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Supplementary Figures 

 

 

Figure S1. Overview of the challenge to integrate multiplexed proteomics measurements 

into an estimation of protein ratio between conditions and the associated confidence in 

this measurement. A) Multiplexed proteomics allows the comparison of protein abundance 

among multiple conditions. For simplicity, only two conditions and three peptide measurements 

are shown. A protein with true protein ratio (red-blue bar) is digested into peptides. The peptides 

are labeled with isobaric tags e.g. TMT to encode the different conditions. The digestion and 

labeling for different conditions happen in different tubes. The barcoded samples are then 

combined and ionized. This differential digestion and labeling could introduce disagreement in 

the peptide ratios. B) The different peptides derived from each protein result in separate 

spectra, which allow quantification using accurate multiplexed proteomics methods, e.g. 

MultiNotch MS3 or TMTc+. Each spectrum contains the information of relative abundance and 

signal strength of a peptide. The limited number of ions measured (proportional to signal 

strength) introduce yet another source of distortion. C) The challenge is how the information of 
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different peptide signal and agreement/disagreement between measured peptide ratios can be 

integrated to accurately estimate the underlying true protein ratio with associated confidence.  
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Figure S2: Assignment of confidence intervals on the peptide level is adequate for 

various ratios. Histogram of the upper and lower bound values for the 95% confidence 

intervals, where the true ratio of all the peptides is 3:4. The observed percentage of peptides 

for which the true answer is below bottom limits is 3.0% of the time and above top limits is 

3.1% of the time.  
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Figure S3: Summing up peptide signal is adequate for the artificial protein case. Artificial 

proteins are generated by summing from several peptides from a sample in which all peptide 

ratios are identical. A) Three peptides were selected per artificial protein. The correct mixing ratio 

for this sample is 0.75. The 95% confidence intervals are below bottom limits 2.7% of the time 

and above top limits 3.2% of the time. B) 20 peptides were assigned per artificial protein. Bottom 

limit of 95% confidence intervals is 2.3% of the time above the true ratio, and top limit is 2.5% of 

the time below true ratio. 
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Figure S4: Prior Predictive Checks for the Beta-Binomial model at protein level. The 

simulated data for the observed ratio in one channel has more mass around extreme values 

of 0 and 1, which are not observed in the proteomics data, hence the priors are only weakly 

informative. However, they are informative enough to not produce values outside the domain 

of (0, 1).  
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Figure S5. Comparison of BACIQ with other models in its ability to distinguish differential 

expression. The subpanel A and B were equivalently constructed to figure 6, but the ratio of the 

spiked-in E. coli proteins was changed to A) 1:1.1 and B) 1:1.4. For all tested ratios BACIQ 

outperforms the naive t-test in the ability to detect expression changes. C) Analysis of the 32-

fold change dataset with constant background from O’Brien et al.  ROC curves were 

constructed without replicates. The ROC curves show that both BACIQ and CompMS are nearly 

perfectly able to distinguish between changing and constant proteins. 
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Figure S6: BACIQ shows similar accuracy to alternative methods. The accuracy is reported 

as the absolute deviation of protein estimate from true known protein ratio. Shown are boxplots 

with 25th, 50th and 75th percentiles. A) Absolute deviation between predicted and known answer 

for 1.2-fold changing proteins (Figure 6), analyzed with average peptide ratio, compMS, and 

BACIQ. B) For this panel, we re-analyzed the 32-fold change dataset with constant background 

from O’Brien et al.  Absolute deviation between predicted and known answer for 32-fold 

changing proteins, analyzed with average peptide ratio, compMS, and BACIQ. 
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Figure S7: Normalization of the nucleocytoplasmic data. A) Histogram of RNC for the 

control and drug–treated samples for proteins in complexes of less than 40kDa. These proteins 

are small enough to diffuse and equilibrate via the nuclear pore and are therefore not expected 

to respond to LMB treatment. The identical distribution before and after drug treatment indicates 

that our data is well normalized. B) Histogram of the normalized peptides from small proteins 

(native MW <40kDA) indicate a median RNC change of zero upon drug treatment. C) We fine-

tuned normalization of the drug treated vs control data so that there were equal number of 

cytoplasmic and nucleus movers for high t-test p-value scores.   
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Figure S8:  Multiple Hypothesis Corrections to assign FDRs to nucleocytoplasmic 

movers. A) A histogram of the BACIQ scores of apparent cytoplasmic shifters. The red line is 

the analytic approximation. B) P-values associated with the BACIQ score of the cytoplasmic 

movers. The p-values of the cytoplasmic shifters follow a uniform distribution indicating that 

the cytoplasmic shifters fulfill a key requirement for the true null. C) BACIQ p-values of the 

nucleus movers. The peak close to 0 is where most of the alternative hypothesis lies along 

with some potential false positives D) Number of significant movers after applying standard 

multiple hypothesis correction procedures (Bonferroni, or Benjamini-Hochberg) for 1% and 

5% FDR.  
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Figure S9 Worked-out example for the model. A) Raw peptide data with two highlighted 

data-points. B) Posterior distributions of the true peptide fractions for two of the peptides 

marked as yellow and grey circles in A. Peptides with lower MS-signal have wider 

distributions. C) Posterior distribution of the true protein fraction that accounts for 

measurement errors due to poor ion statistics and peptide ratio agreement. The median of 

this posterior distribution gives the true protein fraction estimate (which is 0.50 in the 

present case) and the 95% confidence interval is (0.46, 0.54)  
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Supplementary Material 
 
Beta-Binomial model for an individual peptide  
 
In a complex mixture, the lowest possible concentration of peptides that can be detected with 

mass spectrometry based proteomics is at least 10 attomole [1-3] or ~6,000,000 molecules. 

However, not all these ions ionize into the instrument simultaneously. Furthermore, throughout 

their passage in the instrument, the ions are further lost. Ultimately, a single peptide is quantified 

with ~ 20-2000 reporter ions for two channels. Sampling of 2000 reporter ions from an initial pool 

of at least 6,000,000 ions (10 attomole) (drawn “without replacement”), follows a hypergeometric 

distribution. However, since the sampled number of ions are low (0.03%) compared to the total 

amount, the hypergeometric distribution can be approximated by a binomial distribution. Please 

note that this is the worst-case scenario. For the vast majority of peptides, the fraction that is 

analyzed is much smaller than 0.03% of what is loaded on the mass spectrometer.  

We chose a non-informative prior distribution such that the probability of log-odds log⁡(
𝜃

1−𝜃
),  is 

constant,⁡which corresponds to the improper Beta (0, 0) density on 𝜃. Using an improper prior 

makes sense only if the posterior is proper. For Orbitrap data, the FT-noise band provides a 

natural threshold for signal detection. Therefore, the minimal value used is 1 MS-signal i.e. α>0, 

β>0. 

Fitting the parameter to convert MS-signal to number of ions.  
 
Number of successes  on n coin tosses, given its fairness  follow a binomial distribution 

⁡~⁡𝐵𝑖𝑛(𝑛, ).⁡The functional form of the convergence of fraction of successes to the true 

underlying fraction (fairness of the coin) on increasing number of coin tosses 𝑛 is given by the 

relationship of the CV of binomial distribution with 𝑛. The mean of the binomial distribution with 

parameters 𝑛 (number of tosses) and  (probability of success) is 𝑛  and the standard deviation 

is √𝑛⁡(1 − ). Therefore, the coefficient of variation is  √
(1 − )

𝑛
⁄ .  
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We fit a single parameter 𝑚 as a multiplier to MS-signal value s where 𝑛 = 𝑚𝑠 to the binned data 

as illustrated in Figure 2B. The data of 10534 points is binned by 500 data points into 21 bins, 

and CV is calculated for each bin. The parameter 𝑚 is obtained with MATLAB’s Nonlinear-Least-

Squares fitting method. 

 
Justification of priors for Beta-Binomial model at the protein level  
 
To make no prior assumption about the true protein ratio, we set the prior for the mean () to be 

a uniform distribution on the domain (0, 1). The range of precision parameter () is [0,). We 

chose a weakly informative prior of exponential distribution with the rate parameter of 0.05. This 

is only weakly informative because the exponential distribution has a higher probability mass on 

lower values, with the expected value of 20 for the current rate parameter of 0.05, which is 

conservative because we expect  to much larger than 20 in the posterior. However, it is 

informative enough to not cause any sampling problems. 

To further understand, how prior distributions affects the given model, we simulate fake data 

from the computational model. This is called “Prior Predictive Checks” [4, 5].  

 Figure S4 shows the Prior Predictive distribution for BACIQ. The simulated data for the 

observed ratio in one channel has more mass around extreme values of 0 and 1. This is 

because of extremely conservative exponential distribution of  . We believe that these prior 

choices are still only weakly informative, in that the implied data generating process can 

generate data that is much more extreme than we would expect from the domain of our data. 

However, it is informative enough to not produce the data that is outside the domain of (0, 1). 

 Since, the data generated is broader than the expected distribution of the observed data, we 

can be sure that the priors comply with the principle of weakly informative priors.  

 

Worked-Out example for Beta-Binomial multi-peptide protein model  
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1) Let’s start with a protein measured with 10 peptides in two different conditions (Fig. S9A). 

We know that this protein is present in equal amounts in both the conditions. The goal is to 

get the estimate of the protein fraction from the peptide data and the associated confidence. 

To be able to apply the model, we first need to convert the peptide MS-signal to ion counts. 

Since the peptide was shot on the Fusion/Lumos with a resolution of 15k in the Orbitrap, we 

multiply the signal from each channel with 3.4 (Look up Table 1 for appropriate multiplication 

factor).  

2) We have 20 observations for this case, 10 of those are (1,2,3… .10) the ion counts of 

the 10 underlying peptides corresponding to the first channel, and the other 10 are the 

(𝑛1, 𝑛2, 𝑛3… . 𝑛10) sum of the signal in two channels.  Figure S9A shows the raw peptide 

fractions (
𝛼1

𝑛1⁄ ,
𝛼2

𝑛2⁄ … .
𝛼10

𝑛10⁄ ) with the respective signal strengths (𝑛1, 𝑛2, 𝑛3… . 𝑛10)  for 

all the peptides.  

3) For this protein, we have 12 latent parameters (𝝁, 𝜿, 1,2,3… . 10).⁡We use MCMC 

algorithm to draw samples from the posterior distributions. The algorithm draws samples for 

all the unobserved parameters including true peptide fractions  (
1
,2,3… . 10). Figure S9B 

shows the posterior distributions for two of those peptides.  

4) The quantity of interest is the variable 𝝁, which represents the relative protein fraction. The 

histogram of all the samples drawn for 𝝁 gives us the probability distribution of 𝝁 over the 

domain of 0, 1.  This histogram represents the posterior probability density of 𝝁 marginalized 

over all the other unobserved parameters.  The median of the samples drawn from 𝝁 

represent the estimated protein fraction and the 2.5th and 97.5th percentiles represent the 

95% confidence interval (Figure S9C) 

 

Comparison of the ability to distinguish differential expression for BACIQ and 

other approaches  
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We compare the t-test, which uses 2 or 3 repeats, to BACIQ. The t-test ranks the proteins on 

their differential expression using p-value. The p-value is the probability that the different sets of 

peptide measurements for different conditions would be observed in the context of a model 

constructed under the assumptions of the t-test and the null hypothesis. Therefore, the proteins 

from most likely to least likely differentially expressed are rank ordered by 1 - (p-value). BACIQ 

ranks the proteins based on the probability mass falling to the right of 0.5 in the distribution for 

fraction between two conditions. Sliding threshold on the ranking allows building ROC curve – a 

way to compare probabilistic classifiers’ tradeoff between true positive and false positive rates. 

 

Partially pooled Beta-Binomial Model  

 

For a fair comparison to the compMS model, we partially pooled variances across proteins in 

our model (BACIQ pooled). Bayesian Models can be partially pooled by adding hierarchy to the 

variance/precision parameter [6]. Our partially pooled BACIQ model is defined below: 

 The unobserved true peptide ratios 𝜃𝑖𝑗, for all peptides of a protein j are sampled from a 

beta distribution parameterized with mean 𝜇𝑗 ⁡and precision 𝑗. Here, 𝑖 =

1,2,3,… . , 𝐼⁡⁡indexes the number of peptides for the protein j and 𝑗 = 1,2,3,… . , 𝐽⁡⁡is the index 

running over the proteins.  

 Given true underlying peptide ratios 𝜃𝑖𝑗, the number of ions in one channel  𝑖𝑗    for all 

peptides of protein j can be modelled using a Binomial distribution, with⁡𝑛𝑖𝑗 representing 

the sum of counts in the two channels.  

 The prior for the mean parameter 𝜇𝑗 is Uniform over the domain (0, 1).  

 Partial pooling of the variance is accomplished by sampling the precision parameter (𝑗) 

for every protein from the exponential distribution with a common hierarchical rate 

parameter(). 
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 The rate parameter () is sampled from a Gamma distribution. Again, the choice of 

hyperparameters, 3 for the scale and 3 for the rate, was made conservatively. This is 

because, a-priori 𝐸⁡[] = ⁡1 and 𝐸⁡[𝑗] = ⁡1, which is conservative because we expect 𝑗 

to be much larger than that in the posterior.  

Partially pooled Beta-Binomial model: 

𝑖𝑗|𝑖𝑗, 𝑛𝑖𝑗 ⁡∼ 𝐵𝑖𝑛(𝑛𝑖𝑗, 𝑖𝑗) 

⁡⁡𝑖𝑗|𝜇𝑗,𝑗 ⁡∼ 𝐵𝑒𝑡𝑎(𝜇𝑗,𝑗) 

𝜇𝑗 ⁡⁡∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

𝑗| ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙⁡() 

⁡⁡~⁡𝐺𝑎𝑚𝑚𝑎(3,3) 

 

Accuracy of reported fold changes.  

 

BACIQ performs very well in distinguishing small fold changes as shown by ROC curves (Figure 

6, S5). However, we do not see any significant improvement in accuracy of reported estimates 

of protein abundances when compared to naive peptide ratio averaging model. Figure S6 A 

shows the accuracy boxplots for small fold changes (1.2-fold). Figure S6 B shows the accuracy 

boxplots for large fold changes (32-fold). For the large fold change, we reanalyzed the boundary 

case experiment raw files from O’Brien et. al. We used the two channels that had yeast 

expressed as 32-fold change on a 1:1 mouse background [7]. As expected, our model should 

have no effect on accuracy as we do not model “ratio compression” which is the prominent 

issue affecting the quantification at such large fold changes. 

 

Implementation of BACIQ for the Exportin 1 inhibition data  

 

BACIQ was first applied on the nucleus and the cytoplasm channel to obtain the RNC 

distribution for the control and again on the nucleus and cytoplasm channel to obtain the RNC 
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for drug treated sample. We considered the 7841 proteins that have more than one peptide. The 

samples for the marginal posterior distribution of the true protein ratio were collected by dividing 

the RNC space (0,1) into 40000 bins, giving the grid size of 2.5e-5 RNC.  

 

Computing the probability values for the Exportin-1 inhibition data 

 

To calculate the probability of shifting from the RNC distributions of control and drug treated 

samples, we ask the 𝑃(𝑅𝑁𝐶𝑑𝑟𝑢𝑔 > 𝑅𝑁𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙) for the proteins with positive shift RNC ( 

𝑠ℎ𝑖𝑓𝑡⁡𝑅𝑁𝐶 =⁡𝑀𝑒𝑑𝑖𝑎𝑛⁡𝑅𝑁𝐶𝑑𝑟𝑢𝑔 −𝑀𝑒𝑑𝑖𝑎𝑛⁡𝑅𝑁𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙) and 

𝑃(𝑅𝑁𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 𝑅𝑁𝐶𝑑𝑟𝑢𝑔)  for the negative shift RNC. These probabilities can be numerically 

computed using the following formulae: -    

 

𝑃(𝑅𝑁𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 𝑅𝑁𝐶𝑑𝑟𝑢𝑔) = ⁡∫
1

0

𝑐𝑑𝑓𝑑𝑟𝑢𝑔(𝑅𝑁𝐶)⁡𝑝𝑑𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ⁡(𝑅𝑁𝐶)⁡𝑑⁡𝑅𝑁𝐶 

       =   ∑40000
1 𝑐𝑑𝑓𝑑𝑟𝑢𝑔(𝑖)⁡𝑝𝑑𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ⁡(𝑖) 

       = 𝐴𝑟𝑒𝑎⁡𝑡𝑜⁡𝑡ℎ𝑒⁡𝑙𝑒𝑓𝑡⁡𝑜𝑓⁡0⁡𝑖𝑛⁡𝑠ℎ𝑖𝑓𝑡⁡𝑅𝑁𝐶⁡𝑐𝑢𝑟𝑣𝑒⁡ 

   

𝑃(𝑅𝑁𝐶𝑑𝑟𝑢𝑔 > 𝑅𝑁𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙) = ⁡∫
1

0

𝑐𝑑𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑅𝑁𝐶)⁡𝑝𝑑𝑓𝑑𝑟𝑢𝑔⁡(𝑅𝑁𝐶)⁡𝑑⁡𝑅𝑁𝐶 

       =   ∑40000
1 𝑐𝑑𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖)⁡𝑝𝑑𝑓𝑑𝑟𝑢𝑔⁡(𝑖) 

       = 𝐴𝑟𝑒𝑎⁡𝑡𝑜⁡𝑡ℎ𝑒⁡𝑟𝑖𝑔ℎ𝑡⁡𝑜𝑓⁡0⁡𝑖𝑛⁡𝑠ℎ𝑖𝑓𝑡⁡𝑅𝑁𝐶⁡𝑐𝑢𝑟𝑣𝑒.  

 

Normalization and multiple hypothesis correction 

 

To correct for pipetting errors within the control and drug-treated experiment, we normalized 

corresponding nuclear and cytoplasmic proteins for each experiment, so that the median of 

proteins in complexes smaller than 40kDA are distributed 1:1 (RNC = 0.5) (Fig. S7A, B) [8] 
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To counteract detection of apparent LMB movers due to slight off normalization or isotopic 

impurities of the TMT tag, we fine-tuned normalization for control and drug-treated fractions, so 

that there were equal number of cytoplasmic and nucleus movers for the proteins that had no 

significant movement (Fig. S7C) i.e. equal number of high t-test p-value scores.   

We used the distribution of the BACIQ probability scores for cytoplasmic movers (before 

overcorrection) as a model for the null. To accurately calculate the p-value associated with the 

BACIQ scores for all the proteins, the empirical null model is approximated by an analytical 

model. The binned data was fit to the exponential distribution using Non-Linear Least Squares 

method (Fig. S8A). A key property of the null distribution is that its p-values are uniformly 

distributed. A uniform distribution of the p-values for the BACIQ scores of cytoplasmic movers 

suggest that they indeed correspond to the true null (Fig. S8B). On the other hand, the p-values 

for the nucleus movers show a large peak close to 0 (Fig. S8C).  Fig. S8D tabulates the number 

of proteins being pulled out as significant on applying the two standard but conservative multiple 

hypothesis correcting procedures 

 

Comparison of putative Exportin-1 substrates with other databases.   
 
We compared proteins we identified as significantly moving towards the nucleus to the Exportin-

1 binder from Xenopus published by the Görlich group [9] and a database curated from 

literature (NESDB) [10]. To facilitate comparison of proteins identified with an mRNA derived 

reference database, we mapped all Xenopus proteins to their human gene symbols as 

previously described [1]. 

All the proteins that were called Cargo A, Cargo B, or low abundant Cargo by Görlich were 

considered as “binders” for the overlap. The 971 binder proteins collapsed down to 960 unique 

gene symbols.  For our study, the 747 proteins at 5% FDR for our dataset collapsed down to 

612 unique gene symbols. We found an overlap of 245 unique gene symbols between both the 

datasets of unique gene symbols. To calculate the statistical significance of this overlap, we 
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calculated the probability of observing an intersection of at least 245 on overlapping 960 genes 

and 612 genes from the total of 5531 unique gene symbols identified in our data set, by random 

chance. The small p-values (5.5 e-29) using the hypergeometric distribution indicate that this 

overlap is highly significant.  

Similarly, for the 230 unique gene symbols of NESDB, only 76 were given any predictions from 

our dataset. Out of these 76, 26 overlapped with the 612 unique gene symbols from our study. 

To calculate the statistical significance of this overlap, we asked the probability of observing an 

intersection of at least 26 on overlapping 76 genes with 612 genes from the total of 5531 unique 

gene symbols. The small p-values (3.1 e-6) using the hypergeometric distribution indicate that 

this overlap is highly significant. 
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