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Figure S1. Experimental Fe XMCD spectra of [L2Fe2S2]2− (adapted with permission from J.K. 
Kowalska, B. Nayyar, J.A. Rees, C.E. Schiewer, S.C. Lee, J.A. Kovacs, F. Meyer, T. Weyhermüller, E. 
Otero, S. DeBeer (2017). Iron L2,3-edge X-ray Absorption and X-ray Magnetic Circular Dichroism 
Studies of Molecular Iron Complexes with Relevance to the FeMoco and FeVco Active Sites of 
Nitrogenase Inorganic Chemistry 56, 8147-8158. Copyright (2017) American Chemical Society.)  
 

Materials & Methods 

I. General considerations:  

Unless indicated otherwise, all reactions were conducted using oven-dried glassware in a nitrogen-filled 
glovebox or on a Schlenk line using standard Schlenk techniques. THF was purchased anhydrous from 
Sigma, vacuum distilled from sodium benzophenone ketyl and stored over 4 Å molecular sieves prior 
to use.  
Elemental analysis was conducted by Mikrolab Kolbe (Mülheim an der Ruhr, Germany). 
Unless indicated otherwise, all reagents were purchased from commercial sources and used as received. 
1,4,7-trithiacyclonane was purchased from Sigma. MoCl3(THF)3 was prepared according to literature 
procedure.1 
 

II. Synthesis of molybenum(III) (1,4,7-trithiacyclononane)chloride, MoIII(ttcn)Cl3 
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Scheme 1.  

MoCl3(THF)3 (0.2294 g, 0.548 mmol) and 1,4,7-trithiacyclononane (0.1125 g, 0.624 mmol) were 
combined in THF (10 mL) and added to a Schlenk tube charged with a stir bar and fitted with a screw-
in Teflon stopper. The sealed vessel was removed from the glovebox and heated to 70 °C with stirring 
in an oil bath for 4 hours, resulting in the formation of an orange precipitate and a colorless supernatant. 
After cooling to room temperature, the Schlenk tube was brought back into the glovebox and the solid 
collected on a glass frit, washing with additional THF (~10 mL). The resulting solid was then dried 
under vacuum to yield 0.1966g (94%) of the desired product as a bright orange solid. The compound 
was found to be completely insoluble in all common laboratory solvents tested (Pentane, Et2O, C6H6, 
PhMe, THF, DCM, MeCN, DMF, DMSO). Anal. Calcd for (MoIII(ttcn)Cl3, C6H12Cl3MoS3: C, 18.83; 
H, 3.16. Found: C, 19.03; H, 3.25.  
 

III. Magnetic Susceptibility of MoIII(ttcn)Cl3 

Temperature-dependent (2-298 K) magnetic susceptibility data were recorded on a SQUID 
magnetometer (MPMS Quantum design) in an external magnetic field of 1T. The experimental 
susceptibility data were corrected for underlying diamagnetism by the use of tabulated Pascal’s 
constants. Magnetic susceptibility data were analyzed and fit using julX2 software developed by 
Eckhard Bill at MPI CEC.  
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Figure S2. Plot of µeff vs. temperature for MoIII(ttcn)Cl3 at applied field of 1T (circles). Fit to 
experimental data given as solid red line with the following fit parameters: S = 3/2, g = 2.00, D = 8.5, 
E/D = 0.00, χ(TIP) = 380 x 10-6 emu (subtracted), and diamagnetic impurity of 10%. 

Sample Information 

Table S1. Schematic view and local spin ground state information for the molybdenum complexes used in this work; 
Tp = tris(pyrazolyl)borate, ttcn = 1, 4, 7 – trithiacyclononane.  

Schematic view Chemical formula 

Spin 

Abbreviation (used in this 
work) 

Total Fe Mo 

 

MoIII(ttcn)Cl3 
3
2

  3
2

 MoIII(ttcn)Cl3 

 
 

[MoIIIFe3S4Cl3(Tp)](Et4N) 3
2

 2 
1
2

 [MoIIIFe3S4]3+ 
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[MoIIIFe7S9C]1- 3

2
 2 

1
2

 FeMoco 

 

IV. Sample preparation 

The (Et4N)[(Tp)MoIIIFe3S4Cl3] (Et4N = tetraethylamonium; Tp = tris(pyrazolyl)borate) was synthesised 
as reported before.2 The MoIII(ttcn)Cl3 complex (ttcn = 1,4,7-trithiacyclononane) was synthesized 
according to the procedure provided above. The samples were used as powders, finely ground using a 
mortar and pestles in an inert N2 atmosphere glovebox. These powders were spread on carbon tape, 
attached to copper sample block holders and transferred to the measurement chamber via a helium 
flushed glovebag.  

Mo nitrogenase was prepared as previously described.3  Lyophilization was performed on an anaerobic 
solution containing 27 mg/ml desalted MoFe protein, 5 mM Tris buffer (pH = 7.5), and 2.5 mM sodium 
dithionite in micropore purified, de-aerated H2O.  This procedure involves freezing the solution in liquid 
N2 for approximately 30 minutes, followed by placement under vacuum for several days.  This process 
was monitored by X-band EPR prior to lyophilization, after lyophilization, and again on lyophilized 
protein which had been reconstituted using a 5 mM Tris (pH =7.5), 2.5 mM sodium dithionite buffer.  
These spectra are provided in Figure S3. Samples of lyophilized protein for XMCD measurements were 
prepared in an inert N2 atmosphere glovebox by smearing the lyophilized protein powder onto a carbon 
tape affixed to a copper sample block, followed by transfer to the measurement chamber via a glovebox 
attached to the beamline vacuum system in case of Fe L23-edge XAS and XMCD measurements and via 
a helium purged glovebag for the Mo L3-edge XAS and XMCD measurements. 

 

Figure S3.  X-band EPR spectra of MoFe N2ase a) prior to lyophilisation, b) as lyophilisate, and c) 
lyophilisate reconstituted into a 2.5 mM dithionite, 5 mM Tris solution (pH = 7.5).  A small, broad signal 
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around g = 1.88 (~360 mT) is seen in spectrum b) due the presence of background condensed O2 in the 
sample. 

V. Data collection and processing 

V.1 Molybdenum L3-edge XAS and XMCD spectroscopy of [MoIIIFe3S4]3+ and MoIII(ttcn)Cl3 and 
MoFe protein  

Molybdenum L3-edge (2520 eV) X-ray Absorption (XAS) and X-ray Magnetic Circular Magnetic 
Dichroism (XMCD) data were collected at the 4-ID-C beam line at the Advanced Photon Source (APS) 
facility at the Argonne National Laboratory.4 During the course of the measurements, the 7 GeV ring 
operated in a decay mode with maximum current of 102 mA. The 4-ID-C beam line utilizes a circularly 
polarizing undulator (CPU) as a polarized X-ray photons source and spherical grating monochromator. 
The polarization rate for the circular left and circular left polarized photons at this beam line at the Mo 
L3-edge energy is nearly 100%. For molybdenum L3-edge XAS/XMCD measurement the 1200 l/mm 
grating was used. During the measurements the samples were placed in a cryostat chamber under 
~9·10-9 mbar vacuum, at 4 K temperature and applied ±6 T magnetic field. The energy and intensity of 
the incoming polarized X-ray photons were monitored with a gold mesh, with full photocurrent 
transmission, while the signal coming from the samples was detected in a total electron yield mode 
(TEY) using a drain current. The signal coming from the MoFe protein sample was measured in total 
fluorescence mode using a Vortex SII detector. In order to avoid radiation-induced damage an X-ray 
beam size of 500 x 500 μm2 on the sample was used. During the measurements the spectral signal was 
monitored for any changes due to radiation-induced damages. For both of the compounds, no radiation 
damage signs were observed for at least two spectra for both polarizations obtained at a fresh sample 
spot. This allowed to measure two sets of spectra with polarization changes (CR/CL) at every pristine 
spot. The Mo L3-edge XAS data were obtained by averaging spectra obtained with circularly right (CR) 
and circularly polarized left (CL) light at ±6 T magnetic field. The Mo L3-edge XMCD data were 
obtained as a differential signal between the spectra obtained with right and left polarized light at  ±6 T 
magnetic field. For the MoIII(ttcn)Cl3 complex 11 sets of CR/CL sets were used to obtain the Mo L3-
edge and XMCD, while for the (Et4N)[(Tp)MoFe3S4Cl3] complex 18 sets were used. To obtain the L3-
edge XAS spectra of the MoFe protein presented in Figure S2, 21 sets of CR/CL spectra were averaged. 
The averaged spectra were background subtracted in the pre and post L3-edge region with a shallow 2nd 
order polynomial function. After that, the L3-edge spectra were normalized by setting the maximum of 
the L3-edge to unity. The energy of the averaged spectra was calibrated based on the S K-edge XAS 
spectrum of Na2S2O3·5H2O by setting the position of the lowest energy feature to 2472.0 eV.  
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Figure S4. Normalized Mo L3-edge XAS spectra of FeMoco (adapted with permission from reference 
[5], black) and MoFe protein (red). 

V.2 Fe L2,3-edge XAS and XMCD spectroscopy of [MoIIIFe3S4]3+  

Fe L2,3-edge XAS and XMCD data of the [MoIIIFe3S4]3+ cubane were collected as previously described.6 
The averaged spectra were background subtracted in the pre- L3 and post L2-edge region with a shallow 
2nd order polynomial function and normalized by setting the maximum of L3-edge to unity.  The XMCD 
spectra were obtained by subtracting the spectrum obtained with circularly left polarized light from the 
spectrum obtained with right circularly polarized light at ±6 T magnetic field. To remove all uncertainty 
the XMCD spectrum was corrected by subtracting the XMCD spectrum obtained at 0 T magnetic field. 
The XMCD data were normalized by setting the XMCD signal to unity as reported in reference [7]. The 
data processing was done using ATHENA.[11] 

V.3 Fe L2,3-edge XAS and XMCD spectroscopy of MoFe protein 

Fe L2,3-edge XAS and XMCD data were collected at DEIMOS beamline at the SOLEIL synchrotron 
facility in France. The 2.75 eV ring operated in a top-up mode, providing a 450 mA electron current. 
The source of polarized photons was an APPLE II undulator equipped with a plane grating 
monochromator (PGM) equipped with a variable groove depth grating (VGD). The measurements were 
conducted in ultrahigh vacuum environment (~10-10 mbar), at a temperature of 4 K and either 0 T 
magnetic field (XAS) or ±6 T  magnetic field (XMCD) utilizing a superconducting magnet 8-9. The 
incoming X-rays were monitored by a photocurrent of a gold grid with 50% transmission reference 
monitor. The signal from the MoFe protein was detected in total fluorescence mode (TFY) using a diode. 
In order to avoid radiation induced damage, the beam size was set to 800 x 800 μm2 and after 4 scans 
the beam was move to a fresh spot of the sample. 10 The energy of the incoming photons was calibrated 
as previously reported to the spectrum of K3[Fe(CN)6].6 

The L2,3-edge XAS spectra were obtained by averaging the data obtained with circularly right and left 
polarized photons at 0T magnetic field. The spectra presented in Figure 2 (top) are an average of 110 
spectra in total. The XMCD signal was obtained as a difference between spectra obtained with opposite 
circularly polarized photons at applied magnetic field. The signal was then corrected by subtracting the 
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XMCD at 0 T magnetic field. This gave 84 sets of spectra (CR/CL) with half obtained at +6 T and half 
with at -6 T magnetic field. The data processing was done in the same way as for the [MoIIIFe3S4]3+ 
cubane.  

V.4 Mo K-edge HERFD XAS spectroscopy of MoIII(ttcn)Cl3 

Mo-Kα (20000 eV) high-energy resolution fluorescence detected X-ray ray absorption (HERFD-XAS) 
data were collected at the ID26 beamline at the European Synchrotron Radiation Facility (ESRF).  The 
storage ring operated at 6 GeV in 16 bunch top-up mode at an approximately 90 mA ring current.  A 
double-crystal monochromator using a pair of Si(311) crystals was employed to select the incoming X-
ray energy with an intrinsic resolution (∆E/E) of 0.3 x 10-4.  The X-ray beam size was 500 x 1000 µm2 
(V x H) at the sample position.  A liquid helium flow-cryostat was maintained at approximately 20 K in 
order to reduce the degree of radiation damage and maintain an inert sample environment.    

The energy of the incoming x-rays was calibrated by recording the transmission K-edge XAS spectrum 
of a Mo foil and assigning the energy of the maximum of the white line to 20016.4 eV.  The spectrometer 
was equipped with five curved Ge(111) crystals positioned at a Bragg angle of 77.74°, utilizing the [999] 
reflection to focus the Mo-Kα1 emission (~17480 eV) on the detector in a Johann-type geometry.  
Spectra were collected using a Ketek silicon drift detector. Individual scans were normalized to the 
incident photon flux and averaged using PyMCA.11 Preliminary scans were performed to determine the 
rate of damage upon irradiation.  Mo(ttcn)Cl3 showed no signs of damage up to 150 seconds.  Short X-
ray absorption near-edge spectra (XANES) scans were collected by scanning the incident energy from 
19990 to 20090 eV, while long extended x-ray absorption fine structure (EXAFS) scans were obtained 
by collection from 19990 to 20910 eV.  Both XANES and EXAFS scans were collected using 120s scan 
times.  The XANES spectrum was produced by averaging of 3 scans, while the EXAFS spectrum was 
produced by averaging of 47 scans. 

Solid samples were prepared as powders by finely grinding Mo(ttcn)Cl3 using a mortar and pestle, and 
diluting to 50% by mass using boron nitride.  Further processing of spectra including background 
subtraction and normalization was performed using the Athena program from the software package 
Demeter following standard protocols for X-ray spectroscopy.12  Background subtraction from the 
EXAFS spectrum was performed using a linear regression for the pre-edge region of 19910-19947 eV, 
and a quadratic polynomial regression for the post-edge region of 20157-20807 eV.  EXAFS fitting was 
performed using the program Artemis, also of the software package Demeter. 

The Mo Kα XANES spectrum of MoIII(ttcn)Cl3 is provided in Figure S3, demonstrating a typical 
Mo(III) spectrum with a relatively weak pre-edge Mo 1s  4d feature around 20001 eV.  EXAFS data, 
shown in Figure S4, were processed by modelling of a series of possible scenarios for Mo ligation, 
including full Cl or S coordination, as well as partial coordination.  All fits were performed using single 
scattering paths. This fitting procedure did not include modelling of the Mo-C scattering pathways as C 
is a light scatterer and these C are anticipated to be relatively distant from the Mo center (>3.7 Å). All 
scenarios clearly show 6-coordinate Mo is formed (Figure S5), and favour 3Cl/3S coordination of the 
Mo center (Figures S6-S7, Table S2).  These results are all consistent with the formation of the proposed 
MoIII(ttcn)Cl3 complex. 
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Figure S5. Normalized Mo-Kα HERFD X-ray absorption spectrum of MoIII(ttcn)Cl3. 

 

Figure S6. (top): K-space transformation of collected EXAFS of MoIII(ttcn)Cl3weighted as k3. (bottom): 
R-space transformation of collected EXAFS of MoIII(ttcn)Cl3for a k-range of 3.0 to 12.5 Å-1. 
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Figure S7. R-space comparison of single (Cl or S) and double (Cl and S) scattering path fits of 
MoIII(ttcn)Cl3. R-space data acquired from Fourier Transform of k-space range 3 to 12.5 Å-1. Colour 
code: experimental spectrum (black), fitted spectrum (dotted red), residual function (blue). 
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Figure S8. R-space deconvolution of 3Cl/3S model fit of MoIII(ttcn)Cl3. R-space data acquired from 
Fourier Transform of k-space range 3 to 12.5 Å-1. Colour code: experimental spectrum (black), fitted 
spectrum (dotted red), residual function (blue), spectrum of contributing Mo-Cl scattering paths (dotted 
green), spectrum of contributing Mo-S scattering path (dotted blue). 
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Figure S9.  K-space deconvolution of 3Cl/3S model fit of MoIII(ttcn)Cl3. Colour code: experimental 
spectrum (black), fitted spectrum (dotted red), residual function (blue), spectrum of contributing Mo-Cl 
scattering paths (dotted green), spectrum of contributing Mo-S scattering path (dotted blue).   

Table S2.  Summary of MoIII(ttcn)Cl3 EXAFS fitting parameters.  E0 is defined as 20007.0 eV, and S0
2 is fixed to 1.05.  

Fits were performed over an R range of 1 to 2.5 without phase correction.  MSRD (σ2) values were restricted to lie 
between 0.001 and 0.005 in all fits, and do not include McMaster’s correction. 

  Mo-Cl error 
model Path ∆E0 N R σ2 R-factor Reduced χ2 

3Cl/3S Mo-Cl 4.278 3 2.403 (0.008) 0.00100 (0.00036) 0.00320 2.79  Mo-S 3 2.515 (0.009) 0.00181 (0.00079) 
3Cl/2S Mo-Cl 4.293 3 2.411 (0.009) 0.00100 (0.00026) 0.01410 12.30  Mo-S 2 2.527 (0.014) 0.00100 (0.00006) 
2Cl/3S Mo-Cl 2.840 2 2.389 (0.033) 0.00100 (0.00045) 0.01798 15.68  Mo-S 3 2.494 (0.016) 0.00148 (0.00232) 
5Cl  Mo-Cl 4.339 5 2.443 (0.009) 0.00352 (0.00048) 0.02520 14.47 
6Cl Mo-Cl 4.272 6 2.444 (0.044) 0.00460 (0.00031) 0.00979 5.62 
5S Mo-S 1.245 5 2.452 (0.011) 0.00303 (0.00057) 0.03572 20.52 
6S  Mo-S 1.196 6 2.453 (0.007) 0.00407 (0.00040) 0.01664 9.56 

 

 

VI. Multiplet simulations of Mo L3-edge XMCD 

The multiplet simulations were carried out using CTM4XAS (version 5.5), which is a crystal field 
approximation based package.13 This software utilizes the theoretical developments of Thole, Cowan 
and Butler. 14-16 The Mo L3-edge XMCD spectra were calculated using the C4 symmetry option in 
CTM4XAS in order to allow for the inclusion of an exchange field that accounts for the application of 
a magnetic field. Without an exchange field the XMCD signal will always be 0. The exchange field 
parameter was set to 100 meV. The spectra were broadened using 0.2 eV Lorentzian and 1 eV Gaussian 
broadening respectively. The ligand field parameters were set assuming an Oh ligand field. The splitting 
of the d-orbitals (10 Dq) parameter was systematically varied to see the impact of changes in ligand field 
on the S=3/2 spectrum. A tetragonal distortion was introduced (using Ds and Dt) in order to force the 
Mo site into an S=1/2 configuration. More detailed simulations are given in Figure S9 and S10, below. 
The calculated spectra were shifted by 2.66 eV to align with experiment.  
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Figure S10.  Multiplet calculations of Mo L3-edge XMCD spectra of a Mo site in Oh local site symmetry 
with varied10Dq values.  
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Figure S11.  Multiplet calculations of Mo L3-edge XMCD spectra of a Mo site in C4 local site symmetry 
with 10Dq=2.5, Dt=0.05 on going from a high spin site (Ds values from 0.0 to 0.6) to low spin (Ds values 
from 0.8) (top). Note positive values of Dt indicate an axial elongation. An axial compression (negative 
Dt) inverts the sign of the XMCD signal from positive-negative to negative-positive. (bottom) 
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