Capsid amino acids at positions 247 and 270 are involved in the virulence of betanodaviruses to European sea bass

Patricia Moreno, Sandra Souto, Rocio Leiva-Rebollo, Juan J. Borrego, Isabel Bandín & M. Carmen Alonso*

Figure S1. Comparative analysis between *wt*Dl965 and *r*Dl965 virulence: Kaplan-Meyer survival curves. Log Rank Mantel Cox Test results are represented below the Kaplan-Meyer survival curve. Same letters indicate no significant differences (p < 0.05).

Log Rank Mantel Cox	Chi square	Df	p value
<i>r</i> DL965 vs Mut247Dl965	36.47	1	< 0.0001
<i>r</i> DL965 vs Mut270Dl965	52.86	1	< 0.0001
<i>r</i> DL965 vs Mut247+270Dl965	48.55	1	< 0.0001
Mut247 vs Mut270 vs Mut247+270	0.2822	2	0.8684

Figure S2. Comparative analysis between *r*Dl965 and mutated virus virulence: Kaplan-Meyer survival curves. The log Rank Mantel Cox Test results are in a box below the Kaplan-Meyer curves. Different letters indicate significant differences between experimental groups (p < 0.05). Table S1.- Primers used in this study. (a) Primers designed to amplify the fulllength RNA1 and RNA2 segments. Several motifs are represented in colour: *BamHI* cut site in grey, *SacII* cut site in green, the T7 promoter sequence in blue, two guanine residues in red and *SfoI* blunt-ended cut site in orange. (b) Set of primers used to confirm the presence of viral RNA1 and RNA2 segment during the clonation procedure. (c) Primers used for absolute quantification of RGNNV RNA2 viral segment. (d) Primers used for relative quantification of immunogene transcription.

Name	Sequence (5'-3')	Product length (bp)	References
a		iongen (op)	
T7_5'RNA1_965	GGATCCCCCCCGCGTAATACGACTCACTA	3,104	This study
3'RNA1_965	GCGCCCGAAGCGTAGGACAGCATAAA GC		
T7_5'RNA2_965	GGATCC <mark>CCGCGGTAATACGACTCACTA</mark> TA <mark>GG</mark> TAATCCATCACCGCTTTGCAATC	1,432	This study
3'RNA2_965	GGCGCCGAGTTGAAAAGCGATCAGCG G		
b			
NNVs1_B3F NNVs1_B3R	AACATCCGCACTGCATACGAACTG ATGCTGGAGAACACTGGCTTTGAA	615	Olveira et al., $(2009)^5$
NNVs2_RG2F NNVs2_RG2R	CTTCCTGCCTGATCCAACTGACAACG CCAGATGCCCCAGCGAAACCA	568	Olveira et al., $(2009)^5$
c			
RG_965_RNA2 F4 RG_965_RNA2 R1	ACCGTCCGCTGTCTATTGACTA CAGATGCCCCAGCGAAACC	126	Moreno et al., (2016) ³⁵
d			
rRNA18S Fw rRNA18S Rw	CCAACGAGCTGCTGACC CCGTTACCCGTGGTCC	208	Scapigliati et al., (2010) ⁴⁵
Dl_MxA Fw Dl_MxA Rw	ATTCTGAGTTCTTGCTGAAGG CCTCTAGAACTCCACCAGG	113	Novel et al., (2013) ³⁴
qISG15 F2 qISG15 R2	CGACTCAAAGCCTCTCTGCTACT CGTTTCTGACGAACACCTGGAT	100	Moreno et al., $(2016)^{35}$
Dl_TNFa Fw Dl_TNFa Rw	CGACTGGCGAACAACC GCTGTCCTCCTGAGC	220	Nascimento et al., (2007) ⁴⁶