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Table S1 Weight percent values of Te phase, Se phase, and PVP component in the 

Te-Se-based nanomaterials, determined by inductively coupled plasma-atomic 

emission spectroscopy (ICP-AES, OPTIMA2100DV, PerkinElmer). 

 

Sample name Te Phase 

(wt%) 

Se Phase 

(wt%) 

PVP 

(wt%) 

Molar ratio of 

 Te to Se 

(Theory) 

Molar ratio of  

Te to Se 

(Experiments) 

Te-Se (1/0.25) 48.2 6.4 45.4 4 4.67 

Te-Se (1/0.5) 46.0 11.3 42.7 2 2.52 

Te-Se (1/0.75) 43.1 15.6 41.3 1.33 1.71 

Te-Se (1/1) 39.6 18.4 42 1 1.33 

      

 

Table S2 The zeta potential of DI water, PVP solution and Te-Se (1:1) solution at 

25 °C.    

      

Materials Zeta Potential (mV) 

Water 8.6  1.8 

PVP/Water 4.93  0.88 

Te-Se (1/1)/Water 19.2  1.1 

  

 

 

Table S3 Comparison of Te-Se@PDDA@MS vapor generation performance and 

previous reports. The η, R, NPs, GBMCC, CNTs denote evaporation efficiency, 

evaporation rate, nanoparticles, geopolymer-biomass mesoporous carbon composite 

and carbon nanotubes, respectively. The symbol of “−” means this kind of data had not 

been mentioned in the literatures.  

 



Materials Structures Biocompatible

; Degradable  

η R  

(kg�m-2�h-1) 

Water Source Salting-

Out 

Refere

nce 

MXene Ti3C2 3D Thin Membrane Yes; Yes 84% (1sun) 1.33 (1 sun) Fresh water − 1 

Au NPs 

 

3D Au@ 

 Filter Paper 

Yes; NO 79% (0.9 sun) 

89% (10 sun) 

0.97 (0.9 sun) Fresh water Yes 2 

Black Au 3D Au@ 

Sponges 

−; NO 90.3% (10 sun) 12.74 (10 sun) NaCl solution NO 3 

GBMCC 3D Porous Structure Yes; NO 84.95% (1 sun) 1.58 (1 sun) NaCl solution − 4 

CuFeSe2 NP 3D NP@Wood 

Membrance 

−; NO 67.7% (1 sun) 

86.2% (5 sun) 

6.6 (5 sun) Fresh water − 5 

Graphene 3D foam −; NO 91.4% (1 sun) 1.4 (1 sun) Sea Water − 6 

Ti2O3 NPs 

 

3D Ti2O3 @ 

Cellulose 

Membrance 

−; NO 92.13.2 %  

(1 sun) 

1.32 (1 sun) 

5.03 (5 sun) 

Sea Water − 7 

CNTs 3D CNT@Filter 

Paper  

−; NO 75 % (1 sun) 1.15 (1 sun) Sea Water − 8 

Polypyrrole 3D Porous hydrogel −; NO  94 % (1 sun) 3.2 (1 sun) NaCl solution − 9 

Te NPs 1D nanoparticel −; NO − − Fresh water − 10 

2D Te-Se 3D Te-Se@Sponges Yes; NO 93.390.49  

(10 sun) for 

fresh water  

90.710.37 

 (10 sun) for 

NaCl (aq) 

89.820.28 

 (10 sun) for 

MgCl2 (aq)  

86.14% (1 sun) 

for NaCl (aq) 

13.260.069  

(10 sun) for 

fresh water 

12.880.052 

 (10 sun) 

for NaCl (aq) 

12.750.040 

 (10 sun) 

for MgCl2 (aq) 

1.323 (1 sun) 

for NaCl (aq) 

NaCl solution NO This 

Work 
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Table S4 Evaporation efficiency (η, %), evaporation rate (R, kg�m−2�h−1) of Te-Se 

(1/1) @PDDA@MS samples with various loading level (W, wt%) of Te-Se (1/1) 

nanomaterials for DI water, NaCl solution (3.5 wt%), and MgCl2 solution (3.5 wt%) 

under a solar intensity of 10 sun (1 sun = 1 kW�m−2). Weight changes (ΔW, wt%) of 

the MS samples before and after measurements are also shown. 

 



Samples W  

(wt%) 

ΔW  

(wt %)  

η for  

DI  

water (%) 

R for DI 

water 

(kg�m-2�h-

1) 

η for  

NaCl 

solution (%) 

R for  

NaCl solution 

(kg�m-2�h-1) 

η for  

MgCl2 

solution (%) 

R for  

MgCl2 solution 

(kg�m-2�h-1) 

Sample 1 (DI water) 39.3 < 2.0 92.20.42 13.090.059 − − − − 

Sample 1 

(NaCl or MgCl2) 

41.0 < 2.0 − − 89.220.49 12.670.069 88.620.37 12.590.053 

Sample 2 (DI water) 74.1 < 2.0 93.390.49 13.260.069 − − − − 

Sample 2 

(NaCl or MgCl2) 

75.5 < 2.0 − − 90.710.37 12.880.052 89.820.28 12.750.040 

Sample 3 (DI water) 103.4. < 2.0 92.800.14 13.170.020 − − − − 

Sample 3 

(NaCl or MgCl2) 

104.1 < 2.0 − − 90.710.48 12.880.069 89.820.56 12.750.079 

Sample 4 (DI water) 133.4 < 2.0 92.790.64 13.170.091 − − − − 

Sample 4 

(NaCl or MgCl2) 

140.7 < 2.0 − − 90.410.37 12.840.052 89.520.24 12.710.034 

 

Table S5 The synthesis information of all samples in this study.  

Sample names Mass of 

Na2TeO3 

(mg) 

Mass of  

Na2SeO3 

(mg) 

Initial molar 

ratio: Na2TeO3/ 

Na2SeO3  

Mass of 

PVP 

(mg) 

H2O 

(mL) 

N2H4•

H2O 

(mL) 

NH3•

H2O 

(mL) 

Te-Se (1/0) 221.57 0 1:0 100 50 5 5 

Te-Se (1/0.25) 221.57 43.235 1:0.25 100 50 5 5 

Te-Se (1/0.5) 221.57 86.47 1:0.5 100 50 5 5 

Te-Se (1/0.75) 221.57 129.705 1:0.75 100 50 5 5 

Te-Se (1/1) 221.57 172.94 1:1 100 50 5 5 

 

 

 



 

 

Fig. S1 Chemical structures of PDDA (a, b), MS (c) and PVP, and their ATR-FTIR 

spectra relative to Te-Se (1/1) decorated PDDA@MS sample. 

 

According to Sacher et al, 1 poly(diallyl dimethylammonium) chloride (PDDA), a 

positively charged polyelectrolyte, can well interact with carbon nanotubes (CNTs) 

via a straightforward π-π interaction. And PDDA (Fig. S1 a) is frequently mixed with 

its contaminant (Fig. S1 b) which is formed during the polymerization of the 

monomer and can be considered as an unsaturated impurity. Its presence can be 

sufficiently high for orbital overlap, thus permitting π*← π transitions between PDDA 

and CNTs. 

In this work, given its similar C=C formed π-conjugated system to CNTs (Fig. S1 c), 

MS was first modified by PDDA. As shown in Fig. S1 e, peak at 1637.3 and 1472.9 

cm-1 of PDDA, assigned to unsaturated C=C bonds of PDDA, 1 shift to 

low-wavelength of 1629.1 and 1470.5 cm-1 in the case of PDDA@MS, the formed of 

which is accompanied with a significant decrease in intensity. This means a similar 

π-π interaction between PDDA and MS. It is also observed that peaks at 2937.1 and 

2886.7 cm-1 from C―H stretching vibration of methylene as well as peaks at 3364.8 

cm-1 possibly from stretching vibration of O―H of water absorbed onto PDDA in 

PDDA sample are significantly shifted to higher- and lower-wavelength, respectively, 
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in the case of PDDA@MS, which may be ascribed to possible hydrogen-bonding 

interactions between positively charged N+ of PDDA and H―NH―R of MS. 

Compared to neat MS at 3310.8 cm-1 from stretching vibration of N―H, 2 such a 

hydrogen-bonding interaction in the PDDA@MS case is also obviously. Therefore, it 

can be concluded that PDDA can interaction with MS via both π-π interaction and 

H-bonding interactions.  

As for Te-Se @PDDA@MS, the peak at 1649.8 cm-1 assigned to C=O (Fig. S1 d) 

from PVP has a about 3 shifts of wavelength compared with that of 1646.5 cm-1 for 

PVP. Meanwhile, a peak at 3300.6 cm-1 from stretching vibration of N―H in Te-Se 

@PDDA@MS also has a significant red-shift phenomenon relative to 3358.5 cm-1 of 

neat PVP and 3310.8 cm-1 of neat MS, indicating that a possible H-bonding 

interaction of PVP and MS. 

In summary, a robust adhesion of Te-Se nanomaterials onto PDDA@MS can 

attributed to strong physical interactions, such as π-π interaction (PDDA and MS), 

H-bonding interactions (PDDA and MS; PVP and MS) and possible electrostatic 

interaction (positively charged PDDA and negatively charged Te-Se nanomaterials).                 
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Fig. S2 (a) Photographs of neat MS, PDDA@MS, Te-Se@PDDA@MS with Te-Se 

loadings of 39.3 wt%, 74.1 wt%, 103.4 wt% and 133.4 wt%, respectively (from left to 

right); The free states (b) and bending states (c) of Te-Se@PDDA@MS with a Te-Se 

loading of 133.4 wt% in boiling water and room-temperature water.  

 

 
Fig. S3 SEM images illustrating the surface morphology of neat MS without any 

treatment. 




