

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Body mass index variation over time and associated factors among HIV positive adults on second line ART in Northwest Ethiopia: A retrospective follow up study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033393
Article Type:	Research
Date Submitted by the Author:	02-Aug-2019
Complete List of Authors:	Baraki, Adhanom; University of Gondar College of Medicine and Health Sciences, Epidemiology and Biostatistics Gezie, Lemma Derseh; University of Gondar College of Medicine and Health Sciences, Institute of Public Health, Epidemiology and Biostatistics Zeleke, Ejigu; University of Gondar College of Medicine and Health Sciences, Epidemiology and Biostatistics Awoke, Tadesse; University of Gondar, Epidemiology & Biostatistics Tsegaye, Adino Tesfahun; Epidemiology & Biostatistics
Keywords:	Body mass index, Second line ART, Linear mixed effect model

2

3

4

6

7

10

18

60

1

BMJ Open

2	
3	
4	
5	
5 6 7	
2	
/	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	/
1	8
1	012345678901234567890
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2 ว	7
2	, 0
2	0
2	9
3	0
3	1
3	2 3
3	3
3	4
3	5
3	4 5 6 7 8
3	7
2 2	, Q
2	9
	0
4	
4	
4	
	4
4	
4	
4	7
4	8
4	
5	
5	1
5	י 2
-	3
5	
5	
	6
5	7
5	8
Э	o 9

Body mass index variation over time and associated factors among HIV positive adults on second line ART in Northwest Ethiopia: A retrospective follow up study

5 Adhanom Gebreegziabher Baraki^{*}, Lemma Derseh Gezie, Ejigu Gebeye Zeleke, Tadesse Awoke

Ayele, Adino Tesfahun Tsegaye

Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine 8

9 and Health Sciences, University of Gondar, Gondar, Ethiopia

11 Authors Email

- AGB: adsh04@gmail.com 12
- LDG: lemmagezie@gmail.com 13
- EGZ: ejigugebeye@gmail.com 14
- 15 TAA: tawoke7@gmail.com
- 16 ATT: atesfahun1@gmail.com
 - 17 *Corresponding Author

Abstract **Objectives**: This study aimed to assess the evolution of Body Mass Index of HIV positive adults on second line ART over time and factors affecting it in Northwest Ethiopia. Design: Institution based retrospective follow up study was conducted using data extracted from 1016 patient cards from February 2008 to February 2016. Setting: Eight referral hospitals from Amhara region, Ethiopia were included **Participants:** HIV patients who started second line antiretroviral therapy **Outcome measures:** Change in BMI since starting second line antiretroviral therapy **Results:** Five hundred thirty eight (52.95%) of participants were males and median age of participants was 33 (P25=28, P75=39). The median follow up time was 18 months (P25=5.2, P75, 32.2 months). The average change of BMI has showed a linear increase over time. The amount of BMI increment or decrement according to each variable was shown as β coefficients. Treatment duration (β =0.013, 95% CI (0.004, 0.022)), Isoniazid prophylaxis (β =0.87, 95% CI (0.32, 1.42)), Cotrimoxazole prophylaxis (β =0.63, 95% CI (0.08, 1.19)), ambulatory functional status(β =-1.16, 95% CI (-1.95, -1.31)), bedridden functional status(β = -1.83, 95% CI (-2.47, -1.21)), WHO stage III(β =-0.42, 95% CI (-0.65, -0.20)) WHO stage IV (β = -0.62, 95% CI (-1.02, -0.22)), CD4 count (β =0.001, 95% CI (0.0008, 0.0015)); and time interaction of variables like tertiary educational status(β =0.02, 95% CI (0.01, 0.04)), ambulatory functional status(β =0.03, 95% CI (0.01, 0.05)) and WHO stages III (β =0.01, 95% CI (0.007, 0.02)) were found to be significant predictors. Conclusion: BMI of patients has shown a linear increment over the treatment time. Factors

40 affecting it have been identified but its effect on Cardio-vascular disease needs further study.

2		
3 4	42	Strengths and limitations of this study
5 6 7	43	• Being a retrospective study, this study shares the limitations of secondary data collection
8 9	44	as a result we were unable to find some predictors like viral load, alcohol consumption,
10 11	45	smoking and nutritional history.
12 13 14	46	• The study is not based only on patient cards that started the second line antiretroviral
15 16	47	therapy at the same point in time and also the length of follow up period for each
17 18	48	participant was not equal across all participants
19 20 21	49	• The most important strength of this study was the use of longitudinal data analysis. This
22 23	50	ensures a valid estimate by handling data that is measured in different time period and
24 25 26	51	has missing values.
26 27 28	52	• Besides we had a total of 5380 number of BMI measurements taken from 1016
29 30	53	participants with a median BMI of 20.52 Kg/m ² (P25= 18.2, P75=23). Baseline BMI was
31 32 33	54	calculated for all 1016 patients. These will again strength the precision of the estimates.
34 35	55	
36 37 38	56	
39 40	57	
41 42 43	58	
44 45	59	
46 47 48	60	
49 50		
51 52	61	
53 54 55	62	
55 56 57	63	
58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

64 Background

Human Immunodeficiency Virus (HIV) has continued to be a major global public health problem, having killed more than 35 million lives so far. In 2017, 940 000 people died from HIV-related causes globally(1). According to the Ethiopia demographic and health survey of 2016 the adult prevalence of HIV in Ethiopia was 0.9%(2). Death due to HIV/AIDS has enormously decreased due to the introduction of anti retroviral therapy (ART) and millions of people are currently accessing it (3).

Body weight of HIV patients has been an important diagnostic and evaluation measure. Low BMI is recognised as one of the first criteria for the clinical definition of Acquired Immune Deficiency Syndrome (AIDS). The current World Health Organization (WHO) clinical staging of the disease also includes moderate unexplained weight loss (<10% presumed or measured body weight, stage 2), unexplained severe weight loss (>10% of body weight or BMI \leq 18.5 kg/m², clinical stage 3) and HIV wasting syndrome (Unexplained severe wasting, clinical stage 4) as criteria to define advanced HIV infection(4).

The BMI of HIV patients is an important predictor of ART treatment outcome (5-8), including
the prediction of the CD4 cells change (9) and death (10-12). Negative change in BMI of patients
was also found to be an independent predictor of dropout from HIV care (13).

The BMI of HIV patients is affected by gender(14) duration of treatment (10, 15, 16), Isoniazid Prophylaxis Therapy (IPT) and Cotrimoxazole prophylaxis(CPT) (17, 18) WHO stage (14) and CD4 count (15, 19).

Even though BMI evolution is a very important and easily calculable tool that can predict
treatment outcome, dropout from treatment, CD4 recovery and death literatures about its

Page 5 of 24

1

BMJ Open

23	
4	
- 5	
6	
7	
, 8	
o 9	
9 10	
11	
12 13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

evolution across treatment time and factors affecting it are limited. Therefore this study tried to
fill this information gap by determining the BMI evolution over treatment time and identifying
the key factors affecting it. Information generated by this study will contribute to monitor the
response of patients for antiretroviral therapy.

90 Method and materials

91 Study design and period

An institution based retrospective follow up study was conducted among adults, age 24 and
above who are started on second line ART from February 2008 to February 2016

94 Study area and population

The study was conducted in Amhara regional state which is one of the nine administrative 95 96 regions and two city councils of Ethiopia. The region constitutes majority of ART users in the 97 country. The study population was adult HIV infected patients on second line ART in all the nine referral hospitals of the region. The first-line treatment consists of a combination of two 98 nucleoside/nucleotide reverse transcriptase inhibitors (NRTI) with one non-nucleoside reverse 99 100 transcriptase inhibitor (NNRTI). Should failure of first-line treatment occur, a second-line 101 treatment is implemented, using two NRTIs not previously used in first-line treatment, as well as one additional protease inhibitor (PI). 102

3 103 Sample size and sampling procedure

104 All HIV patients who initiated second line therapy (n=1233) between February 2008 and 2016 105 were included. But only 1016 patients who had two or more measurements of weight were 106 included in the study.

Data collection procedures

Data extraction check list was prepared and the data were collected from HIV patient registration cards. Data about the baseline weight and height of patients and other factors like socio-demographic, clinical, and treatment related factors were also collected from each HIV patient registration cards. Adherence to ART was assessed by pill counts at visits and is recorded as 'GOOD' (\geq 95% adherence) or FAIR (80%–95%), while POOR adherence is less than 80% (20).

Data structure, compilation and analysis strategy

The data was cleansed and entered in to EPI info version 7 and analyzed using STATA version 14.0. Body Mass Index (BMI) of HIV patients was computed by dividing the weight of patients in kilogram (kg) that was recorded during each follow up visit, to their baseline height in meter squared. Exploratory data analysis for the weight of patients including individual profile plot, mean profile plot, descriptive and summary statistics were done. To determine the factors associated with BMI of patients univariate analysis for each independent variable was assessed and those found to be significant (p-value<0.25) were selected for the multivariate analysis. The need for random intercept and random slope was checked by likelihood ratio test. Finally a model that can handle repeated measurements that have between individual variation and within individual variation, that is linear mixed effect model with random intercept and random slop was fitted.

Patient and Public Involvement

Since we have used secondary data/chart review, patients or the public were not involved during identifying the research question or design and conduct of the study.

1 2 3 4 5	129	Results		
6 7	130	Patient characteristics		
8 9 10	131	We had a total of 1016 adult patients who were taking second line ART. Among the total 538		
11 12	132	(52.95%) were males. All participants were above or equal to the age of 24 with median age of		
13 14	133	33 year (P25=28, P75=39). Large proportion of these patients 370 (37.1%) were unemployed		
15 16 17	134	and 371 (36.9%) have attended secondary school.		
18 19	135	The median follow up time was 18 months (P25=5.2, P75, 32.2). There were a maximum of 12		
20 21	136	and a minimum of 2 measurements of weight per patient. Almost all visits were not balanced in		
22 23 24	137	their time of measurements. The median time between each weight measurement was		
24 25 26	138	6.7(P25=4.27, P75=10.03), 6.08(P25=4.14, P75=9), 6.13(P25=4.2, P75=8.9), 6.27(P25=4.53,		
27 28	139	P75=8.9), 5.9(P25=3.97, P75=7.79), 5.83(P25=3.7, P75=8.13), 5.45 (P25=3.37, P75=7.43),		
29 30	140	4.86(P25=2.97, P75=6.2), 5.19(P25=3, P75=7.37), 5.97(P25=4.23, P75=7.04), 5.55(P25=2.83,		
31 32 33	141	P75=5.86) and 3(P25=0.9, P75=4.84) months from first to twelfth weight measurement		
34 35	142	respectively.		
36 37	143	At the initiation of second line ART majority of participants, 393 (45.54%), were at WHO stage		
38 39 40	144	I and 324 (37.54%) were at WHO stage III. Large proportion of participants 871 (86%) had		
40 41 42	145	working functional status at base line, the rest 114 (11.25%) and 28 (2.75%) were ambulatory		
43 44	146	and bed ridden respectively. The median CD4 count was 253 (P25=147, P75=399). Isoniazid		
45 46	147	Prophylaxies Therapy and CPT were given for 247 (24.87%) and 256 (25.65%) of participants		
47 48 49	148	respectively (Table 1).		
49 50 51 52 53 54 55 56	149	Exploratory data analysis		
	150	At baseline a total of 391(38.5%) had BMI of less than 18.5kg/m ² whereas 549(54%), 64(6.3%)		
	151	and 12(1.2%) had BMI 18.5-24.9 kg/m ² , 25-29.9 kg/m ² and \geq 30kg/m ² respectively.		
57 58 59 60		7 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

152 Individual Profile

The average BMI of patients at baseline was 19.03Kg/m² (SD=3.6 Kg/m²). The minimum and maximum BMI was 8.33 Kg/m² and 33.59 Kg/m² respectively. Before proceeding to the formal statistical analysis we have described the data by exploring how individuals change in BMI over time. To make the individual profile plot more informative and understandable, we have prepared it for the first 100 individuals (**Figure 1**).

As we can see from this plot, the BMI status of patients has high variability within an individual over time and among individuals at baseline and also through time. Therefore to fit the data which has variability in the intercept and slope of trajectories very well, we have used a mixed model.

Exploring the mean profile

As stated above all measurements in the data have no similar time of measurements therefore we
have used smoothing to determine BMI evolution over time (Figure-2).

165 As one can easily understand from the mean profile plot the BMI of these patients showed a 166 linear increment over the treatment time.

167 Modeling the BMI

168 Correlation structure checking and model comparison

169 Comparing with AIC, the correlation structure with lowest AIC was chosen, in this case the170 unstructured correlation structure (Table-2).

171 The need for random slop and intercept was checked by likelihood ratio test of model without a

 $_{0}$ 172 random intercept, with only random intercept and a model with both random intercept and slop

173 (**Table-3**).

174 So as we can see from the table-3 the inclusion of random intercept and random slop is 175 reasonable so in the final model we have used both random intercept and random slop.

Factors affecting the BMI evolution over time

Based on the multi-variable output: time since the start of second line ART, IPT, CPT,
Functional status, WHO stage of the disease; and time interaction of categorical variables like
educational status, functional status and WHO stages were found to be significant predictors of
the BMI evolution of HIV patients on second line ART.

181 Keeping all the other variables constant, for a one month increment in the treatment duration the 182 BMI of patients' increases by 0.013 kg/m^2 . But specifically individuals who have tertiary level of 183 education, ambulatory functional status and who are at WHO stage III have additional 0.02 184 kg/m², 0.03 kg/m² and 0.01 kg/m² increment respectively in their BMI for a one month 185 increment in the duration of treatment.

Taking IPT and CPT increases BMI by 0.87 kg/m² and 0.63 kg/m² respectively as compared to their counter parts. Nongovernmental organizations employment was associated with a 2.02 kg/m^2 increment when compared to government employment. Patients who are ambulatory and bedridden in their functional status have a 1.16 kg/m² and 1.83 kg/m² decrement in their BMI as compared to those who have working functional status. Patients who are at WHO stage III and WHO stage IV have decreased BMI by 0.42 kg/m² and 0.62 kg/m² when compared with those who are at WHO stage I. For a unit cell/mm³ increase in the CD4 count of patients BMI was found to increase by a factor of 0.001 kg/m^2 (Table-4).

- **DISCUSSION**
- This study has found a linear increment in BMI of patients over treatment time. There were BMIdifferences between subjects at baseline and in their progress over time.

Factors found to have a significant effect on the evolution of BMI over treatment time at
multivariable linear mixed effect model were second line treatment duration, IPT, CPT,
employment status, functional status of the patient, WHO stage and CD4 count. Time interaction
of educational status, functional status, and WHO stage.

For a one month increase in treatment duration the BMI of patients increases by 0.04, this finding is in line with studies in South Africa (21), India (10) and United states(22). The possible reasons for weight gain could be due to normal reversion of the weight loss associated with HIV or due to drug related metabolic changes which include hyperlipidemia, insulin resistance and diabetes(23).

Patients who took IPT and CPT have increased BMI when compared to their counter parts. This finding is supported by other studies like a study conducted in Abidjan (17) and multicenter controlled clinical trial in Africa (18). The main reason for this association could be the reduction of potentially disabling and wasting disease like tuberculosis and other opportunistic infections by these prophylactic drugs(24, 25). A highly increased appetite by the prophylaxis could also be possible explanation(26).

Being ambulatory and bedridden decreases BMI when compared to those who are working. Since these individuals are not working they may not access nutritious and balanced diet which affects their BMI. Another reason could be additional decreased immunity caused by physical inactivity which makes them more susceptible to minor infections leading to a higher calorie loss(27). These group of people are also at higher risk of diarrheal disease for they cannot take care of themselves which in turn causes weight loss(28).

218 When compared with patients who are at WHO stage I, those who are at WHO stage III and 324 219 WHO stage IV have decreased BMI. This finding is in line with a multicenter study in resource

limited settings which shows individuals who had high clinical status (WHO stage III and WHO stage IV) had poorer weight gain when compared to weight change in patients at lower WHO stage(14). The possible reason can be unexplained chronic diarrhea and HIV enteropathy in these patients and the associated malabsorption (4) or it could be due to pyrexia of unknown origin in the late stage of the disease which results an increased calori loss and wasting(29).

The BMI of patients was also found to increase with the increment in their CD4 count. This positive association is supported by evidence from a study conducted in Boston (15) and Tanzania (19). This increment can be explained by association of increment of CD4 count with good clinical changes like viral suppression, improved immunity and appetite leading to increment in the BMI of patients (13).

Being a retrospective study, this study shares the limitations of secondary data collection as a result we were unable to find some predictors like viral load, alcohol and smoking marital status E. and nutritional history.

CONCLUSION

In this study we have found a linear increment in the BMI of HIV patients on second line ART. There was a significant variation of BMI of patients at baseline and through ART treatment time. Duration of treatment, IPT, CPT, functional status, WHO stage of the disease, CD4 count; and time interaction of categorical variables like educational status, functional status and WHO stages were found to be significant predictors. The positive change in the BMI of patients shows an encouraging trend for we know this has a positive impact on the CD4 recovery, decrease lost to follow up and death. Clinicians also must consider the identified risk factors when they provide service for these patients.

243 ABBREVIATIONS

AIC. Akaike's Information Criterion; AIDS, Acquired Immunodeficiency Virus; ART, BIC. Anti-Retroviral Therapy: Bayesian information criterion: BMI. Body Mass Index; CI, Confidence Interval; CPT, Co-trimoxazole preventive therapy; HIV, Deficiency IPT. Human Immuno Virus: Isoniazid Prophylaxis Therapy: Kg, Governmental Organizations; WHO, Kilogram; NGO. Non World Health Organization.

Declarations

251 Ethical consideration

252 Ethical clearance was obtained from Institutional Review Board of Institute of Public Health,

253 University of Gondar. Names and unique ART numbers of patients was not collected to keep the

254 privacy of patients during the data collection.

255 Availability of data and materials

256 The data upon which the result based could be accessed by a reasonable request made to the

257 corresponding author.

258 Funding

- $^{3}_{4}$ 259 Not applicable
- 6 260 **Consent for publication**
- ⁸ 261 Not applicable
- **Competing interest**
- 263 Authors declare that they have no any conflict of interest

56 264 Authors' contribution

Page 13 of 24

1

BMJ Open

2	
3	265
4	200
5	266
6 7	200
8	267
9	207
10	268
11	200
12	269
13	209
14	270
15	270
16 17	274
18	271
19	
20	272
21	212
22	273
23	275
24	274
25	274
26 27	275
27	275
29	
30	276
31	276
32	
33	277
34	
35 36	278
30 37	270
38	
39	279
40	
41	280
42	
43	204
44	281
45 46	
40 47	282
48	
49	283
50	205
51	
52	284
53	
54 55	285
55 56	-
50 57	
58	
59	
60	

AGB, LDG, EGZ, TAA, ATT have actively participated during Conception and design, acquisition of data, analysis and interpretation of data. All authors have read and approved the final version of the manuscript.

268 Acknowledgments

First of all we would like to thank the Almighty God. We would like say thank you to University
of Gondar, Amhara regional health office and hospitals administrative bodies, clinicians, data
clerks and card room workers for their cooperation and permission to conduct the study.

272 Authors' information

Adhanom Gebreegziabher, has BSc degree in Public health as a background and second degree
in Epidemiology and Biostatistics; now teaching Epidemiology, Research methodology and
communicable disease control courses in the University of Gondar, Ethiopia

276	
277	
278	
279	
280	
281	
282	
283	
284	
285	
	13
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

286 **REFERENCES**

1 2 3

4

5
6 287 1. World Health Organization. HIV/AIDS key facts available at <u>http://www.hoint/news-room/fact-</u>
7 288 <u>sheets/detail/hiv-aids</u>. 2018.

289 2. Central statistical agency. Ethiopia Demographic and Health Survey HIV Prevalence Report
 290 available at https://wwwdhsprogramcom/pubs/pdf/FR328/FR328HIVpdf. 2016.

291 3. Mahy M, Stover J, Stanecki K, Stoneburner R, Tassie J-M. Estimating the impact of antiretroviral
 292 therapy: regional and global estimates of life-years gained among adults. Sexually transmitted
 293 infections. 2010;86(Suppl 2):ii67-ii71.

294 World Health Organization. Interim WHO Clinical Staging of HIV/AIDS AND HIV/AIDS Case 4. 14 available 295 Definitions for Surveillance, African Region. at 15 16 296 http://www.hoint/hiv/pub/guidelines/clinicalstagingpdf. 2005.

Tsegaye AT, Wubshet M, Awoke T, Addis Alene K. Predictors of treatment failure on second-line
 antiretroviral therapy among adults in northwest Ethiopia: a multicentre retrospective follow-up study.
 BMJ Open. 2016;6(12):e012537. Epub 2016/12/10.

Seyoum A, Ndlovu P, Zewotir T. Quasi-Poisson versus negative binomial regression models in
 identifying factors affecting initial CD4 cell count change due to antiretroviral therapy administered to
 HIV-positive adults in North-West Ethiopia (Amhara region). AIDS Res Ther. 2016;13:36. Epub
 2016/11/16.

253047.Patel D, Desai M, Shah AN, Dikshit RK. Early outcome of second line antiretroviral therapy in26305treatment-experienced human immunodeficiency virus positive patients. Perspect Clin Res.273062013;4(4):215-20. Epub 2013/12/07.

307
308
309
309
307
300
307
308
309
309
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300

310 9. Koethe JR, Jenkins CA, Lau B, Shepherd BE, Silverberg MJ, Brown TT, et al. Body mass index and
311 early CD4 T-cell recovery among adults initiating antiretroviral therapy in North America, 1998-2010. HIV
312 Med. 2015;16(9):572-7. Epub 2015/05/12.

313 10. Chakravarty J, Sundar S, Chourasia A, Singh PN, Kurle S, Tripathy SP, et al. Outcome of patients
 314 on second line antiretroviral therapy under programmatic condition in India. BMC Infect Dis.
 315 2015;15:517. Epub 2015/11/18.

38
316
317
318
317
318
318
318
319
319
310
310
311. Theo VP, Quang VM, Wolbers M, Anh ND, Shikuma C, Farrar J, et al. Second-Line HIV Therapy
317
318
318
318
318
319
310
310
311. Theo VP, Quang VM, Wolbers M, Anh ND, Shikuma C, Farrar J, et al. Second-Line HIV Therapy
312
313
314
315
315
316
316
317
318
318
318
318
318
318
318
319
310
310
310
311
311
312
312
313
314
315
315
315
316
317
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
<

319 12. Swain PK, Grover G. Determination of Predictors Associated With HIV/AIDS Patients on ART
320 Using Accelerated Failure Time Model for Interval Censored Survival Data. 2016.

44 321 13. Asiimwe SB, Kanyesigye M, Bwana B, Okello S, Muyindike W. Predictors of dropout from care
45 322 among HIV-infected patients initiating antiretroviral therapy at a public sector HIV treatment clinic in
46 323 sub-Saharan Africa. BMC Infect Dis. 2016;16:43. Epub 2016/02/03.

47
48
49
50
326
327
324
324
324
325
326
326
326
327
326
326
326
327
326
327
328
329
329
320
320
320
320
321
321
322
322
323
324
324
324
325
326
326
327
327
328
328
329
329
329
320
320
320
320
320
321
321
321
321
322
323
324
324
325
326
327
328
328
329
329
329
320
320
320
320
320
320
320
320
320
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321

327 15. Mwamburi DM, Wilson IB, Jacobson DL, Spiegelman D, Gorbach SL, Knox TA, et al.
 328 Understanding the Role of HIV Load in Determining Weight Change in the Era of Highly Active
 329 Antiretroviral Therapy. Clinical Infectious Diseases. 2005;40(1):167-73.

- 55 56
- 57
- 58 59

1							
2							
3 4	330	16. Tang AM, Sheehan HB, Jordan MR, Duong DV, Terrin N, Dong K, et al. Predictors of Weight					
5	331	Change in Male HIV-Positive Injection Drug Users Initiating Antiretroviral Therapy in Hanoi, Vietnam.					
6	332	AIDS Res Treat. 2011;2011:890308. Epub 2011/07/22.					
7	333	17. Guehi C, Badje A, Gabillard D, Ouattara E, Koule SO, Moh R, et al. High prevalence of being					
8	334	Overweight and Obese HIV-infected persons, before and after 24 months on early ART in the ANRS					
9	335	12136 Temprano Trial. AIDS Res Ther. 2016;13:12. Epub 2016/03/01.					
10	336	18. Haller L, Sossouhounto R, Coulibaly IM, Dosso M, Kone M, Adom H, et al. Isoniazid plus					
11	337	sulphadoxine-pyrimethamine can reduce morbidity of HIV-positive patients treated for tuberculosis in					
12	338	Africa: a controlled clinical trial. Chemotherapy. 1999;45(6):452-65. Epub 1999/11/24.					
13	339	19. Li N, Spiegelman D, Drain P, Mwiru RS, Mugusi F, Chalamilla G, et al. Predictors of weight loss					
14 15	340	after HAART initiation among HIV-infected adults in Tanzania. AIDS. 2012;26(5):577-85. Epub					
16	341	2011/12/14.					
17	342	20. Ministry of Health. Federal Democratic Republic of Ethiopia. National guidelines for					
18	343	comprehensive HIV prevention, care and treatment, . 2014.					
19	344	21. Huis In 't Veld D, Pengpid S, Colebunders R, Peltzer K. Body Mass Index and Waist Circumference					
20	345	in Patients with HIV in South Africa and Associated Socio-demographic, Health Related and Psychosocial					
21	346	Factors. AIDS Behav. 2017. Epub 2017/03/01.					
22	347	22. Crum-Cianflone N, Roediger MP, Eberly L, Headd M, Marconi V, Ganesan A, et al. Increasing					
23	348	rates of obesity among HIV-infected persons during the HIV epidemic. Plos one. 2010;5(4):e10106.					
24 25	349	23. Montessori V, Press N, Harris M, Akagi L, Montaner JSG. Adverse effects of antiretroviral therapy					
25 26	350	for HIV infection. CMAJ : Canadian Medical Association Journal. 2004;170(2):229-38.					
27	351	24. Dowdy DW, Golub JE, Saraceni V, Moulton LH, Cavalcante SC, Cohn S, et al. Impact of isoniazid					
28	352	preventive therapy for HIV-infected adults in Rio de Janeiro, Brazil: an epidemiological model. Journal of					
29	353	acquired immune deficiency syndromes (1999). 2014;66(5):552.					
30	354	25. Mermin J, Lule J, Ekwaru JP, Malamba S, Downing R, Ransom R, et al. Effect of co-trimoxazole					
31	355	prophylaxis on morbidity, mortality, CD4-cell count, and viral load in HIV infection in rural Uganda. The					
32	356	Lancet. 2004;364(9443):1428-34.					
33	357	26. Mudie I, Horne N, Crofton J. Isoniazid and weight gain. British Medical Journal.					
34 35	358	1954;1(4874):1304.					
36	359	27. Nieman DC. Exercise, infection, and immunity. International journal of sports medicine.					
37	360	1994;15(3):S131.					
38	361	28. Katabira ET. Epidemiology and management of diarrheal disease in HIV infected patients.					
39	362	International journal of infectious diseases. 1999;3(3):164-7.					
40	363	29. Hot A, Schmulewitz L, Viard J-P, Lortholary O. Fever of unknown origin in HIV/AIDS patients.					
41	364	Infectious disease clinics of North America. 2007;21(4):1013-32.					
42							
43	365						
44 45							
45 46	366						
47							
48	0.07						
49	367						
50							
51	368						
52							
53	369						
54 55							
55 56	270						
50 57	370						
58		15					
59							
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

Figures Legend 371

3 4	371	Figures Legend
5		
6 7 8	372	Figure 1: Individual profile plot of BMI over time for the first 100 individuals at second
9 10	373	line ART in Amhara region, 2008-2016
11		
12 13	374	Figure 2: Time plot of BMI versus treatment time in months with lowess smoothed curve
14 15	375	superimposed for HIV patients on second line ART in Amhara region 2008-2016
16 17		
17 18	376	superimposed for HIV patients on second line AKT in Amnara region 2008-2016
19 20	570	
20 21		
22	377	
23 24		
25		
26 27	378	
28		
29 30	379	
31	379	
32 33		
34	380	
35 36		
37		
38 39	381	
40		
41 42	382	
42 43	502	
44		
45 46	383	
47		
48 49		
50	384	
51 52		
53	385	
54 55	305	
56		
57 58		16
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Tables

Table 1 Baseline socio-demographic and baseline characterstics of adults HIV patients on second

line ART in Amhara region, 2008 to 2016

	Variables	Number	Percentage
	Age		_
	25-34	547	53.89
	35-44	333	32.81
	45-54	104	10.25
	55-64	26	2.56
	> 65	6	0.59
	Sex	0	0.07
	Female	478	47.05
	Male	538	52.95
	Educational status	558	52.75
		215	21.24
	Illiterates	315	31.34
	Primary education	201	20.00
	Secondary education	371	36.92
	Tertiary education	118	11.74
	Missing	11	0.01
	Occupation		
	Unemployed	370	36.42
	Governmental	286	28.15
	Non-Governmental	21	2.06
	Private	66	6.50
	Daily laborers	254	25.00
	Missing	19	1.87
	WHO stages		
	Stage I	393	45.54
	Stage II	66	7.65
	Stage III	324	37.54
		80	9.27
	Stage IV	80	9.27
	Functional status	071	0.6
	Working	871	86
	Ambulatory	114	11.25
	Bed ridden	28	2.75
	CPT given		
	No	742	74.35
	Yes	256	25.65
	INH given		
	No	746	75.13
	Yes	247	24.87
389	CPT= Cotrimoxazole Prophylaxis Therapy		
390	INH= Isoniazide		
		17	
	For peer review only - http://bm	jopen.bmj.com/site/about/guidelines	.xhtml

Unstructured Identity Exchangeable AIC 14337.93 17775.34 17666.17 BIC 14531.08 17956.02 17853.09 **Table 3: Random Effects Models comparison** $LR X^2$ Random effects P value 297. Model1 intercept 5625.28 0.0000 Model2 intercept, time For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 2: Correlation structure checking and model comparison

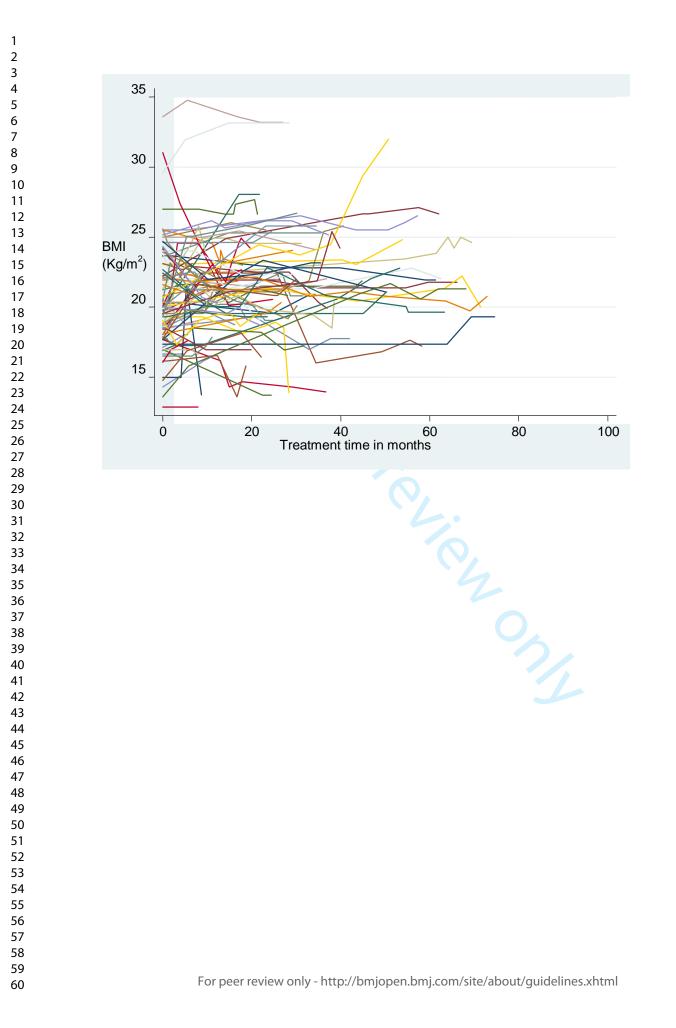
Characteristics

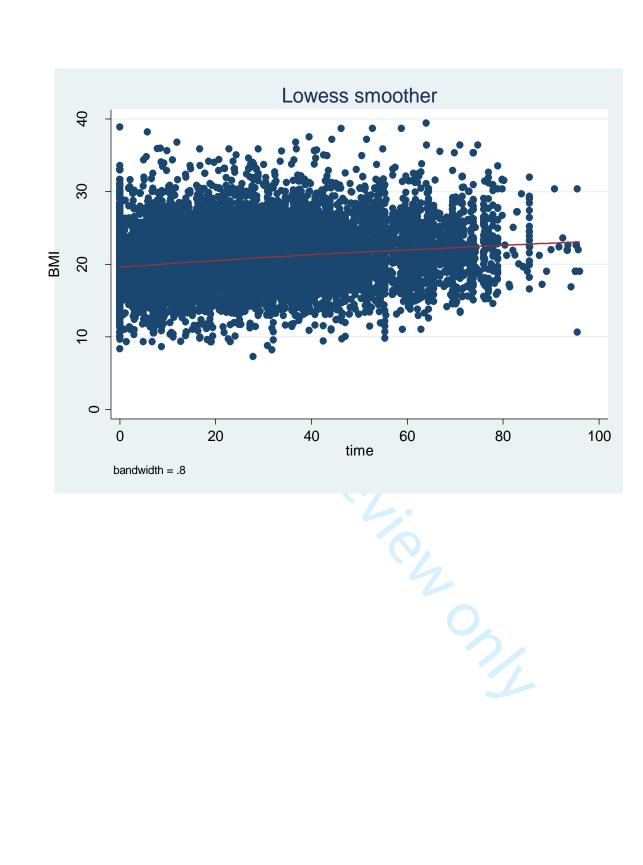
Confidence interval

P value

1
2
3
4
5
6
7
8
9
10
11
12
12 13
14
15
16
17
18
19
20
21
22
23
Ζ.

6		Characteristics	Co-enicient	Connue	nce miervar	P value
7				Lower	Upper	
8		Intercept	19.03	18.11	19.95	0.000
o 9		Sex				
9 10		Female	0.00			
10		Male	-0.01	-0.51	0.48	0.956
		Adherence	-0.01	-0.31	0.40	0.750
12		Poor	0.00			
13				0.24	1 10	0.207
14		Fair	0.43	-0.24	1.10	0.207
15		Good	0.48	-0.06	1.02	0.080
16		INH prophylaxis given				
17		No	0.00			
18		Yes	0.87	0.32	1.42	0.002
19 20		CPT prophylaxis given				
20		No	0.00			
21		Yes	0.63	0.08	1.19	0.025
22		Educational status				
23		Illiterate	0.00			
24		Primary	-0.03	-0.72	0.66	0.924
25		Secondary	0.47	-0.21	1.14	0.176
26		Tertiary	0.94	-0.01	1.89	0.051
27		Functional status	0.71	0.01	1.09	0.001
28		Working	0.00			
29		•	-1.16	-1.95	1 2 1	0.000
30		Ambulatory			-1.31	0.000
31		Bedridden	-1.83	-2.47	-1.21	0.000
32		WHO stage	0.00			
33		Stage I	0.00			
34		Stage II	-0.06	-0.45	0.33	0.760
35		Stage III	-0.42	-0.65	-0.20	0.000
36		Stage IV	-0.62	-1.02	-0.22	0.002
37		CD4 count	0.001	0.0008	0.0015	0.000
38		Time on treatment	0.013	0.004	0.022	0.005
39		Education status x time				
40		Illiterate x time	0.00			
41		Primary x time	0.002	-0.01	0.015	0.801
42		Secondary x time	0.01	-0.003	0.019	0.162
43		Tertiary x time	0.02	0.01	0.04	0.009
44		Functional status x time	0.02	0.01	0.04	0.007
45		Working x time	0.00			
46		6		0.01	0.05	0.000
47		Ambulatory x time	0.03	0.01	0.05	0.000
48		Bedridden x time	-0.01	-0.05	0.02	0.49
49		WHO stage x time				
50		Stage I x time	0.00			
51		Stage II x time	0.004	-0.008	0.166	0.522
52		Stage III x time	0.01	0.007	0.020	0.000
53		Stage IV x time	-0.0003	-0.016	0.016	0.969
54	406					
55						
56						


Table 5 Parameter estimates for full linear mixed effect model


Co-efficient

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59 60

1		
2 3		
3 4	407	
5		
6	408	
7	400	
8		
9 10	409	
10		
12		
13	410	
14		
15	411	
16 17	411	
18		
19	412	
20		
21		
22	413	
23 24		
24 25	414	
26	414	
27		
28	415	
29		
30 31		
32	416	
33		
34	417	
35	417	
36 37		
38	418	
39		
40		
41 42	419	
42 43		
44	420	
45		
46		
47	421	
48 49		
50	422	
51	422	
52		
53	423	
54 55		
55 56		
57		
58		20
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		To peer review only integry on jopen.on j.com/site/about/guidelines.xittin

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1-2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4-5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
1		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement	-	assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10 Explain how the study size was arrived at		
		Explain how quantitative variables were handled in the analyses. If applicable,	5-6
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Results		() Describe any sensitivity analyses	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7
i articipants	15	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
Decominations data	14*	(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	'
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	7.0
Outcome data	15*	Report numbers of outcome events or summary measures over time	7-9

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	7-9
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
D!!		anaryses	
Discussion	10	Commencies have acculte with reference to study shipsting	9-1
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	11
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	10
		multiplicity of analyses, results from similar studies, and other relevant evidence	11
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other informati	on		·
Funding	22	Give the source of funding and the role of the funders for the present study and, if	12
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Body mass index variation over time and associated factors among HIV positive adults on second-line ART in Northwest Ethiopia: A retrospective follow up study

Journal:	BMJ Open	
Manuscript ID	bmjopen-2019-033393.R1	
Article Type:	Original research	
Date Submitted by the Author:	28-Aug-2019	
Complete List of Authors:	Baraki, Adhanom; University of Gondar College of Medicine and Health Sciences, Epidemiology and Biostatistics Gezie, Lemma Derseh; University of Gondar College of Medicine and Health Sciences, Institute of Public Health, Epidemiology and Biostatistics Zeleke, Ejigu; University of Gondar College of Medicine and Health Sciences, Epidemiology and Biostatistics Awoke, Tadesse; University of Gondar, Epidemiology & Biostatistics Tsegaye, Adino Tesfahun; Epidemiology & Biostatistics	
Primary Subject Heading :	Public health	
Secondary Subject Heading:	HIV/AIDS	
Keywords:	Body mass index, Second line ART, Linear mixed effect model	

BMJ Open

Body mass index variation over time and associated factors among HIV positive adults on Second-line ART in Northwest Ethiopia: A retrospective follow up study Adhanom Gebreegziabher Baraki^{*}, Lemma Derseh Gezie, Ejigu Gebeye Zeleke, Tadesse Awoke Ayele, Adino Tesfahun Tsegaye Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia Authors Email AGB: adsh04@gmail.com LDG: lemmagezie@gmail.com EGZ: ejigugebeye@gmail.com TAA: tawoke7@gmail.com ATT: atesfahun1@gmail.com *Corresponding Author

Abstract **Objectives**: This study aimed to assess the evolution of Body Mass Index of HIV positive adults on second line ART over time and factors affecting it in Northwest Ethiopia. Design: Institution based retrospective follow up study was conducted using data extracted from 1016 patient cards from February 2008 to February 2016. Setting: Eight referral hospitals from Amhara region, Ethiopia were included **Participants:** HIV patients who started second-line antiretroviral therapy **Outcome measures:** Change in BMI since starting second-line antiretroviral therapy **Results:** Five hundred thirty eight (52.95%) of participants were males and median age of participants was 33 (IQR: 28; 39). The median follow up time was 18 months (IQR: 5.2; 32.2). The average change of BMI has showed a linear increase over time. The amount of BMI increment or decrement according to each variable was shown as β coefficients. Treatment duration (β =0.013, 95% CI (0.004, 0.022)), Isoniazid prophylaxis (β =0.87, 95% CI (0.32, 1.42)), Cotrimoxazole prophylaxis (β =0.63, 95% CI (0.08, 1.19)), ambulatory functional status (β = -1.16, 95% CI (-1.95, -1.31)), bedridden functional status(β = -1.83, 95% CI (-2.47, -1.21)), WHO stage III (β =-0.42, 95% CI (-0.65, -0.20)) WHO stage IV (β = -0.62, 95% CI (-1.02, -0.22)), CD4 count (β =0.001, 95% CI (0.0008, 0.0015)); and time interaction of variables like tertiary educational status (β =0.02, 95% CI (0.01, 0.04)), ambulatory functional status (β =0.03, 95% CI

37 (0.01, 0.05)) and WHO stages III (β =0.01, 95% CI (0.007, 0.02)) were found to be significant 38 predictors.

Conclusion: BMI of patients has shown a linear increment over the treatment time. Factors
affecting it have been identified but its effect on Cardio-vascular disease needs further study.

BMJ Open

2		
3 4	42	
5 6 7	43	Strengths and limitations of this study
7 8 9	44	• Being a retrospective study, this study shares the limitations of secondary data collection,
10 11	45	as a result, we were unable to find some predictors like viral load, alcohol consumption,
12 13 14	46	smoking, and nutritional history.
15 16	47	• The study is not based only on patient cards that started the second-line antiretroviral
17 18 19	48	therapy at the same point in time and also the length of follow up period for each
20 21	49	participant was not equal across all participants
22 23 24	50	• The most important strength of this study was the use of longitudinal data analysis. This
24 25 26	51	ensures a valid estimate by handling data that is measured in different time periods and
27 28	52	has missing values.
29 30 31	53	• Besides we had a total of 5380 number of BMI measurements taken from 1016
32 33	54	participants with a median BMI of 20.52 Kg/m ² (IQR: 18.2; 23). Baseline BMI was
34 35 36	55	calculated for all 1016 patients. These will again strength the precision of the estimates.
37 38	56	
39 40 41	57	
41 42 43	58	
44 45	59	
46 47 48	60	
49 50	61	
51 52 53		
54 55	62	
56 57	63	2
58 59 60		3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

64 Background

Human Immunodeficiency Virus (HIV) has continued to be a major global public health problem, having killed more than 35 million lives so far. In 2017, 940 000 people died from HIV-related causes globally(1). According to the Ethiopia demographic and health survey of 2016, the adult prevalence of HIV in Ethiopia was 0.9%(2). Death due to HIV/AIDS has enormously decreased due to the introduction of antiretroviral therapy (ART) and millions of people are currently accessing it (3).

Body weight of HIV patients has been an important diagnostic and evaluation measure. Low BMI is recognized as one of the first criteria for the clinical definition of Acquired Immune Deficiency Syndrome (AIDS). The current World Health Organization (WHO) clinical staging of the disease also includes moderate unexplained weight loss (<10% presumed or measured body weight, stage 2), unexplained severe weight loss (>10% of body weight or BMI \leq 18.5 kg/m², clinical stage 3) and HIV wasting syndrome (Unexplained severe wasting, clinical stage 4) as criteria to define advanced HIV infection(4).

The BMI of HIV patients is an important predictor of ART outcome (5-8), including the
prediction of the CD4 cells change (9) and death (10-12). A negative change in BMI of patients
was also found to be an independent predictor of dropout from HIV care (13).

The BMI of HIV patients is affected by gender(14) duration of treatment (10, 15, 16), Isoniazid Prophylaxis Therapy (IPT) and Cotrimoxazole prophylaxis(CPT) (17, 18) WHO stage (14) and CD4 count (15, 19).

BMJ Open

This study focused on patients mainly because there is no much option for physicians to choose from if therapy failed. BMI evolution is a very important and easily calculable tool that can predict treatment outcome, dropout from treatment, CD4 recovery, and death, but literatures about its evolution across treatment time and factors affecting it are limited. Therefore this study tried to fill this information gap by determining the BMI evolution over treatment time and identifying the key factors affecting it. The information generated by this study will contribute to monitoring the response of patients for antiretroviral therapy.

91 Method and materials

92 Study design and period

An institution based retrospective follow up study was conducted among adults, age 24 and
above who are started on second-line ART from February 2008 to February 2016

Study area and population

The study was conducted in Amhara regional state which is one of the nine administrative regions and two city councils of Ethiopia. The region constitutes majority of ART users in the country. The study population was adult HIV infected patients on second-line ART in all the nine referral hospitals of the region. The first-line treatment consists of a combination of two nucleoside/nucleotide reverse transcriptase inhibitors (NRTI) with one non-nucleoside reverse transcriptase inhibitor (NNRTI). Should failure of first-line treatment occur, a second-line treatment is implemented, using two NRTIs not previously used in first-line treatment, as well as one additional protease inhibitor (PI).

104 Sample size and sampling procedure

All HIV patients who initiated second-line therapy (n=1233) between February 2008 and 2016
were included. But only 1016 patients who had two or more measurements of weight were
included in the study.

108 Data collection procedures

 Data extraction checklist was prepared and the data were collected from HIV patient registration cards. Data about the baseline weight and height of patients and other factors like sociodemographic, clinical, and treatment related factors were also collected from each HIV patient registration card. Adherence to ART was assessed by pill counts at visits and is recorded as 'GOOD' (\geq 95% adherence) or FAIR (80%–95%), while POOR adherence is less than 80% (20).

114 The data structure, compilation and analysis strategy

The data was cleaned and entered in to EPI info version 7 and analyzed using STATA version 14.0. Body Mass Index (BMI) of HIV patients was computed by dividing the weight of patients in kilograms (kg) that was recorded during each follow-up visit, to their baseline height in meter squared. Exploratory data analysis for the weight of patients including individual profile plot, mean profile plot, descriptive and summary statistics were done. To determine the factors associated with BMI of patients bi-variable analysis for each independent variable was assessed and those found to be significant (p-value<0.25) were selected for the multivariable analysis. The need for random intercept and random slope was checked by likelihood ratio test. Since we cannot ignore the repeated measurements that have between individual variation and within individual variation(21), linear mixed effect model with random intercept and random slope was fitted.

Patient and Public Involvement

BMJ Open

2		
3 4	127	Since we have used secondary data/chart review, patients or the public were not involved during
5 6	128	identifying the research question or design and conduct of the study.
7 8 9	129	Results
10 11 12	130	Patient characteristics
13 14 15	131	We had a total of 1016 adult patients who were taking second-line ART. Among the total 538
15 16 17	132	(52.95%) were males. All participants were above or equal to the age of 24 with a median age of
18 19	133	33 years (IQR: 28; 39). A large proportion of these patients 370 (37.1%) were unemployed and
20 21 22	134	371 (36.9%) have attended secondary school.
22 23 24	135	The median follow up time was 18 months (IQR: 5.2; 32.2). There were a maximum of 12 and a
25 26	136	minimum of 2 measurements of weight per patient. Almost all visits were not balanced in their
27 28	137	time of measurements. The median time between each weight measurement is reported as
29 30 31	138	median (inter-quartile range) as follows: 6.7(4.27, 10.03), 6.08(4.14, 9), 6.13(4.2, 8.9),
32 33	139	6.27(4.53, 8.9), 5.9(3.97, 7.79), 5.83(3.7, 8.13), 5.45 (3.37, 7.43), 4.86(2.97, 6.2), 5.19(3, 7.37),
34 35	140	5.97(4.23, 7.04), 5.55(2.83, 5.86) and 3(0.9, 4.84) months from first to twelfth weight
36 37 38	141	measurement respectively.
39 40	142	At the initiation of second-line ART majority of participants, 393 (45.54%), were at WHO stage
41 42	143	I and 324 (37.54%) were at WHO stage III. A large proportion of participants 871 (86%) had
43 44 45	144	working functional status at baseline, the rest 114 (11.25%) and 28 (2.75%) were ambulatory
46 47	145	and bedridden respectively. The median CD4 count was 253 (IQR: 147; 399). Isoniazid
48 49	146	Prophylaxis Therapy and CPT were given for 247 (24.87%) and 256 (25.65%) of participants
50 51 52	147	respectively (Table 1).
52 53	148	
54 55	149	
56 57		
58		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
50		

150 Table-1: Baseline socio-demographic and baseline characteristics of adult HIV patients on ART

Variables	Frequency	Percentage
Age		
25-34	547	53.89
35-44	333	32.81
45-54	104	10.25
55-64	26	2.56
<u>> 65</u>	6	0.59
Sex		
Female	478	47.05
Male	538	52.95
Educational status		
No education	315	31.34
Primary education	201	20.00
Secondary education	371	36.92
Tertiary education	118	11.74
Missing	11	0.01
Occupation		
Unemployed	370	36.42
Governmental	286	28.15
Non-Governmental	21	2.06
Private	66	6.50
Daily laborers	254	25.00
Missing	19	1.87
WHO stages		
Stage I	393	45.54
Stage II	66	7.65
Stage III	324	37.54
Stage IV	80	9.27
Functional status		
Working	871	86
Ambulatory	114	11.25
Bedridden	28	2.75
CPT given		
No	742	74.35
Yes	256	25.65
INH given		
No	746	75.13
		i

152 CPT= Cotrimoxazole Prophylaxis Therapy

153 INH= Isoniazid

- 56 154

BMJ Open

2	
2	
3	
4	
5	
5	
6	
7	
0	
0	
9	
10	
11	
11	
12	
13	
14	
1 -	
15	
16	
17	
18	
10	
19	
20	
21	
- 3 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 201 22 23 24 25 26 27 28 30	
22	
23	
24	
25	
25	
26	
27	
28	
20	
29 30	
30	
31	
20	
32	
33	
34	
25	
35	
36	
33 34 35 36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
56	
57	
58	
59	
60	

Exploratory data analysis 155

At baseline a total of 391(38.5%) had BMI of less than 18.5kg/m² whereas 549(54%), 64(6.3%)156 157 and 12(1.2%) had BMI 18.5-24.9 kg/m², 25-29.9 kg/m² and > 30 kg/m² respectively.

Individual Profile 158

The average BMI of patients at baseline was 19.03Kg/m² (SD=3.6 Kg/m²). The minimum and 159 maximum BMI was 8.33 Kg/m² and 33.59 Kg/m² respectively. Before proceeding to the formal 160 statistical analysis we have described the data by exploring how individuals change in BMI over 161 time. To make the individual profile plot more informative and understandable, we have 162 prepared it for the first 100 individuals (Figure 1). 163

As we can see from this plot, the BMI status of patients has high variability within an individual 164 165 over time and among individuals at baseline and also through time. Therefore to fit the data which has variability in the intercept and slope of trajectories very well, we have used a mixed 166 Z model. 167

Exploring the mean profile 168

As stated above all measurements in the data have no similar time of measurements, therefore, 169

170 we have used smoothing to determine BMI evolution over time (Figure-2).

As one can easily understand from the mean profile plot the BMI of these patients showed a 171

linear increment over the treatment time. 172

Modeling the BMI 173

177

Correlation structure checking and model comparison 174

Comparing with AIC, the correlation structure with the lowest AIC was chosen, in this case the 175

unstructured correlation structure (Table-2). 176

178 Table 2: Correlation structure checking and model comparison

	Unstructured	Identity	Exchangeable
AIC	14337.93	17775.34	17666.17
BIC	14531.08	17956.02	17853.09
without a randon and slope (Table	ndom slope and intercept n intercept, with only rand -3). Effects Models compariso	om intercept and a mo	
Random effects	0	LR X ²	P value
Model-1 intercep	t	5625.28	0.0000
Model2 intercept	, time	297.13	0.0000
	ing BMI evolution ov	er time	ept and random slope.
Based on the n	ing BMI evolution ov	er time e since the start of a	second-line ART, IP
Based on the n Functional status	ing BMI evolution oven nulti-variable output: time , WHO stage of the disea	er time e since the start of a use; and time interactio	second-line ART, IP
Based on the n Functional status educational statu	ing BMI evolution oven nulti-variable output: time , WHO stage of the disea s, functional status and W	er time e since the start of a se; and time interactio HO stages were found	second-line ART, IP
Based on the m Functional status educational statu	ing BMI evolution oven nulti-variable output: time , WHO stage of the disea	er time e since the start of a se; and time interactio HO stages were found	second-line ART, IP
Based on the m Functional status educational statu the BMI evolution	ing BMI evolution oven nulti-variable output: time , WHO stage of the disea s, functional status and W	er time e since the start of a use; and time interaction HO stages were found ad-line ART.	second-line ART, IP on of categorical varial to be significant predi
Based on the m Functional status educational statu the BMI evolution Keeping all the o	ing BMI evolution over nulti-variable output: time a, WHO stage of the disea s, functional status and W n of HIV patients on secor	er time e since the start of a use; and time interaction HO stages were found ad-line ART. r a one month increment	second-line ART, IPT on of categorical varial to be significant predi- nt in the treatment dura
Based on the n Functional status educational statu the BMI evolution Keeping all the o BMI of a patient	ing BMI evolution over nulti-variable output: time , WHO stage of the disea s, functional status and W on of HIV patients on second other variables constant, for	er time e since the start of a use; and time interaction HO stages were found ad-line ART. r a one month increment But specifically individ	second-line ART, IPT on of categorical variate to be significant predi- nt in the treatment dura duals who have tertiary
Based on the m Functional status educational statu the BMI evolution Keeping all the of BMI of a patient education, ambu	ing BMI evolution over nulti-variable output: time a, WHO stage of the disea s, functional status and W on of HIV patients on secon other variables constant, for increases by 0.013 kg/m ² .	er time e since the start of a use; and time interaction HO stages were found ad-line ART. r a one month increment But specifically individent and who are at WHO set	second-line ART, IP on of categorical varial to be significant pred nt in the treatment dura duals who have tertiary stage III have addition

Taking IPT and CPT increases BMI by 0.87 kg/m² and 0.63 kg/m² respectively as compared to their counterparts. Nongovernmental organization employment was associated with a 2.02 kg/m² increment when compared to government employment. Patients who are ambulatory and bedridden in their functional status have a 1.16 kg/m² and 1.83 kg/m² decrement in their BMI as compared to those who have working functional status. Patients who are at WHO stage III and WHO stage IV have decreased BMI by 0.42 kg/m² and 0.62 kg/m² when compared with those who are at WHO stage I. For a unit cell/mm³ increase in the CD4 count of patients BMI was found to increase by a factor of 0.001 kg/m^2 (Table-4). y a me.

Characteristics	Co-efficient	Confiden	ce interval	P value
		Lower	Upper	
Intercept	19.03	18.11	19.95	0.000
Sex				
Female	0.00			
Male	-0.01	-0.51	0.48	0.956
Adherence				
Poor	0.00			
Fair	0.43	-0.24	1.10	0.207
Good	0.48	-0.06	1.02	0.080
INH prophylaxis given				
No	0.00			
Yes	0.87	0.32	1.42	0.002
CPT prophylaxis given				
No	0.00			
Yes	0.63	0.08	1.19	0.025
Educational status				
Illiterate	0.00			
Primary	-0.03	-0.72	0.66	0.924
Secondary	0.47	-0.21	1.14	0.176
Tertiary	0.94	-0.01	1.89	0.051
Functional status				
Working	0.00			
Ambulatory	-1.16	-1.95	-1.31	0.000
Bedridden	-1.83	-2.47	-1.21	0.000
WHO stage				
Stage I	0.00			
Stage II	-0.06	-0.45	0.33	0.760
Stage III	-0.42	-0.65	-0.20	0.000
Stage IV	-0.62	-1.02	-0.22	0.002
CD4 count	0.001	0.0008	0.0015	0.000
Time on treatment	0.013	0.004	0.022	0.005
Education status x time				
Illiterate x time	0.00			
Primary x time	0.002	-0.01	0.015	0.801
Secondary x time	0.01	-0.003	0.019	0.162
Tertiary x time	0.02	0.01	0.04	0.009
Functional status x time				
Working x time	0.00			
Ambulatory x time	0.03	0.01	0.05	0.000
Bedridden x time	-0.01	-0.05	0.02	0.49
WHO stage x time		0.00	0.02	
Stage I x time	0.00			
Stage II x time	0.004	-0.008	0.166	0.522
Stage III x time	0.004	0.007	0.020	0.000
Stage IV x time	-0.0003	-0.016	0.020	0.969

205 DISCUSSION

206 This study has found a linear increment in BMI of patients over the treatment time. There were207 BMI differences between subjects at baseline and in their progress over time.

Factors found to have a significant effect on the evolution of BMI over treatment time at a multivariable linear mixed effect model were, second-line treatment duration, IPT, CPT, employment status, functional status of the patient, WHO stage, and CD4 count. Time interaction of educational status, functional status, and WHO stage were also significant predictors of BMI evolution.

For a one month increase in treatment duration the BMI of patients increases by 0.04 kg/m^2 , this finding is in line with studies in South Africa (22), India (10) and United States(23). The possible reasons for weight gain could be due to normal reversion of the weight loss associated with HIV or due to drug related metabolic changes which include hyperlipidemia, insulin resistance and diabetes(24).

Patients who took IPT and CPT have increased BMI when compared to their respective counterparts. This finding is supported by other studies like a study conducted in Abidjan (17) and multicenter controlled clinical trial in Africa (18). The main reason for this association could be the reduction of potentially disabling and wasting diseases like tuberculosis and other opportunistic infections by these prophylactic drugs(25, 26). A highly increased appetite by the prophylaxis could also be possible explanation(27).

Being ambulatory and bedridden decreases BMI when compared to those who are working. Since these individuals are not working they may not access a nutritious and balanced diet which affects their BMI. Another reason could be additionally decreased immunity caused by physical inactivity which makes them more susceptible to minor infections leading to a higher calorie

loss(28). These groups of people are also at higher risk of diarrheal disease for they cannot takecare of themselves which in turn causes weight loss(29).

When compared with patients who are at WHO stage I, those who are at WHO stage III and WHO stage IV have decreased BMI. This finding is in line with a multicenter study in resource limited settings which shows individuals who had high clinical status (WHO stage III and WHO stage IV) had poorer weight gain when compared to weight change in patients at lower WHO stage(14). The possible reason can be unexplained chronic diarrhea and HIV enteropathy in these patients and the associated malabsorption (4) or it could be due to pyrexia of unknown origin in the late stage of the disease which results an increased calorie loss and wasting(30).

The BMI of patients was also found to increase with the increment in their CD4 count. This positive association is supported by evidence from a study conducted in Boston (15) and Tanzania (19). This increment can be explained by the association of increment of CD4 count with good clinical changes like viral suppression, improved immunity, and appetite leading to increment in the BMI of patients (13).

Being a retrospective study, this study shares the limitations of secondary data collection, as a result, we were unable to find some predictors like viral load, alcohol consumption, smoking, marital status, and nutritional history. The data may also have errors in documenting weight among some measurements.

246 CONCLUSION

In this study, we have found a linear increment in the BMI of HIV patients on second line ART.
There was a significant variation of BMI of patients at baseline and through ART treatment time.
Duration of treatment, IPT, CPT, functional status, WHO stage of the disease, CD4 count; and
time interaction of categorical variables like educational status, functional status and WHO

Page 15 of 23

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
55	
55 56	
50	
57 58	
58 59	
14	

60

stages were found to be significant predictors. The positive change in the BMI of patients shows 251 an encouraging trend for we know this has a positive impact on the CD4 recovery, decrease lost 252 to follow up and death. Clinicians also must consider the identified risk factors when they 253 provide service for these patients. 254

ABBREVIATIONS 255

Akaike's Information Criterion; AIDS, Acquired Immunodeficiency Virus; ART, 256 AIC. Anti-Retroviral Therapy; BIC. Bayesian information criterion; BMI. 257 Body Mass Index; CI, Confidence Interval; CPT, Co-trimoxazole preventive therapy; HIV, 258 Human Immuno Deficiency Virus; IPT. Isoniazid Prophylaxis Therapy; 259 Kg, Kilogram; Non Governmental Organizations; WHO, 260 NGO. World Health Organization. 261 íe.ie

Declarations 262

Ethical consideration 263

Ethical clearance was obtained from the Institutional Review Board of Institute of Public Health, 264 265 University of Gondar. Names and unique ART numbers of patients were not collected to keep the privacy of patients during the data collection. 266

Availability of data and materials 267

The data upon which the result based could be accessed by a reasonable request made to the 268 corresponding author. 269

- Funding 270
- Not applicable 271

Consent for publication 272

2 3 4	273
5 6	274
7 8 9	275
10 11	276
12 13 14	277
14 15 16	278
17 18	279
19 20 21	280
22 23	281
24 25	282
26 27 28	283
29 30	284
31 32	285
33 34 35	286
36 37	287
38 39 40	288
41 42 43	289
44 45 46	290
47 48	291
49 50 51	292
52 53 54	293
55 56	294
57 58 59 60	

74 Competing interest

Not applicable

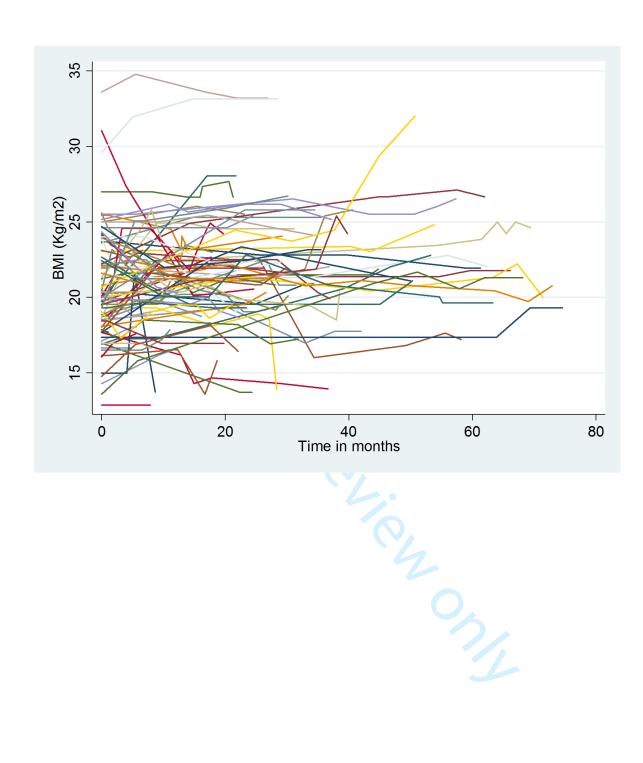
275 Authors declare that they have no conflict of interest

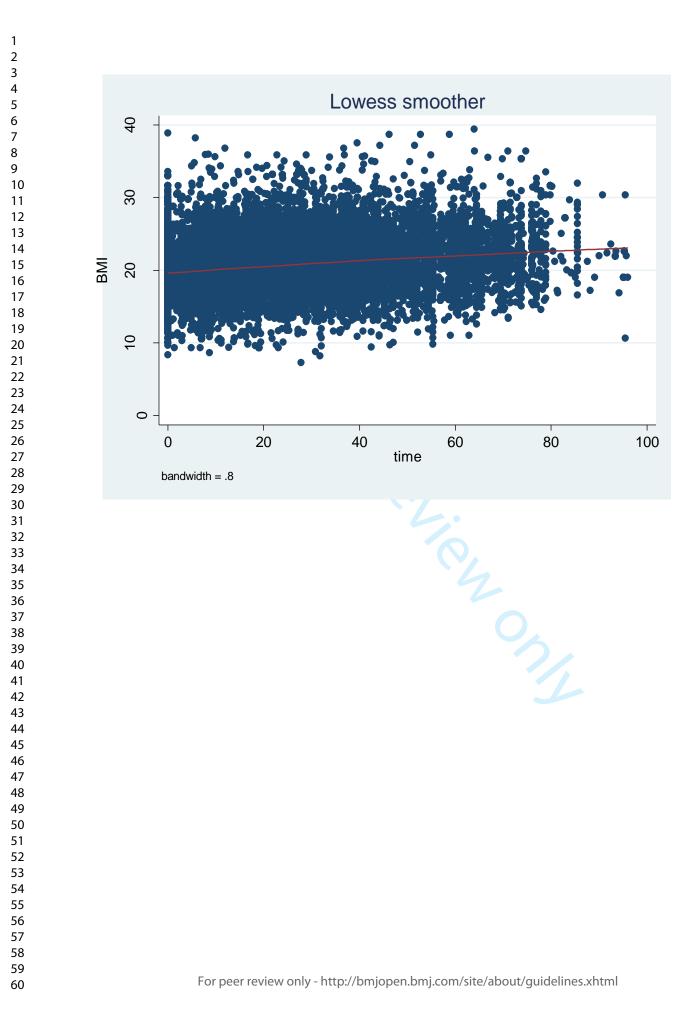
276 Authors' contribution

AGB, LDG, EGZ, TAA, ATT have actively participated during Conception and design,
acquisition of data, analysis, and interpretation of data. All authors have read and approved the
final version of the manuscript.

280 Acknowledgments

First of all, we would like to thank the Almighty God. We would like say thank you to University of Gondar, Amhara regional health office and hospital administrative bodies, clinicians, data clerks, and card room workers for their cooperation and permission to conduct the study.


285 Authors' information


Adhanom Gebreegziabher has BSc degree in Public health as a background and second degree in
Epidemiology and Biostatistics; now teaching Epidemiology, Research methodology and
communicable disease control courses in the University of Gondar, Ethiopia

1 2		
2		
4	295	
5		
6	296	REFERENCES
7 8		
8 9	297	1. World Health Organization. HIV/AIDS key facts available at <u>http://www.hoint/news-room/fact-</u>
10	298	sheets/detail/hiv-aids. 2018.
11	299	2. Central statistical agency. Ethiopia Demographic and Health Survey HIV Prevalence Report
12	300	available at https://wwwdhsprogramcom/pubs/pdf/FR328/FR328HIVpdf. 2016.
13	301	3. Mahy M, Stover J, Stanecki K, Stoneburner R, Tassie J-M. Estimating the impact of antiretroviral
14	302	therapy: regional and global estimates of life-years gained among adults. Sexually transmitted
15 16	303	infections. 2010;86(Suppl 2):ii67-ii71.
10	304	4. World Health Organization. Interim WHO Clinical Staging of HIV/AIDS AND HIV/AIDS Case
18	305	Definitions for Curveillance, African Region. available at
19	306	http://wwwwhoint/hiv/pub/guidelines/clinicalstagingpdf. 2005.
20	307	5. Tsegaye AT, Wubshet M, Awoke T, Addis Alene K. Predictors of treatment failure on
21	308	antiretroviral therapy among adults in northwest Ethiopia: a multicentre retrospective follow-up study.
22	309	BMJ Open. 2016;6(12):e012537. Epub 2016/12/10.
23	310	6. Seyoum A, Ndlovu P, Zewotir T. Quasi-Poisson versus negative binomial regression models in
24 25	311	identifying factors affecting initial CD4 cell count change due to antiretroviral therapy administered to
25 26	312	HIV-positive adults in North-West Ethiopia (Amhara region). AIDS Res Ther. 2016;13:36. Epub
27	313	2016/11/16.
28	314	7. Patel D, Desai M, Shah AN, Dikshit RK. Early outcome of second-line antiretroviral therapy in
29	315	treatment-experienced human immunodeficiency virus positive patients. Perspect Clin Res.
30	316	2013;4(4):215-20. Epub 2013/12/07.
31	317	8. Dalhatu I, Onotu D, Odafe S, Abiri O, Debem H, Agolory S, et al. Outcomes of Nigeria's HIV/AIDS
32	318	Treatment Program for Patients Initiated on Antiretroviral Treatment between 2004-2012. PLoS One.
33 34	319	2016;11(11):e0165528. Epub 2016/11/10.
35	320	9. Koethe JR, Jenkins CA, Lau B, Shepherd BE, Silverberg MJ, Brown TT, et al. Body mass index and
36	321	early CD4 T-cell recovery among adults initiating antiretroviral therapy in North America, 1998-2010. HIV
37	322	Med. 2015;16(9):572-7. Epub 2015/05/12.
38	323	10. Chakravarty J, Sundar S, Chourasia A, Singh PN, Kurle S, Tripathy SP, et al. Outcome of patients
39	324	on second-line antiretroviral therapy under programmatic condition in India. BMC Infect Dis.
40	325	2015;15:517. Epub 2015/11/18.
41 42	326	11. Thao VP, Quang VM, Wolbers M, Anh ND, Shikuma C, Farrar J, et al. HIV Therapy Outcomes and
42 43	327	Determinants of Mortality at the Largest HIV Referral Center in Southern Vietnam. Medicine (Baltimore).
44	328	2015;94(43):e1715. Epub 2015/10/30.
45	329	12. Swain PK, Grover G. Determination of Predictors Associated With HIV/AIDS Patients Using
46	330	Accelerated Failure Time Model for Interval Censored Survival Data. 2016.
47	331	13. Asiimwe SB, Kanyesigye M, Bwana B, Okello S, Muyindike W. Predictors of dropout from care
48	332	among HIV-infected patients initiating antiretroviral therapy at a public sector HIV treatment clinic in
49	333	sub-Saharan Africa. BMC Infect Dis. 2016;16:43. Epub 2016/02/03.
50 51	334	14. Huisin 't Veld D, Balestre E, Buyze J, Menten J, Jaquet A, Cooper DA, et al. Determinants of
52	335	Weight Evolution Among HIV-Positive Patients Initiating Antiretroviral Treatment in Low-Resource
53	336	Settings. J Acquir Immune Defic Syndr. 2015;70(2):146-54. Epub 2015/09/17.
54	337	15. Mwamburi DM, Wilson IB, Jacobson DL, Spiegelman D, Gorbach SL, Knox TA, et al.
55	338	Understanding the Role of HIV Load in Determining Weight Change in the Era of Highly Active
56	339	Antiretroviral Therapy. Clinical Infectious Diseases. 2005;40(1):167-73.
57		
58 50		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

16. Tang AM, Sheehan HB, Jordan MR, Duong DV, Terrin N, Dong K, et al. Predictors of Weight Change in Male HIV-Positive Injection Drug Users Initiating Antiretroviral Therapy in Hanoi, Vietnam. AIDS Res Treat. 2011;2011:890308. Epub 2011/07/22. 17. Guehi C, Badje A, Gabillard D, Ouattara E, Koule SO, Moh R, et al. High prevalence of being Overweight and Obese HIV-infected persons, before and after 24 months on early ART in the ANRS 12136 Temprano Trial. AIDS Res Ther. 2016;13:12. Epub 2016/03/01. Haller L, Sossouhounto R, Coulibaly IM, Dosso M, Kone M, Adom H, et al. Isoniazid plus 18. sulphadoxine-pyrimethamine can reduce morbidity of HIV-positive patients treated for tuberculosis in Africa: a controlled clinical trial. Chemotherapy. 1999;45(6):452-65. Epub 1999/11/24. Li N, Spiegelman D, Drain P, Mwiru RS, Mugusi F, Chalamilla G, et al. Predictors of weight loss 19. after HAART initiation among HIV-infected adults in Tanzania. AIDS. 2012;26(5):577-85. Epub 2011/12/14. 20. Ministry of Health. Federal Democratic Republic of Ethiopia. National guidelines for comprehensive HIV prevention, care and treatment, . 2014. Peng H, Lu Y. Model selection in linear mixed effect models. Journal of Multivariate Analysis. 21. 2012;109:109-29. Huis In 't Veld D, Pengpid S, Colebunders R, Peltzer K. Body Mass Index and Waist Circumference 22. in Patients with HIV in South Africa and Associated Socio-demographic, Health Related and Psychosocial Factors. AIDS Behav. 2017. Epub 2017/03/01. 23. Crum-Cianflone N, Roediger MP, Eberly L, Headd M, Marconi V, Ganesan A, et al. Increasing rates of obesity among HIV-infected persons during the HIV epidemic. Plos one. 2010;5(4):e10106. Montessori V, Press N, Harris M, Akagi L, Montaner JSG. Adverse effects of antiretroviral therapy 24. for HIV infection. CMAJ : Canadian Medical Association Journal. 2004;170(2):229-38. Dowdy DW, Golub JE, Saraceni V, Moulton LH, Cavalcante SC, Cohn S, et al. Impact of isoniazid 25. preventive therapy for HIV-infected adults in Rio de Janeiro, Brazil: an epidemiological model. Journal of acquired immune deficiency syndromes (1999). 2014;66(5):552. Mermin J, Lule J, Ekwaru JP, Malamba S, Downing R, Ransom R, et al. Effect of co-trimoxazole 26. prophylaxis on morbidity, mortality, CD4-cell count, and viral load in HIV infection in rural Uganda. The Lancet. 2004;364(9443):1428-34. Mudie I, Horne N, Crofton J. Isoniazid and weight gain. British Medical Journal. 27. 1954;1(4874):1304. Nieman DC. Exercise, infection, and immunity. International journal of sports medicine. 28. 1994;15(3):S131. 29. Katabira ET. Epidemiology and management of diarrheal disease in HIV infected patients. International journal of infectious diseases. 1999;3(3):164-7. 30. Hot A, Schmulewitz L, Viard J-P, Lortholary O. Fever of unknown origin in HIV/AIDS patients. Infectious disease clinics of North America. 2007;21(4):1013-32.

1 2 3	382	Figures Legend
4 5	382	rigures Legend
6 7 8	383	Figure 1: Individual profile plot of BMI overtime for the first 100 individuals at second-
9 10	384	line ART in Amhara region, 2008-2016
11 12 13	385	Figure 2: Time plot of BMI versus treatment time in months with lowess smoothed curve
14 15	386	superimposed for HIV patients on second-line ART in Amhara region 2008-2016
16 17 18 19 20	387	
21 22 23 24	388	
25 26 27 28	389	
28 29 30 31 32	390	
33 34 35 36	391	
37 38 39 40	392	
41 42 43	393	
44 45 46 47	394	
48 49 50 51	395	
52 53 54 55 56	396	
57 58		19
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1-2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4-5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	5-6
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7
-		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	7
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	7-9

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	7-9
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			_
Key results	18	Summarise key results with reference to study objectives	9-10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	11
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	10 -
		multiplicity of analyses, results from similar studies, and other relevant evidence	11
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	12
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.