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Supplementary Note 1 
 
Structural-tectonic map Central and East and Southeast Asia 
The structural and tectonic map of Central, East and Southeast Asia and surrounding regions 
as shown in Fig. 1a is compiled, simplified and modified from many previous works. These 
include several references for the entire region displayed on the map1-3 and the Himalaya-
Tibetan region4. For several individual basins or local structures the references are as follows, 
from north to south: Kamchatka grabens5, Shantar-Lizianski basin6, Priokhotsky rift7, Sea of 
Okhotsk6,8, Heilongjiang basin9, Bohai basin10, Northern Yellow Sea basin11, South Yellow 
Sea basin12, Subei basin12, Gunsan basin12, Tibet rifts4,13-15, East China Sea basin16, Yuanma 
basin17, Taiwan Strait basins18, South China Sea margins19, Andaman Sea20-21, Mergui basin20-

21, Malay basin19-21, Sumatra basins22,19, East Borneo basins22, Java basins22. 
The timing of extension for the individual basins/extensional structures as shown in Fig. 1a 

is deduced from the following references: Sea of Okhotsk6, Kamchatka grabens5, Kuril basin23-

24, Shantar-Liziansky basin6, Priokhotsky rift7, Baikal rift25, Heilongjiang basin9, Sea of 
Japan26, Sea of Japan margins27-29, Yilan Yitong graben30, Hetao-Yinchuan grabens31, South 
Ningxia region32, Shanxi graben33, Bohai basin3,34, North Yellow Sea basin11, northern South 
Yellow Sea basin and Gunsan basin12,35, Subei basin and southern South Yellow Sea basin36, 
southern North China basin3, Weihe graben31, north-south trending Tibetan rifts and dikes4,37-

38, Jianghan basin39, Yuanma basin17, East China Sea basins16, Okinawa Trough40, Taiwan 
Strait basins18, Pearl River Mouth basins41, Beibuwan basin42, Yinggehai-Song Hong basin43, 
Quiondongnan basin41, Phu Khan basin44, Nam Con Son basin44, South China Sea45, southern 
South China Sea46, Pattani basin21, Mergui basin20, Andaman Sea20, Malay basin47, Sumatra 
basins22, Java basins22, East Borneo basins22, Sulu Sea48-50, Celebes Sea48-50, Gorontalo 
basins51, Banda Sea52. 
 
 
 
 
  



 
 

 3 

 

Supplementary Fig. 1 | Top views of four experiments with different velocity ratios showing finite 
horizontal normal strain (εXX + εYY) and the horizontal finite strain ellipse field. The experiments 
simulate Asian continental deformation and the velocity ratio is expressed as R = (vI - vWP)/(vI + vWP), 
where vI = Indian continental subduction hinge and slab advance (roll-forward) velocity and vWP = 
Pacific subduction hinge and slab retreat (rollback) velocity. The results are shown for the end of each 
experimental run. a, Experiment IMIN-R with R = 0.25 (minimum indentation). b, Experiment IINT-R 
with R = 0.50 (intermediate indentation). c, Experiment IMAX-R with R = 0.62 (maximum indentation). 
d, Experiment IINT-NR with R = 1.00 (intermediate indentation and no rollback). 
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Supplementary Fig. 2. | Top views of four experiments simulating Asian deformation with 
different velocity ratios (R) showing the digital photographs. The results are shown for the end of 
each experimental run. a, Experiment IMIN-R with R = 0.25 (minimum indentation). b, Experiment IINT-
R with R = 0.50 (intermediate indentation). c, Experiment IMAX-R with R = 0.62 (maximum indentation). 
d, Experiment IINT-NR with R = 1.00 (intermediate indentation and no rollback). Low-angle lighting is 
from the north. 
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Supplementary Fig. 3 | Top views of four experiments simulating Asian deformation with 
different velocity ratios (R) showing finite horizontal normal strain (εXX + εYY) and the horizontal 
finite displacement field. The results are shown for the end of each experimental run. a, Experiment 
IMIN-R with R = 0.25 (minimum indentation). b, Experiment IINT-R with R = 0.50 (intermediate 
indentation). c, Experiment IMAX-R with R = 0.62 (maximum indentation). d, Experiment IINT-NR with 
R = 1.00 (intermediate indentation and no rollback).  
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Supplementary Fig. 4 | Three-dimensional perspective views of four experiments simulating 
Asian deformation with different velocity ratios R = (vI - vWP)/(vI + vWP) showing the surface 
topography. The results are shown for the end of each experimental run. a, Experiment IMIN-R with R 
= 0.25 (minimum indentation). The maximum topography difference between mountain ranges in the 
experimental Himalaya-Tibet region and undeformed foreland is 1.0-1.9 mm, scaling to 3.5-6.7 km in 
nature (using the scaling as described in Table 2). b, Experiment IINT-R with R = 0.50 (intermediate 
indentation). The maximum topography difference between mountain ranges in the experimental 
Himalaya-Tibet region and undeformed foreland is 1.5-2.6 mm, scaling to 5.3-9.2 km in nature. c, 
Experiment IMAX-R with R = 0.62 (maximum indentation). The maximum topography difference 
between mountain ranges in the experimental Himalaya-Tibet region and undeformed foreland is 2.8-
4.0 mm, scaling to 9.9-14.1 km in nature. d, Experiment IINT-NR with R = 1.00 (intermediate indentation 
and no rollback). The maximum topography difference between mountain ranges in the experimental 
Himalaya-Tibet region and undeformed foreland is 4-5.2 mm, scaling to 14.1-18.3 km in nature. The 
maximum topography values for experiments IMIN-R and IINT-R in a and b are reasonable and 
comparable to values in nature (Tibetan Plateau at ~5 km elevation and mountains up to 8-9 km high), 
the values for experiments IMAX-R and IINT-NR in c and d are higher than the values in nature. 
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Supplementary Fig. 5 | Top views of experiment IINT-R (with R = 0.50, intermediate indentation) 
showing the finite horizontal normal strain (εXX + εYY) and deformed model grid at four different 
times during the evolution of the model. a, 10 hours corresponding to ~12.5 Myr (~middle-late 
Eocene). b, 20 hours corresponding to ~25 Myr (~late Oligocene). c, 30 hours corresponding to ~37.5 
Myr (~middle Miocene). d, 40 hours corresponding to ~50 Myr (~present). 
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Supplementary Fig. 6 | Top views of experiment IMIN-R (with R = 0.25, minimum indentation) 
showing the finite horizontal normal strain (εXX + εYY) and deformed model grid at four different 
times during the evolution of the model. a, 10 hours corresponding to ~12.5 Myr (~middle-late 
Eocene). b, 20 hours corresponding to ~25 Myr (~late Oligocene). c, 30 hours corresponding to ~37.5 
Myr (~middle Miocene). d, 40 hours corresponding to ~50 Myr (~present). 
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