness of the SSWM in any iteration t 2 N when applied to the uncorrelated

blocks problem with a constant k � 2 number of blocks, pmax be the largest probability of fixation of a positive mutation,

and where the current block is chosen uniformly at random in every iteration, i.e., ⌧ = 1. Then, for any constant

" > 0, there exists a constant c > 0 such that

Pr

✓
max

1tecn
F (t) � 1� 1

k2a(n)(1+")

◆
= e�⌦(n) , (S53)
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where

a(n) :=
n
�
k � 1 +N(pmax + k2")

�

k(2(k � 1) +Npmax)
. (S54)

Proof We use the same notation and ideas as in the proof of Theorem 5. In addition, we define for each block

i 2 [k], the drift in the number of adapted alleles in the block, by

�i(t+ 1) := Yi(t+ 1)� Yi(t) . (S55)

Using similar derivations as in the proof of Theorem 5, we get

E [�i(t+ 1) | Yi(t)] 
k � 1 +Npmax

Nk2
� 2(k � 1) +Npmax

Nkn
Yi(t) .

Hence, for any constant " > 0, if

Yi(t) �
n
�
k � 1 +N(pmax + k2")

�

k(2(k � 1) +Npmax)
=: a(n) , (S56)

then the drift is

E [�i(t+ 1) | Yi(t)]  �" . (S57)

Note that a(n) � (n/k)(1 + ")/2 = `(1 + ")/2, hence, by a Cherno↵ bound, the assumption Y (0)  a(n) holds

with probability e�⌦(n), because the initial genotype is chosen uniformly at random. Condition (C1) is therefore

satisfied on the interval a(n)  Y (t)  a(n)(1 + "). Conditition (C2) is trivially satisfied because Yi(t) changes

by at most one in each iteration. Hajek’s theorem (2.8) now implies for any t � 0 that

Pr (Yi(t) � a(n)(1 + ")) = e�⌦(n) . (S58)

Furthermore, a union bound over all the blocks and time iterations 0  t  ecn yield

Pr

✓
max

0tecn
max
1ik

Yi(t) � a(n)(1 + ")

◆
 kecne�⌦(n) = e�⌦(n) , (S59)

assuming that c > 0 is a su�ciently small constant. This now yields the statement of the theorem, because

Pr

✓
max

0tecn
F (t) � 1� 1/(k2a(n)(1+"))

◆
 Pr

✓
max

0tecn
max
1ik

Yi(t) � a(n)(1 + ")

◆
. (S60)
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S3.4 Scenario 2: Selection acting at all traits, with partial overlap between di↵erent environments

We formalize the model 2 described above by defining a set A ✓ {0, 1}n, |A| = k of k di↵erent optima aj

(j 2 {1, . . . , k}) defined as follows:

aj = 1(j�1)`0`1(n�j)` .

Note that for each bit position, there is only one aj that has a 0 at that position.

Frequent environmental change

We first focus on a case when the environment changes every iteration.

Using Lemma 1, we show that, after some time T = ⌦
�
n log(nk)

�
, the population in the SSWM regime

reaches a state where the probability of being adapted is (almost; in the limit it is exactly) the probability of a

trait being under selection pressure. It says that if a position is optimal with probability y, then, in the limit,

the probability of having an optimal value at that position is y as well.

Lemma 2 Consider SSWM optimizing a monotone function f that changes its optimum each iteration. After at least

⌦
�
n/(pmax) log(nkpmax/p1)

�
iterations, for each i 2 {1, . . . , n}, for the probability x⇤ to have a 0 at bit position i,

we have

1
k
· p1
pmax

 x⇤  1
k
· pmax

p1
,

and, for the probability y⇤ to have a 1 at bit position i, we have

✓
1� 1

k

◆
pmax

p1
 y⇤ 

✓
1� 1

k

◆
p1

pmax

.

Proof We model the event of bit i being 0 or 1 as a two-state Markov chain as depicted in Figure S11. State 0

means that the current bit is 0, and state 1 means that the current bit is 1. We are now going to estimate the

probabilities x and y of how likely it is to change from one state to the other.

First, consider x, i.e., the probability of bit i being flipped from 0 to 1. Hence, bit i has to be chosen for

mutation by SSWM and the result has to be accepted. The probability of mutating bit i is 1/n. Since �f cannot

be 0 in this setting, the probability to accept such a mutation is comprised of the probability that the current

optimum has a 1 at position i, and of the fixation probability, which is at least p1 and at most pmax.

Thus, we get

p1
n

✓
1� 1

k

◆
 x  pmax

n

✓
1� 1

k

◆
. (S61)
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For y, we can argue analogously: Bit i has to be flipped, the momentary optimum has to have a 0 at bit i,

and the o↵spring has to be accepted. Hence, we have

p1
n

· 1
k
 y  pmax

n
· 1
k

. (S62)

By applying Lemma 1, we end up with

1
k
· p1
pmax

 x⇤  1
k
· pmax

p1
,

✓
1� 1

k

◆
pmax

p1
 y⇤ 

✓
1� 1

k

◆
p1

pmax

, and

⌧(") = O

 
n

pmax

log

✓
k
"
· pmax

p1

◆!
.

If we choose " = ⌦
�
1/poly(n)

�
, we get ⌧(") = O

�
n/(pmax) log(nkpmax/p1)

�
. That means that we can get polyno-

mially close to the stationary distribution of the Markov chain after a mixing time of ⌦
�
n/(pmax) log(nkpmax/p1)

�
.

The lemma generalizes our previous results (S33), where we stated what fraction of alleles is expected to be

adapted if the environment changes every iteration. If we assume that the probability of accepting a positive

mutation is the same, regardless of the fitness contribution (or that all alleles contribute equally to the fitness),

pmax = p1, we obtain exactly the same results as previously in section S1.5: Equations (S61) and (S62) show

that x = 1/k and y = 1�1/k. As we want zeros in 1 trait, and ones in (k�1) traits, the total fraction of adapted

alleles is

f =
1
n

✓
1
k
`+

k � 1
k

(k � 1)`

◆
=

�
k2 � 2k + 2

�
`

kn
= 1� 2

✓
1
k
� 1

k2

◆
.

The following theorem states that, after a su�ciently long time (tmix), the number of adapted loci converges

to the solution given by (S63) if we assume equal contributions of fitness. The probabilities bound how likely

it is that there is a point in time (during t⇤ rounds; at least tmix) such that the total number of adapted loci

deviates by a constant factor from (1 ± ")k⇤`, where k⇤ = k2�2k+2+"k�"
k . Since " can be arbitrarily close to 0

(not dependent on n and k), the number of adapted loci is basically the solution given above.

Theorem 7 Consider SSWM optimizing f1, changing its current optimum aj every iteration. Let st denote the cur-

rent solution of SSWM in iteration t, and let k⇤(u, v) = k�(u+1)+(u+v)/k. After at least tmix = ⌦
�
n/(p1) log(nk)

�

iterations, for any " = ⌦
�
1/poly(n)

�
< 1 and any t⇤ � tmix, it holds, for any constant � > 0,

Pr
⇣
9t, tmix  t  t⇤: f1(st) � (1 + �)(1 + ")`k⇤(1� ", 1)

⌘
 (t⇤ � tmix + 1)e�

�2`k⇤
(1+",1+")
3 ,

and, for any constant 0 < � < 1,

Pr
⇣
9t, tmix  t  t⇤: f1(st)  (1� �)(1� ")`k⇤(1, 1)

⌘
 (t⇤ � tmix + 1)e�

�2`k⇤
(1+",1+")
2 .
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Proof In the following, let x0 be x⇤ from Lemma 2 with a factor of 1± " denoting the di↵erence to its limit, i.e.,

x0 = (1± ")x⇤ = (1± ") · 1/k. Note that pmax = p1 because we optimize f1.

Let t⇤ � tmix. We will only bound the probability of f1(st) deviating too much for any single t with

tmix  t  t⇤. The statement then follows by a union bound over all possible values of t.

First, we bound Pr
�
f1(st) � (1+�)(1+")`k⇤(1�", 1)

�
 Pr

�
f1(st) � (1+�)c`k⇤(c, c)

�
via a Cherno↵ bound,

where we assume x0 = c/k with c 2 {1 + ", 1� "}. Note that then E
⇥
f1(st)

⇤
= n/(k)x0 + n(k � 1)/(k) · (1� x0) =

`x0 + (k � 1)`(1� x0) = `k⇤(c, c)  c`
�
x⇤ + (k � 1)(1� cx⇤)

�
= c`k⇤(c, 1).

We get

Pr
⇣
f1(st) � (1 + �)`k⇤(c, c)

⌘
 e�

�2`k⇤
(c,c)

3  e�
�2`k⇤

(1+",1+")
3 .

Second, we bound Pr
�
f1(st)  (1 � �)(1 � ")`k⇤(1, 1)

�
 Pr

�
f1(st)  (1 � �)`k⇤(c, c)

�
, for 0 < � < 1,

analogously. We get

Pr
⇣
f1(st)  (1� �)`k⇤(c, c)

⌘
 e�

�2`k⇤
(c,c)

2  e�
�2`k⇤

(1+",1+")
2 .

The following theorem considers diminishing fitness gain of new adaptive alleles in each trait. It states that

with high probability, the fitness is at least (k � 1)2`.

Theorem 8 Consider SSWM optimizing f2 with ` = o(kp1/pmax) and k = !(pmax/p1)\o(2`), changing its optimum

every iteration. Let st denote the current solution of SSWM in iteration t. After at least tmix = ⌦
�
n/(pmax) log(nkpmax/p1)

�

iterations, we get

Pr
⇣
9t, tmix  t  t⇤: f2(st) � k · 2` � o

�
2`
�⌘

 (t⇤ � tmix + 1)

 
O

✓
`pmax

4`p1

◆
+ e�⇥(`)

!

and, for any constant � with 0 < �  k � 1,

Pr
⇣
9t, tmix  t  t⇤: f2(st)  k · 2` � (1 + �)2`

⌘
 (t⇤ � tmix + 1)O

✓
`pmax

4`p1

◆
.

Proof In the following, we are going to use x⇤ = ⇥(c/k), where c 2 [p1/pmax, pmax/p1], and y⇤ = 1 � x⇤ from

Lemma 2 instead of x⇤ ± 1/poly(n) and y⇤ ± 1/poly(n) as the probabilities of being having a 0 or a 1 at any bit

position, respectively, after tmix rounds of SSWM because the ⇥ incorporates these o↵sets.

We are now going to look at the expected fitness and bound it after tmix time has passed. Let aj be an

arbitrary optimum, and let t � tmix. Again, as in the proof of Theorem 7, we only prove the probabilities for a

single t. The probabilities stated in the theorem then follow by applying a union bound.
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E
⇥
f2(st)

⇤
= E

"
k · 2` �

X

B2B
2dH(st[B],aj [B])

#

= k · 2` �
X

B2B
E
h
2dH(st[B],aj [B])

i
.

2dH(st[B],aj [B]) is a random variable whose distribution is dependent on B: If B is the block Bz of aj containing

only zeros, dH(st[Bz], aj [Bz]) is going to be very big because st[Bz] contains 0s only with probability ⇥(c/k). On

the other hand, this will lead to dH(st[B], aj [B]) being small for all other blocks since they contain almost only

1s anyway. We first look at all blocks B but Bz. In this case, the Hamming distance increases if there is a 0 at

a bit position in st[B].

E
h
2dH(st[B],aj [B])

i
=
X̀

i=0

2i
 
`
i

!
(x⇤)i(y⇤)`�i

= (2x⇤ + y⇤)`

= (1 + x⇤)` .

We get (1 + x⇤)` � 1 and (1 + x⇤)`  ex
⇤` = e⇥(

c`
k ) = O(1), because we assume ` = o(kp1/pmax). Hence,

(1 + x⇤)` = ⇥(1) and thus

E
h
2dH(st[B],aj [B])

i
= ⇥(1) .

For the second case, we are going to focus on s[Bz]. With an analogous calculation (swapping x⇤ and y⇤)

and noting that (1 + y⇤)` �
�
2�⇥(c/k)

�` �
�
1� o(1)

�
2`, because k = !(pmax/p1), we get

�
1� o(1)

�
2`  E

h
2dH(st[Bz],aj [Bz])

i
 2` ,

where the upper bound follows trivially from all bits being set incorrectly.

Note that the results hold for an arbitrary aj . Overall we get

E[f2(st)] � k · 2` � 2` �⇥(k) � k · 2` �
�
1 + o(1)

�
2` and

E[f2(st)]  k · 2` �
�
1� o(1)

�
2` �⇥(k)  k · 2` �

�
1� o(1)

�
2` ,

since we assume k = o(2`).
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Now we first bound the probability that
P

B2B0 2dH(st[B],aj [B]) does not deviate too strongly from its mean

⇥(k), where B0 = B r {Bz}, i.e., that it is in o(2`). We do so by using Chebyshev’s inequality. For calculating

the variance, we have

Var

 
X

B2B0

2dH(st[B],aj [B])

!
= E

2

4
 
X

B2B0

2dH(st[B],aj [B])

!2
3

5� E

"
X

B2B0

2dH(st[B],aj [B])

#2
.

The minuend can be split up into two cases: one, where the random variables are independent, and the

other, where they are not. This results in

E

2

4
 
X

B2B0

2dH(st[B],aj [B])

!2
3

5 =
X

B2B0

X

B02B0

B0 6=B

E
h
2dH(st[B],aj [B])

i
E
h
2dH(st[B

0
],aj [B

0
])

i
+

X

B2B0

E
h
4dH(st[B],aj [B])

i
.

Substituting this in our equation for the variance leaves us with

Var

 
X

B2B0

2dH(st[B],aj [B])

!
=
X

B2B0

✓
E
h
4dH(st[B],aj [B])

i
� E

h
2dH(st[B],aj [B])

i2◆
.

Using the binomial theorem, we can expand (1 + a)b =
Pb

i=0
ai(bi) and we get

E
h
4dH(st[B],aj [B])

i
� E

h
2dH(st[B],aj [B])

i2
= (1 + 3x⇤)` � (1 + x⇤)2`

= 1 + 3x⇤`+O
�
(x⇤`)2

�
�
⇣
1 + 2x⇤`+O

�
(x⇤`)2

�⌘
= ⇥(x⇤`) = ⇥

✓
c`
k

◆
,

where O
�
(x⇤`)2

�
= o(x⇤`), because x⇤` = o

�
cp1/pmax

�
= o(1), due to our assumptions. This results in

Var

 
X

B2B0

2dH(st[B],aj [B])

!
= ⇥(c`) .

According to Chebyshev’s inequality, we can now bound

Pr

 �����
X

B2B0

2dH(st[B],aj [B]) �⇥(k)

����� � ⌦(2`) = ⌦

✓p
c`

2`p
c`

◆!
 O

✓
c`

4`

◆
 O

✓
`pmax

4`p1

◆
.

For the upper concentration bound, we have to bound the probability of E
h
2dH(st[Bz],aj [Bz])

i
taking values

in o(2`). We do not have to bound the probability of it getting too large for the lower concentration bound

because we already made the maximally pessimal assumption of 2` in that case.

To calculate the desired probability, we use a Cherno↵ bound to show that it is unlikely that !(1) bits in

Bz are set incorrectly, i.e., 1. Note that the resulting fitness would then be in 2`�!(1) = o(2`). Let Xz denote
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the number of 0s in Bz, then E[Xz] = y⇤` = ⇥(`) because x⇤ = o(1) due to our assumptions. We get

Pr

✓
Xz  o(`) = o(1)⇥(`) =

⇣
1�

�
1� o(1)

�⌘
⇥(`)

◆
 e�

�
1�o(1)

�
2

⇥(`)

2 = e�⇥(`) .

Note that the upper concentration bound on
P

B2B0 2dH(st[B],aj [B]) is an upper bound for this case as well.

Hence, by a union bound over both events, the proof is completed.

Rare environmental change

The following theorem looks at the fitness of the population upon environmental change that occurred after a

long time tmix � (2n/p1) lnn, and states that at least 2 traits will be completely maladapted, both in the case

of linear and saturating fitness. We show that tmix iterations are enough for SSWM to fully optimize for the

current optimum aj with probability at least 1 � 1/n. If the optimum then changes to another optimum, this

will result in a change of fitness from two traits, as they will be completely maladapted. Thus, the fraction of

the lost fitness in both cases is 2/k.

The terms 1 � 1/na and 1 � 1/ka follow from SSWM fully optimizing for aj during an interval of tmix

iterations (i.e., not failing at least once during a tries) and from the new optimum being di↵erent from the

current one (i.e., not getting the same optimum during a tries), respectively.

Theorem 9 Consider SSWM optimizing f1 or f2, changing its current optimum aj only after at least tmix �

2n/(p1) lnn iterations. Let st denote the current solution of SSWM in iteration t. For any a 2 N, we have

Pr
⇣
9t  a · tmix : f1(st) 

=nz}|{
k` �2`

⌘
�
✓
1� 1

na

◆✓
1� 1

ka

◆
and

Pr
⇣
9t  a · tmix : f2(st)  k · 2` � 2 · 2`

⌘
�
✓
1� 1

na

◆✓
1� 1

ka

◆
.

Proof This proof makes use of drift theory. Hence, we define a potential over the process and then determine

its expected hitting time.

Let Xt0 denote the number of incorrectly set bits of st0 (with respect to the current optimum aj) at time

point t0, and assume that aj has not been reached yet. Note that aj has been reached if Xt0 = 0, i.e., Xt0 < 1.

We are going to bound the expected progress of Xt0 and, thus, the expected time it takes until SSWM fully

optimizes for aj . Note that Xt0+1  Xt0 holds because we cannot get worse in fitness.

E [Xt0 �Xt0+1 | Xt0 ] = E [Xt0 �Xt0+1 | Xt0 , Xt0 > Xt0+1] �
Xt0

n
· p1 ,

as we have a chance of Xt0/n to mutate one incorrectly set bit, and accept the mutation with probability at

least p1. The resulting change in potential is always 1, as we can only change exactly one bit.
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Using the multiplicative drift theorem (Theorem 3), we bound the expected time T until Xt0 = 0, given that

SSWM started with an individual having O(n) bits set incorrectly at an earlier point in time t00:

E[T | Xt00 ] 
1 + ln(Xt00)

p1

n

 2
n
p1

lnn .

We now upper-bound the probability that SSWM will not have fully optimized for aj in tmix iterations,

using Theorem 4. By choosing c = lnn, we get

Pr

 
T > 2

n
p1

lnn � c+ lnXt00
p1

n

����� Xt00

!
 e� lnn =

1
n

.

This concludes the proof.

S3.5 Scenario 3: Adaptations in di↵erent environments are completely antagonistic.

Frequent environmental change

In the following lemma, we state and prove the probability of having a specific allele at each locus if the

environment changes frequently. We define p1 to be the smallest and pmax to be the largest probability of a

positive mutation fixing in the population, while p0 is the probability of a neutral mutation fixing. The theorem

states that in the case of equal fitness contribution of all mutations (p1 = pmax), the probability that a given

allele is adapted to the current optimum is 1/k. For the more general scenario (p1 6= pmax), we give a probability

interval of having a particular fraction of alleles adapted to the current optimum.

Lemma 3 Consider SSWM with pmax  kp1 + (k � 1)(k � 2)p0 optimizing a monotone function f that changes

its optimum each iteration. After at least ⌦
⇣
nk/

�
pmax + (k � 2)p0

�
log
⇣
nk
�
pmax + (k � 2)p0

�
/
�
p1 + (k � 2)p0

�⌘⌘

iterations, for each i 2 {1, . . . , n}, for the probability x⇤ to have a specific value j 2 {1, . . . , k} at position i, we have

1
k
· p1 + (k � 2)p0
pmax + (k � 2)p0

 x⇤  1
k
· pmax + (k � 2)p0

p1 + (k � 2)p0

and, for the probability y⇤ to have another value at position i, we have

1� 1
k
· pmax + (k � 2)p0

p1 + (k � 2)p0
 y⇤  1� 1

k
· p1 + (k � 2)p0
pmax + (k � 2)p0

.

Proof This proof is similar to the one of Lemma 2. We are, again, going to use Lemma 1 and consider a two-

state Markov chain (cf. Figure S11). Consider a value j 2 {1, . . . , k}. State 0 of the Markov chain means that

component i of the momentary solution is j, and state 1 means that the component is not j.
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Consider x, i.e., the probability that component i is not j, given that it was j. For this to happen, component

i has to be chosen for mutation, mutated to another value than j, and the current optimum must not be aj ,

since else the mutated individual would not be accepted.

Assuming that the current optimum is not aj , the mutated individuals gets accepted with probability at

least p1 and at most pmax if the new value of the mutated component is the same as the current optimum, and

it gets accepted with probability p0 if the value is di↵erent from the current optimum. Hence, we get

x � k � 1
k

1
n
· 1
k
p1 +

k � 1
k

1
n
k � 2
k

p0 =
k � 1
k

1
n

✓
1
k
p1 +

k � 2
k

p0

◆
and

x  k � 1
k

1
n

✓
1
k
pmax +

k � 2
k

p0

◆
.

Analogously, we can compute y as follows:

y � 1
k
· 1
n
· 1
k
p1 +

k � 2
k

1
n
· 1
k
p0 =

1
k
· 1
n

✓
1
k
p1 +

k � 2
k

p0

◆
and

y  1
k
· 1
n

✓
1
k
pmax +

k � 2
k

p0

◆
.

Applying Lemma 1 leads to

1
k
· p1 + (k � 2)p0
pmax + (k � 2)p0

 x⇤  1
k
· pmax + (k � 2)p0

p1 + (k � 2)p0
,

1� 1
k
· pmax + (k � 2)p0

p1 + (k � 2)p0
 y⇤  1� 1

k
· p1 + (k � 2)p0
pmax + (k � 2)p0

, and

⌧(") = O

 
nk

p1 + (k � 2)p0
log

✓
k
"
· pmax + (k � 2)p0

p1 + (k � 2)p0

◆!
,

where x⇤  1 if pmax  kp1 + (k � 1)(k � 2)p0.

For any " = ⌦
�
1/poly(n)

�
< 1, we get ⌧(") = O

⇣
nk/

�
p1 + (k � 2)p0

�
log
⇣
nk
�
pmax + (k � 2)p0

�
/
�
p1 + (k �

2)p0
�⌘⌘

.

The following theorem states that if all new positive mutation contribute equally to the fitness and fix with

equal probability (p1 = pmax), the expected number of adapted loci is `, thus a 1/k fraction of all loci, regardless

of the trait they belong to.

Theorem 10 Consider SSWM optimizing f1, changing its current optimum aj every iteration. Let st denote the

current solution of SSWM in iteration t, and let k⇤(u, v) = k� (u+1)+(u+ v)/k. After at least tmix = ⌦
�
nk/

�
p1+

(k � 2)p0
�
log(nk)

�
iterations, for any " = ⌦

�
1/poly(n)

�
< 1 and any t⇤ � tmix, it holds, for any constant � > 0,

Pr
⇣
9t, tmix  t  t⇤: f1(st) � (1 + �)(1 + ")`k⇤(1� ", 1)

⌘
 (t⇤ � tmix + 1)e�

�2`k⇤
(1+",1+")
3
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and, for any constant 0 < � < 1,

Pr
⇣
9t, tmix  t  t⇤: f1(st)  (1� �)(1� ")`k⇤(1, 1)

⌘
 (t⇤ � tmix + 1)e�

�2`k⇤
(1+",1+")
2 .

Proof This proof is completely analogous to the one from Theorem 7, the only di↵erence being the mixing time.

Because pmax = p1 when optimizing f1, we get x⇤ = 1/k. From then on, all following calculations are exactly

the same because the limit distribution is the same.

The following theorem states that if the fitness contribution of new positive mutations diminishes and, as

a consequence, they are less likely to fix in the population (p1 < pmax), after a su�ciently long time tmix, the

expected fitness of the population is concentrated around k
�
1� o(1)

�
2`, where o(1) describes a term that goes

to 0 as n goes to infinity.

Theorem 11 Let d =
�
pmax + (k � 2)p0

�
/
�
p1 + (k � 2)p0

�
. Consider SSWM optimizing f2 with ` = o(kd�1) and

k = !(d), changing its current optimum aj every iteration. Let st denote the current solution of SSWM in iteration t.

After at least tmix = ⌦
�
nk/(pmax+(k�2)p0) log(nkd)

�
iterations, for any " = ⌦

�
1/poly(n)

�
< 1 and any t⇤ � tmix,

it holds, for any constant � > 0,

Pr
⇣
9t, tmix  t  t⇤: f2(st) � k

�
1� o(1)

�
2`
⌘
 (t⇤ � tmix + 1)e�⇥(`)

and, for any constant 0 < � < 1,

Pr

✓
9t, tmix  t  t⇤: f2(st)  (1� �)2`�1 `

d

◆
 (t⇤ � tmix + 1)O

✓
d
`

◆
.

Proof This proof is similar to the one of Theorem 8. We assume that already tmix rounds have passed. Let x0

be an approximation of x⇤ up to a factor of 1 ± " for any " = ⌦
�
1/poly(n)

�
< 1, i.e., x0 = c/k, where c 2

[(1 � ")d�1, (1 + ")d]. Further, let y0 = 1 � x0. As before, we only provide the calculations for a single t � tmix.

The Theorem then follows by applying a union bound.

Let aj be an arbitrary optimum. We then get:

E
⇥
f2(st)

⇤
= E

"
k · 2` �

X

B2B
2dH(st[B],aj [B])

#

= k · 2` �
X

B2B
E
h
2dH(st[B],aj [B])

i
.

As in the proof of Theorem 8, we want to bound E
h
2dH(st[B],aj [B])

i
. For this, note that 2dH(st[B],aj [B]) is a

binomially distributed random variable with success probability y0, i.e., with probability y0, a single value is set
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incorrectly. Thus, we get

E
h
2dH(st[B],aj [B])

i
=
X̀

i=0

2i
 
`
i

!
(y0)i(x0)`�i

= (2y0 + x0)`

= (1 + y0)`

= (2� x0)`

=
X̀

i=0

 
`
i

!
2`�i(�x0)i ,

where we used the binomial theorem twice and that x0+ y0 = 1. Expanding the first two terms of the sum leads

to

(2� x0)` = 2` � 2`�1(x0`) +
X̀

i=2

 
`
i

!
2`�i(�x0)i .

We first upper-bound this term. Note that x0` = o(1), due to our assumptions. Thus, (x0`)i+1 = o
�
(x0`)i

�

for all i > 1.

(2� x0)`  2` � 2`�1(x0`) +⇥(x0`)
`�2X

i=0

2i(x0`)

 2` � 2`�1(x0`) + o(1)2`�1(x0`)

= 2` �
�
1� o(1)

�
2`�1(x0`) .

For our lower bound, we proceed analogously:

(2� x0)` � 2` � 2`�1(x0`)�⇥
�
(x0`)`/2�1

� `�2X

i=0

2i(x0`)

� 2` � 2`�1(x0`)� o(1)2`�1(x0`)

= 2` �
�
1 + o(1)

�
2`�1(x0`) .

Combining both cases, we get:

2` �
�
1 + o(1)

�
2`�1(x0`)  E

h
2dH(st[B],aj [B])

i
 2` �

�
1� o(1)

�
2`�1(x0`) .

This results in the following bounds for the expected fitness of st:

k
�
1� o(1)

�
2`�1(x0`)  E[f2(st)]  k

�
1 + o(1)

�
2`�1(x0`) .



Surfing on the seascape: Adaptation in a changing environment S33

For the lower concentration bound, we want to apply Chebyshev’s inequality, as in the proof of Theorem 8.

Deriving the variance is completely analogous to that proof, hence we have

Var

 
X

B2B
2dH(st[B],aj [B])

!
=
X

B2B

✓
E
h
4dH(st[B],aj [B])

i
� E

h
2dH(st[B],aj [B])

i2◆
.

We now bound the di↵erence to bound the variance, using the binomial theorem multiple times, as we did

before.

E
h
4dH(st[B],aj [B])

i
� E

h
2dH(st[B],aj [B])

i2
= (1 + 3y0)` � (1 + y0)2`

= (4� 3x0)` � (2� x0)2`

= 4` � 3 · 4`�1(x0`)± o(1)4`(x0`)

�
�
4` � 4`(x0`)± o(1)4`(x0`)

�

= ⇥
�
4`(x0`)

�
.

This gives us

Var

 
X

B2B
2dH(st[B],aj [B])

!
= ⇥

�
k · 4`(x0`)

�
= ⇥(4`c`) .

We now bound the probability of
P

B2B 2dH(st[B],aj [B]) getting into the dimensions of k(1 + �)2`�1(x0`) �

(1 + �)2`�1(`/d), where � > 0 is a constant. Since the expected value of
P

B2B 2dH(st[B],aj [B]) is in the order of
�
1± o(1)

�
2`�1(x0`), the di↵erence to that has to be in the order of �k2`�1(x0`) = ⌦

�
k · 2`(x0`)

�
= ⌦(2`c`).

Pr

 �����
X

B2B
2dH(st[B],aj [B]) � k

�
1 + o(1)

�
2`�1(x0`)

����� � ⌦(2`c`) = ⌦
⇣
2`
p
c`
p
c`
⌘!

 O

✓
1
c`

◆

 O

✓
d
`

◆
.

For the upper concentration bound, let Xw denote the number of values in a single block B 2 B that di↵er

from the current optimum, i.e., the number of wrong values. Only if the value of Xw for each block is su�ciently

small, the expected fitness of st can be in the order of
�
k � o(1)

�
2`. To get to this value, per block, Xw has to

be in the order of o(`) since then the contribution of this block subtracts at most 2o(`) from the fitness. We

use a Cherno↵ bound to bound this probability. Note that E[Xw] = y0` = ⇥(`) because x0 = o(1), due to our

assumptions.

Pr
⇣
Xw  o(`) = o(1)⇥(`) =

⇣
1�

�
1� o(1)

�⌘
⇥(`)

⌘
 e�

�
1�o(1)

�
2

⇥(`)

2 = e�⇥(`) .

The upper bound follows from only considering a single block.
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Rare environmental change

In the following theorem, we show that tmix � (2nk/p1) lnn iterations are enough for SSWM to fully optimize

for the current optimum. If the optimum then changes to another optimum, all loci will be maladapted, both

in the case of linear and saturating fitness.

Theorem 12 Consider SSWM optimizing f1 or f2, changing its current optimum aj only after at least tmix �

2nk/(p1) lnn iterations. Let st denote the current solution of SSWM in iteration t. For any a 2 N, we have

Pr
⇣
9t  atmix : f1(st) = 0

⌘
�
✓
1� 1

na

◆✓
1� 1

ka

◆
and

Pr
⇣
9t  atmix : f2(st) = 0

⌘
�
✓
1� 1

na

◆✓
1� 1

ka

◆
.

Proof This proof is similar to the one of Theorem 9, and we are going to use the same notation. We get

E [Xt0 �Xt0+1 | Xt0 ] = E [Xt0 �Xt0+1 | Xt0 , Xt0 > Xt0+1] =
Xt0

n
1
k
p1 ,

where the 1/k factor is due to the mutation choosing the correct out of the k di↵erent values.

Using the multiplicative drift theorem, we bound the expected time T until Xt0 = 0, given that SSWM

started with an individual having O(n) components set incorrectly at an earlier point in time t⇤:

E[T | Xt⇤ ] 
1 + ln(Xt⇤)

p1

nk

 2
nk
p1

lnn .

Bounding the probability of SSWM not fully optimizing for aj completes the proof:

Pr

 
T > 2

nk
p1

lnn � lnn+ lnXt00
p1

nk

����� Xt00

!
 e� lnn =

1
n

.

S3.6 Simulations of multitrait scenarios with saturating fitness

Simulations for saturating fitness for a range of ⌧ are shown below. We carried out simulations for small values

of k = 5 and ` = 10, as well as larger ones with k = 10 and ` = 20. Both cases used threats changing in random

order. In the first case, we did not see any qualitative di↵erence between the e↵ect of saturating and linear

fitness functions (see Figure 7). However, in the second case, we observed that the achieved level of adaptation

was greatly reduced and di↵ered from the analytical results obtained for the linear fitness function, even when

a lower probability of fixation was assumed (Figure S12).
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(A) Scenario 1 (B) Scenario 2 (C) Scenario 3

Fig. S12: Dependence of the level of adaptation (fraction of adapted alleles) on the period of environmental
change. Green depicts the expected maximum, red the expected minimum, blue the size of oscillations. Dots
depict simulation results. Mean and standard deviation of 200 periods, taken after stable oscillations were
achieved. k = 10, ` = 20, N = 100. Lines depict analytical results for the linear scenario assuming A) p = 0.15,
B) p = 0.6 , C) p = 0.9.

(A) Scenario 1 (B) Scenario 2 (C) Scenario 3

Fig. S13: Dependence of the level of adaptation (fraction of adapted alleles) on the number of traits. Blue dots
depict simulation results. Mean and standard deviation of 200 trials. ` = 20, N = 100. Red dotted lines depict
lower and upper bounds. Green lines are fitted using the lower bounds and probability of fixation A) p1e↵ = 0.78,
B) p1e↵ = 0.68 , C) p1e↵ = 1.

S3.7 Summary of model assumptions

As mentioned throughout the main article and the supplementary material, we made several assumptions in

order to derive our results. We summarise them here again to assist the reader.

The model assumes the following:

– Monomorphic population with constant size N .

– Haploid genome of length n. It is not necessary that n is the total size of the genome, but that n is the total

number of loci under consideration. However, we assume that mutation rate is 1/n.

– Strong selection and probability of fixation of positive mutations (p).

– Mutations are rare when compared with generation time and the time necessary for the fixation of positive

mutations.

– Generation time is short compared to frequency of environmental changes

– Each trait is a↵ected by multiple loci `. Fitness is a↵ected by k multiple traits (subject to scenarios), and

k` = n.
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S3.8 Simulations

All simulations were programmed in Python. The code is available on GitHub under https://goo.gl/k7eqzX.

Main simulations

We carried out 3 main simulations, that were identical for each scenario except for: definitions of genotypes

(biallelic loci in the first two scenarios, k alleles in the third one); corresponding mutation definitions; and the

calculation of fitness.

Simulations for variable ⌧ The aim of these simulations was to find the expected minimum and the maximum

level of adaptation (fitness, or fraction of adapted alleles) when environment changes every ⌧ iterations. After

initialization, the population was allowed to adapt in a fluctuating environment for su�ciently long time, until

it reached stable oscillations in fitness. This time depended on k and `, as longer and more numerous traits took

longer to adapt to this stable level. After stabilization, the minimum level of adaptation (just after environmental

change) and the maximum level (just before the change) were recorded. Means for both the minimum and the

maximum levels of adaptation were calculated from 200 records.

Simulations of frequent environmental change We run simulations for frequent environmental change, when en-

vironment changes every iteration ⌧ , for varying parameters k and `. After initialization, the population was

allowed to adapt in a frequently changing environment for a su�ciently long time, until it reached a stable level

of adaptation. This time depended on k and `, as longer and more numerous traits took longer to adapt to

this stable level. After stabilization, values of the level of adaptation were recorded for 1000 cycles (iterations).

Calculated mean was compared to analytical results.

Simulations of rare environmental change The aim of these simulations was to find the time necessary to achieve

complete adaptation to the given environment. After initialization, the population was allowed to adapt in a

stable environment using SSWM algorithm (A.1), for as long as it was necessary to achieve the full adapta-

tion. Due to the stochasticity of the SSWM algorithm, we simulated 100 trials for each given parameter set.

The number of iterations was recorded for each trial and mean was compared to the analytically calculated

expectations.

Generalizations

Stochastic environment - generalization In our main simulations, environment varied in a regular manner (di↵erent

threats followed a defined order). To make the simulations more realistic, we added stochasticity into the order

of threats and simulated variable ⌧ and frequent environmental change as described above.
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Saturating fitness generalization In the final generalization, we replaced linear fitness function in each scenario

by the saturating one, as described in section S3.2. Then we carried out simulations for variable tau, rare and

frequent environmental change, as described above.

S3.9 Extinction simulations

As we discussed in the main manuscript, our theoretical results suggest that under some circumstances, rapid

environmental fluctuations can prevent population from extinction, that would occur if the environmental

changes were less frequent. This is most likely when long time period lead to high fitness loss upon environmental

change, such as in Scenario 3. Below, we simulate and analyse a few examples of this scenario. Simulations below

are intended to serve as an illustration and a proof that such scenarios may occur. We do not provide extensive

analysis of such events, as it is out of scope of our manuscript. However, we list detailed description of additional

parameters that should be investigated in future studies below.

We simulated evolving populations in Scenario 3 with linear fitness as described above. However, population

size was not kept constant, but changing according to the population fitness in a given time. If the fitness

was above a given threshold Thr, population increased by 1, if it was below, it decreased by 1 and remained

the same otherwise. Furthermore, population size change a↵ected the probability of fixation of new mutations.

For each parameter set, we simulated 20 times 50 trials and recorded the fraction of simulations that lead to

extinction for a given parameter set. Examples of simulation runs (evolving fitness and changing population

size) are shown in figure S14. Note that the time scale is in iterations, thus, this change of the population size

is very slow in generation time.

Figure S15 A shows the dependence of the extinction rate on ⌧ for di↵erent values of k and `, assuming

threshold for population growth rate Thr = 1/(k + 2). As predicted, populations are more likely to become

extinct if the environmental change is slow. If the environmental change is frequent, populations can survive

in the changing environment. Figure S15 A shows the dependence of the extinction rate on threshold Thr. A

small change in the threshold leads to dramatically increased extinction rate. However, frequent environmental

change enable at least some populations to survive.

Below, we list multiple functions and variables that a↵ect the resulting simulations and should be investigated

in detail in the future studies.

– Initial size and the level of adaptation of the population: If the initial population size is too small, or the

initial level of adaptation is too small, extinction is more likely to occur as the population does not have

time to adapt before becoming extinct. In our simulations, we used initial population size of 100 individuals.

– Carrying capacity: If the population reaches the carrying capacity of the environment, it can no longer grow

even if the population is fully optimized for the given condition. Upon environmental change, decreased
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(A) (B) (C)

Fig. S14: Examples of simulation of evolving population. Fluctuatin fitness (top) and changing population size
(bottom). k = 5, ` = 10, Thr = 1/(k + 2). Starting population size N0 = 100. A: ⌧ = 1, B:⌧ = 100, C:⌧ = 100

Fig. S15: Extinction rate depends on the length of the period ⌧ , as well as growth rate function. Starting
population size N0 = 100.

fitness will cause the population shrink, until it adapts su�ciently. However, if the carrying capacity is

small, it can become extinct before adapting. Larger carrying capacity will create a bu↵er and may prevent

population from extinction. We expect that surviving in an environment with a small carrying capacity will

require more frequent environmental changes. In our simulations we considered unlimited carrying capacity

of the environment.

– Dependence of the population growth rate on fitness: Fitness as defined in our model depends on the number

of loci adapted to the current environment. It is necessary to determine how this definition of translates

into the number of o↵spring, or population growth rate. In our simulation, we used the simplest definition:

If the fitness was about a given threshold, population increased by 1, while if it was below, it decreased by
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1, otherwise it remained the same. This threshold was set to 1/(k + 2). However, many other functions are

possible and reasonable to use, for instance growth rate proportional to fitness.

– Dependence of population on the size of the population. We assumed constant population growth rate,

thus linear growth of the population. Exponential, or logistic growth would be reasonable options to use,

depending on the modeled species.

S3.10 Available data

Complete simulations described above take long time and need multiple repetitions. Therefore, partial results

of the simulations are available upon request. These raw data are available as text files and contain complete

information from each trial: fitness and fractions of adapted alleles, total number of alleles of di↵erent types,

and many other, for each iteration of each trial.


