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Supplementary Text13

Appendix A. Nonlinear Dynamics of Cell-ECM Interaction for Computational Model14

Our nonlinear computational model is composed of two modules: 1) intracellular mechanics including focal adhesion dynamics,15

actin motor activity, and mechanics of cellular and nuclear membranes, and 2) dynamics of ECM fiber network. The detailed16

equations that govern each of these dynamical processes are summarized in the following sections, and the list of simulation17

parameters are also summarized in supplementary Table S1.18

1) Intracellular mechanics. The intracellular mechanics is a key mechanism involved in cell interactions within a 3D ECM fiber19

network. The essential equations in the model consist of: a) equations describing focal adhesion dynamics based on forward20

and backward kinetics of ligand-receptor bonds, b) and equation for lamellipodium protrusion by actin polymerization, and c)21

an equation for cortical stress and elastic energy force. These governing equations are extensions of the prior works(1, 2) with22

improvements for streamlining computation and modeling validity specifically for the current work.23

24

a). Focal Adhesion Dynamics25

As shown in Fig. S1, the Focal adhesion (FA) force acts between the i − th integrin node on the cellular membrane and points26

on the ECM fibers where the extension of the unit vector normal to the cellular membrane interacts with the nearest point of27

ECM fibers. Focal adhesion (FA) force, FcFA,i, at the i − th node of the outer cell membrane is expressed as:28

FcFA,i = nb,iκLR (Lb − λ) n̂cR,i [1]29

where nb,iis the number of integrin-collagen bonds,κLRis the spring constant of a single ligand-receptor bond ( 1 pN/nm) (3) ,30

Lbis the average stretched length of the ligand-receptor bonds, λ is an unstressed length of bonds ( 30nm) (4) , and n̂cR,iis a31

unit vector at the local surface of the i − th node of the outer cell membrane toward the bonding site at the ECM fiber (Fig.32

S1). For brevity, superscript k, indicating the cell’s number, is omitted in the following derivation. We use Bell’s model(5)33

to incorporate force-dependent reaction rates of the number of bonds (nb,i), which is expressed with the following ordinary34

differential equation:35

dnb,i
dt

= kon
(
ntot − nb,i

)
− koffnb,i [2]36

where ntotis total available number of integrin molecules at the i − th node of cellular membrane, konis the kinetic associate37

rate for binding integrin molecules and ECM fiber, and it is expressed as (6, 7):38

kon = k0
on
lbind
Z0

exp
[
−κLR(Lb − λ)2

2kbT

]
[3]39

where k0
on is the zero forward reaction rate ( 1 molecule−1 s−1, lbindis a binding radius (30 nm) to check whether the i − th40

node of cellular membrane and the node on the fiber are sufficiently close, and kbT is the unit of thermal energy. The parameter41

Z0is the partition function for an integrin molecule confined in a harmonic potential between −λand Lb−λ, and is expressed as42

Z0 =
√
πkbT

2κLR

(
erf

[
(Lb − λ)

√
κLR
2kbT

]
+ erf

[
λ

√
κLR
2kbT

])
[4]43

The parameterkoff in Eq. 2 is the kinetic dissociation rate. It is known as Bell’s equation for the slip bond, given by (5):44

koff = k0
off exp

[
κLR (Lb − λ)xb

kbT

]
[5]45

where k0
off is the zero kinetic dissociation rate in the absent of the force, xbis the distance between the minimum binding46

potential and the transition state barrier, and kbT/xb represents an intrinsic force 200pN . From Fig. S1 the root location of47

receptor - ligand bonds (xL,i) is given by48

xL,i = xci + Lbn̂R,i = xci −
hp n̂R,i

n̂w · n̂R,i
. [6]49

where n̂wis the unit vector orthogonal to the ECM fiber, and hpis the gap between the i − th node of cellular membrane and50

the ECM fiber. This expression is valid only when n̂w · n̂R,i < 0and the gap hpis less than a critical height (hc) of 300 nm51

(<10λ):hp < hc. The latter condition is to restrict the formation of receptor-ligand bonds within the upper limithc.52

53

b). Lamellipodium Force54

The lamellipodium force at the i − th node of the outer cell membrane, FcL,i, is generated at the leading edge of migratory cells.55

It is deemed the actual motors pushing the cortical cytoskeleton forward during the process of cell migration (8) . Normally,56

cells experience a small protrusive pressure that results from osmotic pressure or actin branches stimulated by activated arp2/3.57

Here we assume that the magnitude of the lamellipodium force is constant at 300 pN, and exists at only leading edges of the58

cell.59
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60

c). Cortical Force and Elastic Energy Force61

The cortical force and elastic energy force, collectively represented with Fc,kCort−Elas, comprise both elastic and damping forces62

generated at the membrane attached to actin cortex and further connected to the nucleus through actin stress fibers. We model63

this with a three-layer mesh structures: outer cell membrane layer, inner transduce layer, and nucleus layer. The computational64

model is threefold:65

(i) The cell membrane layer exhibits elastic energy force, which is modelled using elastic energy stored in the mesh structure;66

(ii) The Kelvin-Voigt model is applied to the outer membrane and inner transduce layers to represent the viscoelastic behavior67

between the two layers; and68

(iii) Between the inner transduce layer and the nucleus layers actin stress fibers are formed, which exhibit elastic force and69

contractile force.70

i) Elastic energy forces at the membrane layer71

The elastic force at the i − th node of the outer cell membrane, FcE,i, is obtained by using the virtual work theory in72

structural mechanics. To this end, the total elastic energy stored in the cell membrane is obtained. Two types of total73

elastic energy are considered. One is the total elastic energy associated with distance changes between nodes (9, 10):74

Hc
L = κcL

2

line∑
i=1

(
Lci − Lc0i

)2 [7]75

where Lci is the length of the i − th line of the cell membrane mesh, which is updated at every time-step, Lc0i is its76

unstressed length, κcL is effective stiffness of the line elements connecting the cell membrane nodes (5.0 × 10−5 N/m)77

(11, 12). Similarly, the total elastic energy associated with area changes in the membrane nodal mesh is given by78

Hc
A = κcA

2

element∑
i=1

(
Aci −Ac0i
Ac0i

)2

Ac0i [8]79

whereAci is the i − th mesh area of the cell membrane and Ac0i is its unstressed values, and κcA is an effective stiffness80

constant of area elements of the cell membrane (1.0× 10−4N/m2) (10) Then, FcE,ican be obtained by differentiating the81

total of the two types of elastic energy,82

FcE,i = −∂H
c
L

∂xci
− ∂Hc

A

∂xci
[9]83

ii). The double-layer Kelvin-Voigt model84

Including the elastic force at the outer membrane layer, we can write the combined cortical and elastic force as:85

FcCort−Elas,i = FcE,i + FcT,i +DCort

(
dxti
dt
− dxci

dt

)
[10]86

where FcT,iis a transduce force representing the elastic force of actin cortex in the Kelvin-Voigt model at the i − th node87

of the outer cell membrane. It is given by88

FcT,i = −κcort
(
LT,i − L0

T,i

) ∂LT,i
∂xci

[11]89

where κcortis an effective spring constant of line element of the actin cortex (8.0× 10−3 N/m), LT,i is the length of the90

i − th line in the actin cortex, which is updated at every time-step, and L0
T,iis its unstressed length (500 nm). The damping91

term in the Kelvin-Voigt model is proportional to the difference in velocity between the two layers, dxti/dt − dxci/dt,92

where xtiis the coordinates of the i − th node on the inner transduce layer. The dynamic equation of the inner transduce93

membrane can be expressed as94

Dt
dxti
dt

+Dcort

(
dxti
dt
− dxci

dt

)
= FtE,i + FtSF,i + FtT,i, i = 1, · · · , Nt [12]95

where Dtis a coefficient of dissipation energy for the inner transduce membrane (0.001 Ns/m), FtT,i is a transduce force at96

the i − th node of the inner transduce membrane, which balances with FcT,i = −FtT,i, and FtE,i is an elastic force at the97

i − th node of the inner transduce membrane. Similarly to the above analysis, two kinds of total elastic energy stored in98

the inner transduce membrane are considered. One is the total elastic energy associated with distance changes between99

the nodes:100

Ht
L = κtL

2

line∑
i=1

(Lti − Lt0i )2 [13]101
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where κtL is effective stiffness of the line elements of the inner membrane (5.0× 10−5 N/m), Lti is the length of the i − th102

line of the inner membrane mesh updated at every time-step, and Lt0i is its unstressed length. Similarly, the total elastic103

energy associated with area changes is given by104

Ht
A = κtA

2

element∑
i=1

(
Ati −At0i
At0i

)2

At0i [14]105

whereAtiis the i − th mesh area of the inner membrane and At0i is its unstressed values, κtA is effective stiffness of area106

elements of the inner membrane (1.0× 10−4N/m2). Then, FtE,ican be obtained by differentiating the two kinds of total107

energy,108

FtE,i = −∂H
t
L

∂xti
− ∂Ht

A

∂xti
[15]109

iii). Actin Stress Fiber Contraction110

In the dynamic equation of the inner transduce layer, FtSF,iis an actin stress fiber (SF) force at the i − th node of the111

inner transduce membrane. The actin SF is a bundle of actin microfilaments assembled by actin-myosin II interactions. In112

the model, the i − th node of the inner transduce membrane is connected to the j − th node of nuclear membrane by a SF.113

Its connection to the j − th node of nuclear membrane is determined by the nearest distance from the i − th node of the114

inner membrane to the nucleus. The stiffness of a SF is a variable. According to literature, the stiffness increases with a115

contractile agonist (histamine) and decreases with a relaxing agonist (isoproterenol)(13). These characteristics must be116

reflected to the formulation of the SF stiffness:117

κSF = ESFASF
L1
SF,i

[16]118

where ESF is Young’s modulus of SFs (230 kPa) directly measured from isolated smooth muscle cells(14), ASF is the119

average cross-sectional area of SFs (250 nm in radius (15), and L1
SF,iis the length of a single compartment of the i − th120

SF. Similarly, the elastic energy stored in the i − th SF is given by121

ESF,i =
NSF∑
j=1

[
κSF

2

(
dSF,i

NSF
− L1

SF,j

)2
]

= κSF
2

(
dSF,i

NSF
− L1

SF,1

)2
NSF = κSF

2NSF

(
dSF,i −NSFL1

SF,1
)2 [17]122

where NSF is the number of contractile compartments in the i − th SF, and dSF,irepresents the distance between i − th123

node of inner membrane and j − th node of nuclear membrane for a SF connected to the nucleus. It should be noted that124

dSF,iphysically means the length of SFs under tension and L1
SF,1 represents the length of a single unstressed bundle of125

SFs. Using the virtual work theory, forces due to actin SFs’ motor activity at the i − th node of inner membrane and the126

j − th node of nuclear membrane is given by127

FtSF,i = −
∂ESF,i
∂xti

= − κSF
NSF

(
dSF,i −NSFL1

SF,i

) ∂dSF,i
∂xti

[18]128

It is considered that actin motor activity starts when the other end of a SF is connected to the nucleus, and ends when129

integrin nodes are broken from FAs. The sliding rate of myosin II is known to fluctuate (i.e. is non-uniform) unlike myosin130

I which slides with a uniform rate. Furthermore, the sliding rate of myosin II is adjusted by sensing the transmitted focal131

adhesion force from the ECM (16). To incorporate these characteristics into the model, force-velocity relation of muscle132

myosin II, first proposed by A.V. Hill (17), is adopted as the following equation:133

vm = vm0
Fm0 − FFA
Fm0 + cmFFA

[19]134

where vm0is the sliding rate of myosin in the absence of load (10 nm/s), Fm0 is the isometric force of myosin, or stall135

force, and cm is a parameter in the force-velocity relationship for myosin. Initially, the length of sarcomere unit is 800 nm136

(L1
SF,i = 800 nm at t = 0 s), which contracts until 60 % of the initial length has contracted. As the contraction takes137

place at both sides of each sarcomere unit, the minimum time required for 60 % contraction is calculated as 16 s with vm0.138

Actin motor activity is terminated when integrin nodes are broken from FAs.139

Lastly, the dynamic equation at the i − th node of the nuclear membrane can be expressed as140

Dn
dxni
dt

= FnE,i + FnSF,i, i = 1, · · · , Nn [20]141

where Dnis a coefficient of dissipation energy for the nuclear membrane (0.001 Ns/m), xni is a position vector at the i − th142

node in the membrane of nucleus, and FnE,iis an elastic force at the i − th node of the nuclear membrane. Similarly, two143
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kinds of total elastic energy stored in the nuclear membrane are considered. One is the total elastic energy associated144

with distance changes between the nodes (9, 10):145

Hn
L = κnL

2

line∑
i=1

(
Lni − Ln0

i

)2 [21]146

where κnL is effective stiffness of the line elements of the nuclear membrane (5.0× 10−3 N/m) (18) (50), Lni is the length147

of the i − th line of the nuclear membrane mesh, which is updated at every time-step, and takes a constant valueLn0
i when148

it is unstressed. Similarly, the total elastic energy associated with area changes is given by149

Hn
A = κnA

2

element∑
i=1

(
Ani −An0

i

An0
i

)2

An0
i [22]150

whereAni is the i − th mesh area of the nuclear membrane and An0
i is its relaxed values. κnA is an effective stiffness constant151

of area elements of the nuclear membrane (1.0× 10−4N/m2). Then, FnE,ican be obtained by differentiating the two kinds152

of total energy,153

FnE,i = −∂H
n
L

∂xni
− ∂Hn

A

∂xni
. [23]154

Integrating the above models, we can simulate the intracellular dynamics in great detail. Combined with the dynamics of155

ECM fiber network, as detailed below, detailed nonlinear simulations can produce a data set of xci ,x
e
i ,FcCort−Elas,i,FcFA,i,FcL,i,156

FeElas,i, as defined in the main text. In the DF Linearization, regression models are formed based on the simulation data,157

instead of performing the detailed nonlinear simulation. The detailed dynamics of the inner transduce membrane and158

nucleus layers as well as the stress fiber dynamics are imbedded in the regression models in Eqs. (10) and (11). This159

significantly reduces the computational load.160

2) Dynamics of ECM fiber network. We assume the ECM fiber network to be composed of viscoelastic ECM fibers and crosslinks,161

which make strong bonds between adjacent fibers(19). The elastic energy stored in the ECM fiber network can be expressed in162

terms of stretching and bending properties of the constituent fibers. The stretching modulus of a fiber is given by κef,s
(
= EefAf

)
,163

where Eefand Af
(
= πr2

f

)
are Young’s modulus (1 Mpa) and the cross-sectional area of a single fiber, respectively. The bending164

modulus of a fiber is given byκef,b
(
= EfIf

)
, where If

(
= πr4

f

/
4
)
(20). The stretching elastic energy of the j − th segment165

of the i − th fiber is given as a function of the difference between the stressed (Le,ij ) and unstressed (Le,ij0 ) lengths, and the166

bending elastic energy as the one of stressed (θe,ij ) and unstressed (θe,ij0 ) angles at the j − th node between two segments in the167

i − th fiber (Fig. S2). The total elastic energy in the i − th ECM fiber in the network can be expressed as:168

He,i
f =

κef,s
2

Ne
i∑

j=1

(
Le,ij − L

e,i
j0
)2

Le,ij0
+
κef,b

2

Ne
i∑

j=1

(
θe,ij − θ

e
j0
)2

Le,ij0
. [24]169

Here, it should be noted that the elastic energy at the j − th node in the i − th fiber is summed only for coaxial neighboring170

nodes. Similarly, the elastic force at the j − th node in the i − th fiber,bfF eE,i j , can be derived by using the virtual work171

principle:172

Fe,iE,j = −
∂He,i

f

∂xe,ij
= −κef,s

j+1∑
k=j

(
Le,ik − L

e,i
k0

)
Le0,ik

∂Le,ik
∂xe,ij

− κef,b
j+1∑

k=j−1

(θe,ik − θ
e,i
k0 )

Le,ik

∂θe,ik
∂xe,ij

[25]173

where θe,ik = cos−1 (t̂ik · t̂ik+1
)
,t̂ikand t̂ik+1are tangential unit vectors at the k and k+1-st nodes in the i − th fiber, respectively,174

and ∂θ
e,i
k

∂x
e,i
j

= −1√
1−
(
t̂i

k
·t̂i

k+1

)2

(
∂t̂i

k

∂x
e,i
j

· t̂ik+1 + t̂ik ·
∂t̂i

k+1
∂xje,i

)
. To solve the dynamics of ECM fiber network, a dynamic equation at175

the i − th ECM fiber node can be expressed as176

De
dxei
dt

= FeFA,i + FeE,i , i = 1, · · · , Ne. [26]177

where De is a coefficient of dissipation energy for the ECM fiber, and FeFA,iis a FA force at the i − th ECM fiber node. Note178

that dynamics of ECM fibers is coupled with intracellular mechanics through the relationship: FeFA,i + FcFA,i = 0.179

Appendix B. Least Squares Estimation for Identification of the Parameter MatricesA, B, C, G involved in the180

Latent Space State Equations181

The Dual Faceted Linearization method discussed in this work is used to represent the nonlinear system in augmented space182

with two sets of linear differential equations:183

dxc,k

dt
= Wc

CEFc,kCort−Elas + Wc
FAFc,kFA + Lcuk, k = 1, · · · , ncell

dxe

dt
= We

ElasFeElas + We
FAFeFA

}
set 1 [27]184
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185

dFc,k
Cort−Elas

dt
' Qc

xxc,k + Qc
FCE

Fc,kCort−Elas + Quuk, k = 1, · · · , ncell
dFc,k

F A
dt
' Hc

xxc,k + He
xxe + Hc

FF A
Fc,kFA + Huuk

dFe
Elas
dt

' Re
xxe + Re

FElas
FeElas

 set 2 [28]186

The first set of differential equations Eq. 27 are the original state equations, which are apparently linear in terms of the187

auxiliary variables (Fc,kCort−Elas,F
c,k
FA,F

e
Elas) and inputuk. Since the ECM focal adhesion forces (FeFA) can be represented188

as a linear compilation of cell membrane focal adhesion forces (Fc,kFA), they are excluded from the set of auxiliary variables.189

Here,xc,k ∈ <3Nc×1 is a vector containing the 3-D coordinates
(
xc,ki i = 1, . . . , Nc

)
of all the cell membrane nodes and190

xei ∈ <3Ne×1 is a vector containing the 3-D coordinates (xei i = 1, . . . , Ne) of all the ECM nodes. Fc,kCort−Elas ∈ <
3Nc×1 is191

a vector that comprises cortical tension and elastic energy forces (Fc,kCort−Elas,i ) for all the cell nodes. Fc,kFA ∈ <
3Nc×1is a192

vector of focal adhesion forces (Fc,kFA,i) at all the cell nodes. Variable uk ∈ <3Nc×1 is an input vector containing all the193

lamellipodium forces (Fc,kL,i). Wc
CE ,Wc

FA,LC,We
Elas, We

FAare constant matrices of consistent dimensions. The second set194

of differential equations (Eq. 28) represent the transition of auxiliary state variables estimated through linear regressions.195

Here, (R∗
∗ ∈ <3Ne×3Ne ,Q∗

∗ ∈ <3Nc×3Nc ,H∗
∗ ∈ <3Nc×3Nc) are high-dimensional parameter matrices. As discussed in the196

main text, we transform the augmented linearized system to the one in the latent variable space spanned by eigenvectors197

(Vc =
(

Vc
x

T Vc
FCE

T Vc
FF A

T )T ∈ <mc×mcand Ve =
(

Ve
x

T Ve
FElas

T )T ∈ <me×me) of the covariance matrices, as198

detailed in Method S3 below.199

dzc,k

dt
= A zc,k + B uk + Cze, k = 1, · · · , ncell [29]200

201

dze

dt
= G ze +

ncell∑
k=1

Dkzc,k [30]202

where:203

A = Vc
x

T(Wc
CEVc

FCE
+ Wc

FAVc
FF A

) + Vc
FCE

T(Qc
xVc

x + Qc
FCE

Vc
FCE

) + Vc
FF A

T(Hc
xVc

x + Hc
FF A

Vc
FF A

)
B = Vc

x
TLc + Vc

FCE

TQu + Vc
FF A

THu

C = VT
FF A

c He
xVe

x

G = Ve
x

TWe
ElasVe

FElas
+ Ve

FElas

T(Re
xVe

x + Re
FElas

Ve
FElas

)
Dk = Ve

x
TWe

FAPk
mapVc

FF A

[31]204

Here, Pk
map ∈ <3Ne×3Nc is a parameter matrix (consisting of either 0 or -1 elements) which maps the membrane focal205

adhesion forces of the k-th cell (Fc,kFA) to the corresponding ECM focal adhesion forces (FeFA) as discussed in the main206

text. Since the system is represented in a lower dimensional space, the high dimensional regression coefficient matrices207

(R∗
∗,Q∗

∗,H∗
∗) are not computed explicitly. Instead, the lower dimension coefficient matrices A,B,C,G are computed208

directly from numerical simulation data transformed into the latent variable space. We define transformed data set209

ZTr =
{(

ze,n (t) , zc,k,n (t) ,uk,n (t) , dze,n/dt, dzc,k,n
/
dt
)
|k = 1, · · · ,K, n = 1, · · · , N, t = 1, · · · , T

}
. Here superscripts k, n210

signify the k-th cell (K = 1 or K = 2) within the n-th simulation. We combine parameter matrices from equation Eq. 29 into211

M ∆=
[

A B C
]
∈ <mc×(mc+Nc+me)and variables into ξk,n (t) =

(
zc,k,n(t)T uk,n(t)T ze,n (t)T)T ∈ <(mc+Nc+me)×1.212

The parameter matrix M can be optimized so that the mean squared error of predicting dzc,k,n
/
dt may be minimized:213

M0 = arg min
M

1
K ·N · T

K∑
k=1

N∑
n=1

T∑
t=1

∥∥∥∥ dzc,k,n

dt

∣∣∣∣
t

−Mξk,n (t)
∥∥∥∥2

[32]214

Using the standard least squared estimation and assuming that the sample data sufficiently spans the dimension of vector215

ξk,n (t), we can obtain:216

M0 =

(
K∑
k=1

N∑
n=1

T∑
t=1

dzc,k,n

dt

∣∣∣∣
t

ξk,n(t)T

)(
K∑
k=1

N∑
n=1

T∑
t=1

ξk,n (t) ξk,n(t)T

)−1

[33]217

Similarly least squares estimate matrix G is given by:218

G0 =

(
N∑
n=1

T∑
t=1

δn (t) ze,n(t)T

)(
N∑
n=1

T∑
t=1

ze,n (t) ze,n(t)T

)−1

[34]219

where δn (t) = dzc,k,n
/
dt
∣∣
t
−

K∑
k=1

Dkzc,k,n and Dk’s are known matrices as defined in Eq.31.220
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Appendix C. Implementing Polarity Model and Lamellipodial Force Generation221

The polarity direction of a cell is important for determining the orientation of the leading edge that rotates dynamically in222

response to changes in local ECM stiffness. Implementing the polarity model that leads to the generation of lamellipodial forces223

on the leading edge requires two functional relations. One is to relate the direction of maximum ECM stiffness de,kMax−Stiff to224

global stresses within the ECM, which depend on latent variable state vector ze. The other is to relate the direction of polarity225

vector,dkPol, to the lamellipodium forces of each membrane node.226

For the former functional relation, the local stiffness of ECM fiber network changes depending on the global stress generated
over the ECM. The latent variable state vector ze pertains to this ECM property and, thereby, allows us to predict the direction
of maximum stiffness. For the latent variable superposition model, we assume that the maximum stiffness direction can be
determined by:

de,kMax−Stiff = KStiff

(
ze

xkcenter

)
[35]

where xkcenter ∈ <3×1 is the center of mass of the k-th cell, which is determined as the mean of all the node coordinates of227

the cell, and KStiff : <(mE+3)×1 7→ <3×1 maps ECM latent variables and the cell’s center location to the direction of the228

maximum stiffness. Details on the calculation of direction of maximum stiffness based on the nonlinear full-scale computational229

model are given in reference (2). The optimized coefficient matrix KStiff is estimated from numerical simulation data of the230

full-scale nonlinear equations. Using least squares:231

K0
Stiff =

(
K∑
k=1

N∑
n=1

T∑
t=1

de,k,nMax−Stiff (t)χk,n(t)T

)(
K∑
k=1

N∑
n=1

T∑
t=1

χk,n (t)χk,n(t)T

)−1

[36]232

where χk,n (t) =
(

zeT xkcenter
T )T

and superscripts k and n represent the cell number and simulation iteration of the233

variable sample data as discussed previously.234

In the latter functional relation, consider a right circular cone of apex angle 2αkL shown in Fig. 3B in the main text. The
centerline of the cone is aligned with the unit vector of polarity direction, dkPol. The cell’s membrane nodes xc,ki within this
cone, where 0 ≤ αkL < π/2, are deemed the leading edge region of the cell, producing nonzero lamellipodial forces.

Fc,kL,i

{
6= 0, dkPol

T∆xc,ki ≥
∣∣∆xc,ki

∣∣ cosαkL
= 0, dkPol

T∆xc,ki <
∣∣∆xc,ki

∣∣ cosαkL
[37]

where ∆xc,ki = xc,ki −xkcenter is the position vector from the center point of the k-th cell to the i-th node of the cell’s membrane.235
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