Supplementary Material: Ionic phenomena in nanoscale pores through 2D materials

Subin Sahu

Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, USA

Michael Zwolak[∗]

Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

CONTENTS

[∗] Corresponding author: mpz@nist.gov

I. CONDUCTANCE VERSUS PORE RADIUS FROM EXPERIMENT

FIG. 1 Conductance fits for experimental data from Garaj et al. (2010), Schneider et al. (2010), and Schneider et al. (2013). Note that the fits here are slightly different than ones given in the respective papers, as indicated in the main text. However, the basic conclusion is the same: Garaj et al. (2010) and Schneider et al. (2013) obtained a dominant access contribution, whereas Schneider *et al.* (2010) obtained a dominant pore contribution. The pore radii in these experiments are measured using the TEM image of the pores which roughly corresponds to r_p in Fig. 7 of the main text – i.e., the average distance from the pore center to the pore edge excluding the carbon electron cloud (approximately its vdW radius). However, for the size of the pores presented here, the difference between the various definitions of pore radius is not significant (similarly for the exact pore geometry).

FIG. 2 Conductance fits for all-atom MD data from Sathe et al. (2011), Hu et al. (2012), Liang et al. (2013), Suk and Aluru (2014), Sahu et al. (2017), and Sahu and Zwolak (2018). The definition of pore radius varies in these studies. Sathe et al. (2011) , Hu et al. (2012) , and Liang et al. (2013) take the pore radius as the nominal radius employed in cutting the pore – i.e., all carbon atoms with coordinates that satisfied $r_n^2 \leq x^2 + y^2$ were removed to create the pore and r_n was taken as pore radius (note that r_n is not unique with this definition, a range of r_n give the same physical pore. We use the values as given in th respective papers). Suk and Aluru (2014) take the pore radius as the distance from the pore center to where the water density dropped below 2 % of the bulk water density. Sahu et al. (2017) define the pore radius as the average distance from the center of the pore to the inner edge of the pore atoms, i.e., r_p as shown with red dashed line in Fig. 7 of the main text. Both the Suk and Aluru (2014) and Sahu et al. (2017) definitions give similar values for the pore radius. However, Sahu and Zwolak (2018) define the pore radius from the current density profile in the pore, as shown by a in Fig. 7 of the main text. Solid lines are shown where data was fit. We only fit the data in which the pore is large enough to ignore the effects of hydration, except in the case of Hu *et al.* (2012), which only has small pores. We note that dehydration increases the pore resistance drastically and thus overshadows the access resistance. For instance, in the case of Sahu *et al.* (2017), only the dehydration regime was of interest. Error bars were not considered in the fits since not all the data were reported with error bars (in particular, the ones in the top panel).

III. PHYSICAL/CHEMICAL PROPERTIES AND APPLICATIONS

TABLE I Comparison of the physical/chemical properties 2D materials relevant to topics covered in the main text. We list here the atomic thickness – defined including the van der Waals radii – for a simple comparison. The effective thickness for ion transport can be significantly larger than the thicknesses in this table and it depends on, for example, voltage (see the main text). The large value of Young's modulus and breaking strength demonstrates the extraordinary strength of 2D materials. For comparison, the Young's modulus and breaking strength of steel are 200 GPa and 500 MPa, respectively (Ledbetter *et al.*, 1980). The hydrophobicity/hydrophilicity listed in the table are for the nanopore in the membrane rather than the flat surface of the membrane; thus, although MoS₂ membrane is hydrophobic, the pore is hydrophilic due to Mo-rich edges. The surface charge densities listed here are just a few representative examples as it can vary widely based on the fabrication technique (e.g., exfoliated versus chemical vapor deposition growth of the material), defect density, and other environmental factors (pH , for instance). Additionally, the charge density for porous membrane can be different than that for a pristine membrane. As a point of comparison, the surface charge for silicon nitride is typically reported to be around 20 mC/m² to 60 mC/m² at pH 7 to pH 8 (Ho et al., 2005; Smeets et al., 2006).

TABLE II Various applications of 2D material and their derivatives. This list is not exhaustive. It includes the papers we discussed in the main text but these applications are often touched on in many studies and are part of larger and very active research fields. Many fundamental studies have their origin in related work with traditional solid-state pores, see the main text and the references in the citations above.

REFERENCES

- Abraham, J., K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su, C. T. Cherian, J. Dix, E. Prestat, S. J. Haigh, I. V. Grigorieva, et al. (2017), Nat. Nanotech. 12, 546.
- Bertolazzi, S., J. Brivio, and A. Kis (2011), ACS Nano 5, 9703.
- Celebi, K., J. Buchheim, R. M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J.-I. Kye, C. Lee, and H. G. Park (2014), Science 344, 289.
- Chen, L., G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, et al. (2017), Nature 550, 380.
- Cohen-Tanugi, D., and J. C. Grossman (2012), Nano Lett. 12, 3602.
- Esfandiar, A., B. Radha, F. Wang, Q. Yang, S. Hu, S. Garaj, R. Nair, A. Geim, and K. Gopinadhan (2017), Science 358, 511.
- Falin, A., Q. Cai, E. J. Santos, D. Scullion, D. Qian, R. Zhang, Z. Yang, S. Huang, K. Watanabe, T. Taniguchi, et al. (2017), Nat. Commun. 8, 15815.
- Feng, J., M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic (2016a), Nature 536, 197.
- Feng, J., K. Liu, R. D. Bulushev, S. Khlybov, D. Dumcenco, A. Kis, and A. Radenovic (2015), Nat. Nanotech. 10, 1070.
- Feng, J., K. Liu, M. Graf, D. Dumcenco, A. Kis, M. Di Ventra, and A. Radenovic (2016b), Nat. Mater. 15, 850.
- Gai, J.-G., X.-L. Gong, W.-W. Wang, X. Zhang, and W.-L. Kang (2014), J. Mater. Chem. A 2, 4023.
- Garaj, S., W. Hubbard, A. Reina, J. Kong, D. Branton, and J. Golovchenko (2010), Nature 467, 190.
- Gopinadhan, K., S. Hu, A. Esfandiar, M. Lozada-Hidalgo, F. Wang, Q. Yang, A. Tyurnina, A. Keerthi, B. Radha, and A. Geim (2019), Science 363, 145.
- He, Z., J. Zhou, X. Lu, and B. Corry (2013), ACS Nano 7, 10148.
- Heerema, S. J., and C. Dekker (2016), Nat. Nanotech. 11, 127.
- Hirunpinyopas, W., E. Prestat, S. D. Worrall, S. J. Haigh, R. A. Dryfe, and M. A. Bissett (2017), ACS Nano 11, 11082.
- Ho, C., R. Qiao, J. B. Heng, A. Chatterjee, R. J. Timp, N. R. Aluru, and G. Timp (2005), Proc. Natl. Acad. Sci. U. S. A. 102, 10445.
- Hu, G., M. Mao, and S. Ghosal (2012), Nanotechnology 23, 395501.
- Ji, J., Q. Kang, Y. Zhou, Y. Feng, X. Chen, J. Yuan, W. Guo, Y. Wei, and L. Jiang (2017), Adv. Funct. Mater. 27, 1603623.
- Joshi, R., P. Carbone, F. Wang, V. Kravets, Y. Su, I. Grigorieva, H. Wu, A. Geim, and R. Nair (2014), Science 343, 752.
- Koenig, S. P., L. Wang, J. Pellegrino, and J. S. Bunch (2012), Nat. Nanotech. 7, 728.
- Ledbetter, H., N. Frederick, and M. Austin (1980), J. Appl. Phys. 51, 305.
- Lee, C., X. Wei, J. W. Kysar, and J. Hone (2008), science 321, 385.
- Li, H., Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao, and M. Yu (2013), Science 342, 95.
- Liang, L., P. Cui, Q. Wang, T. Wu, H. Ågren, and Y. Tu (2013), RSC Advances 3, 2445.
- Liu, K., J. Feng, A. Kis, and A. Radenovic (2014), ACS nano 8, 2504.
- Liu, S., B. Lu, Q. Zhao, J. Li, T. Gao, Y. Chen, Y. Zhang, Z. Liu, Z. Fan, F. Yang, et al. (2013a), Adv. Mater. 25, 4549.
- Liu, X., T. Xu, X. Wu, Z. Zhang, J. Yu, H. Qiu, J.-H. Hong, C.-H. Jin, J.-X. Li, X.-R. Wang, et al. (2013b), Nat. Commun. 4, 1776.
- Merchant, C. A., K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D. Fischbein, K. Venta, Z. Luo, A. C. Johnson, et al. (2010), Nano Lett. 10, 2915.
- Nair, R. R., H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim (2012), Science 335, 442.
- Rollings, R. C., A. T. Kuan, and J. A. Golovchenko (2016), Nat. Commun. 7, 11408.
- Sahu, S., M. Di Ventra, and M. Zwolak (2017), Nano Lett. 17, 4719.
- Sahu, S., J. Elenewski, C. Rohmann, and M. Zwolak (2019), "Optimal transport and colossal ionic mechano–resistance in graphene crown ethers," Unpublished.
- Sahu, S., and M. Zwolak (2017), Nanoscale 9, 11424.
- Sahu, S., and M. Zwolak (2018), Phys. Chem. Chem. Phys. 20, 4646.
- Sathe, C., X. Zou, J.-P. Leburton, and K. Schulten (2011), ACS Nano 5, 8842.
- Schneider, G. F., S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. Vandersypen, and C. Dekker (2010), Nano Lett. 10, 3163.
- Schneider, G. F., Q. Xu, S. Hage, S. Luik, J. N. Spoor, S. Malladi, H. Zandbergen, and C. Dekker (2013), Nat. Commun. 4, 2619.
- Shan, Y., P. Tiwari, P. Krishnakumar, I. Vlassiouk, W. Li, X. Wang, Y. Darici, S. Lindsay, H. Wang, S. Smirnov, et al. (2013), Nanotechnology 24, 495102.
- Sint, K., B. Wang, and P. Král (2008), J. Am. Chem. Soc. 130, 16448.
- Smeets, R. M., U. F. Keyser, D. Krapf, M.-Y. Wu, N. H. Dekker, and C. Dekker (2006), Nano Lett. 6, 89.
- Suk, M. E., and N. Aluru (2014), J. Chem. Phys. 140, 084707.
- Surwade, S. P., S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, and S. M. Mahurin (2015), Nat. Nanotech. 10, 459.
- Walker, M. I., K. Ubych, V. Saraswat, E. A. Chalklen, P. Braeuninger-Weimer, S. Caneva, R. S. Weatherup, S. Hofmann, and U. F. Keyser (2017), ACS Nano 11, 1340.
- Weber, M., B. Koonkaew, S. Balme, I. Utke, F. Picaud, I. Iatsunskyi, E. Coy, P. Miele, and M. Bechelany (2017), ACS App. Mater. Interfaces 9, 16669.
- Wells, D. B., M. Belkin, J. Comer, and A. Aksimentiev (2012), Nano Lett. 12, 4117.

6

Zhou, Z., Y. Hu, H. Wang, Z. Xu, W. Wang, X. Bai, X. Shan, and X. Lu (2013), Sci. Rep. 3, 3287.