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Supplementary Figures
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Supplementary Figure 1. Firing characteristics of simulation model. The network of

Hodgkin-Huxley type neurons exhibit the irregular firing and the skewed distribution of firing rates,

which are consistent with the chaotic dynamics of the balanced network models1,2. (A) Raster

plot of the firing activity of 100 neurons (sampled from 1,000 neurons of Hodgkin-Huxley type

neurons) for 10 seconds of biological time (black: Excitatory neurons; gray: Inhibitory neurons).

(B) Histograms of the firing rates of excitatory and inhibitory neurons. (C) Firing irregularity

measured in terms of the local variation of the interspike intervals Lv3.

2



 0

 30

 60

 90

-50  0  50

From 4 to 3

 0

 50

 100

 150

-50  0  50

From 10 to 5

 0

 20

 40

 60

-50  0  50

From 11 to 8

 0

 20

 40

 60

-50  0  50

From 12 to 3 

 0

 30

 60

 90

-50  0  50

From 12 to 7 

 0

 20

 40

 60

-50  0  50

From 13 to 10

 0

 20

 40

 60

-50  0  50

From 14 to 1

 0

 50

 100

 150

-50  0  50

From 15 to 14

 0

 20

 40

 60

-50  0  50

From 16 to 2

 0

 30

 60

 90

-50  0  50

From 17 to 2

 0

 50

 100

 150

-50  0  50

From 17 to 7 

 0

 30

 60

 90

-50  0  50

From 17 to 11

 0

 300

 600

 900

-50  0  50

From 17 to 14

 0

 50

 100

 150

-50  0  50

From 17 to 16

 0

 100

 200

-50  0  50

From 18 to 8

 0

 30

 60

 90

-50  0  50

From 19 to 10

 0

 30

 60

 90

-50  0  50

From 19 to 11

 0

 300

 600

 900

-50  0  50

From 19 to 12

 0

 50

 100

 150

-50  0  50

From 19 to 15

 0

 50

 100

 150

-50  0  50

From 19 to 17

 0

 20

 40

 60

-50  0  50

From 20 to 2

 0

 50

 100

 150

-50  0  50

From 20 to 5

 0

 50

 100

 150

-50  0  50

From 20 to 10

 0

 30

 60

 90

-50  0  50

From 20 to 13

 0

 50

 100

 150

-50  0  50

From 20 to 17

 0

 50

 100

 150

-50  0  50

From 20 to 19

Supplementary Figure 2. GLMCC fitting to cross-correlograms for detected connec-

tions in synthetic data of HH neurons (90 min in Fig. 3A). The slow part of the GLM

adapted to the data is depicted as a light green line. The coupling filter is separately depicted in

magenta, cyan, or gray, for the excitatory, inhibitory, or undetermined connection, respectively.
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Supplementary Figure 3. GLMCC fitting to cross-correlograms for detected connec-

tions in CA1 data (90 min in Fig. 5A). The slow part of the GLM adapted to the data is

depicted as a light green line. The coupling filter is separately depicted in magenta, cyan, or gray,

for the excitatory, inhibitory, or undetermined connection, respectively.
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Supplementary Figure 4. Dependence of the number of estimation errors on the

firing rate. The number of false positives (FPs) and false negatives (FNs) is counted for pairs of

neurons whose product of firing rates λpreλpost is close to a given value (deviation less than 10%).

The jittering method rarely produces FPs but instead it produces a large number of FNs. Our

GLMCC consistently produces a smaller number of errors in total than the two other estimation

methods. (A) Excitatory connectivity: FPs represent directed links that were mistakenly assigned

as excitatory, whereas FNs represent excitatory connections that were assigned as disconnected or

inhibitory. (B) Inhibitory connectivity: FPs represent directed links that were mistakenly assigned

as inhibitory, whereas FNs represent inhibitory connections that were assigned as disconnected or

excitatory.
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Supplementary Figure 5. Estimating connectivity for several different data sets. (A)

The original data (90 min in Fig. 3A). (B) Data obtained with a different inhibition level. (C)

Data obtained from Leaky Integrate-and-Fire neurons4,5. We confirmed that the method estimates

the connectivity accurately for these data as well.
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Cross-Correlation GLMCCJittering True connectivity

Supplementary Figure 6. Connections estimated from a network of 10,000 LIF neu-

rons. Connection matrices estimated with the conventional cross-correlation method, the jittering

method, and our GLMCC method are displayed in reference to the true connectivity of the simu-

lation data. In this simulation, connections of equal strength are wired randomly among neurons

(See Supplementary Note 1 for details). 100 neurons (80 excitatory and 20 inhibitory neurons) are

randomly sampled from 10,000 LIF neurons. Average number of excitatory inputs to each neuron:

100. Observation time windows: 5,400 s (90 min).
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0-2700 s 2700-5400 s

0-2700 s 2700-5400 s

B

A Synthetc data

Hippocampal data

Excitatory: 1st half; 2nd half; Overlap
                    12         13          10

Inhibitory: 1st half; 2nd half; Overlap
                    10         12          10

Excitatory: 1st half; 2nd half; Overlap
                   19         14           13

Inhibitory: 1st half; 2nd half; Overlap
                   29          23          14

Supplementary Figure 7. Neuronal connections estimated for the first and second

halves of the recording interval. There was significant overlap between the first and second

halves, not only for the simulation data, but also for the experimental data. (A) Connection matri-

ces estimated from synthetic data. (B) Connection matrices estimated from the rat hippocampal

data.

8



EP
SP

  (
m

V)

g       (mS/cm   )

IP
SP

  (
m

V)

2
AMPA

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
 0

 1

 2

 3

0 0.2 0.4 0.6 0.8 1

g       (mS/cm   )2
GABA

Supplementary Figure 8. Relationship between PSP and synaptic conductance. Ma-

genta and cyan lines represent the fittings given in equations (S9) in Supplementary note 4 for

EPSP and IPSP, respectively.
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Supplementary Note 1: Large-scale simulation using the NEST simulator

We conducted a large-scale simulation of a cortical network consisting of 10,000 neurons

(See Supplementary Tables 1, 2, and 3 for details). The network is defined by two neural

populations representing excitatory (8,000 neurons) and inhibitory (2,000 neurons) cells.

Each population consists of leaky integrate-and-fire model neurons with exponential synaptic

currents, which are randomly connected with a fixed number of outgoing connections termed

outdegree. The outdegree of an inhibitory neuron is twice as large as of an excitatory one.

Each neuron receives Poissonian background spike trains2,4,6 as well as an injected external

current to maintain network activity in the asynchronous irregular regime. Parameters of

the single neuron model are adopted from Zaytsev et al.,4 (See Supplementary Table 2).

All simulations are carried out with the NEST simulation tool7 using a grid constrained

solver and a computation step size: 0.1 ms on a compute cluster with 32 nodes each equipped

with 2 Intel Xeon E5-2680v3 processors (hyperthreading enabled) and interconnected by a

36-port QSFP QDR InfiniBand switch. An open source implementation of the network

simulation will be available at ModelDB (https://senselab.med.yale.edu/modeldb/).

10



Supplementary Note 2: Derivation of the GLMCC from a two-body GLM

The GLMCC (equation 6 in the main text) can be derived from a two-body GLM de-

scribing individual neurons interacting with each other. This is given by the firing rates of

two neurons, λ1(t) and λ2(t):

λ1(t) = exp(u1(t) + J12s2(t)), (S1)

λ2(t) = exp(u2(t) + J21s1(t)), (S2)

where ui(t) represents extrinsic fluctuations for each neuron mediated through many

marginal neurons. Jij is the neuronal connection from the jth neuron to the ith neuron.

sj(t) represents a temporal profile of monosynaptic impact:

sj(t) =
∑
k

f(t− tjk), (S3)

where tjk is the time of the kth spike of the jth neuron. The monosynaptic interaction of

the timescale τ is modelled here with a fixed time profile: f(t) = exp(− t−d
τ
) for t > d and

f(t) = 0 otherwise, where d is the synaptic transmission delay.

If the precise time profiles of extrinsic fluctuations u1(t) and u2(t) are known, the mutual

interactions J12 and J21 may be estimated by fitting equations (S1) and (S2) to a pair

of spike trains. Detailed information for u1(t) and u2(t) may be available in some initial

sensory systems. In an analysis of retinal neural networks, information on optical stimuli was

efficiently utilized to estimate neuronal connectivity8. However, in cortical networks with

denser connectivity, the temporal fluctuations may be induced not only extrinsically but

also intrinsically and spontaneously because of mutual excitation between neurons9,10. Thus,

fluctuating inputs to individual neurons u1(t) and u2(t) are generally unavailable. Though

it is in principle possible to estimate external stimuli from the spike trains themselves, the

temporal resolution cannot be finer than the typical inter-spike interval. This means that

the influence of brain waves in subsecond time period cannot be estimated from spike trains

of a few Hz.

Nevertheless, systematic fluctuations in subsecond periods are actually observed in CC,

as demonstrated in Fig. 5B. This occurs because the CC is made by piling up spikes of one

neuron that occurred in the neighbourhood of spikes of another neuron; accordingly, the

firing rate of one neuron is in practice multiplied by the total number of spikes of another
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neuron. To make the most of this information, we derive another GLM that may adapt to

the CC data.

A CC of spike trains generated from the underlying rates (S1) and (S2) is given as

c(t) = λi(t+ s)λj(s), (S4)

where the over-line · · · represents the time-average over s. By separating the time dependent

fluctuations as ui(t) = u0
i + δui(t) and ignoring the higher order terms in the cumulant of

CC, we obtain the GLMCC (equation(S5)):

c(t) = exp (a(t) + Jijf(t) + Jjif(−t)), (S5)

where a(t) represents the fluctuation induced by the external stimuli:

a(t) = u0
i + u0

j + δui(t+ s)δuj(s). (S6)

Thus a(t) represents a large-scale modulation of the CC caused extrinsically and carried

out by marginal neurons. The monosynaptic impacts Jij and Jji originally defined in the

two-body GLM (equations (S1) and (S2)) appear in GLMCC (equation (S5)).
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Supplementary Note 3: The Levenberg-Marquardt method

The Levenberg-Marquardt (LM) method, which interpolates between the Newton method

and the gradient descent method works efficiently to maximize a function. Here, we apply

this method to maximizing the log posterior distribution function log p(θ) ≡ log p(θ|{tk})

defined by the equation (10). The LM algorithm is given as

θk+1 = θk − [H(log p(θk)) + cLMdiag (H(log p(θk)))]
−1∇ log p(θ), (S7)

where θk is the kth iteration parameters, ∇ log p and H(log p) are the gradient and Hessian,

respectively, and diag(H) is a matrix consisting of the diagonal element of the Hessian

matrix. If the posterior distribution log p(θk+1) increases with the iteration rule (S7), θ is

updated and the parameter cLM is multiplied by η; otherwise, θ is not updated but cLM

is multiplied by η−1. We set the initial value cLM = 10−4 and η = 0.1 and repeated the

iteration until log p(θk+1)− log p(θk) < 10−4. Because the gradient and Hessian are obtained

analytically4, one iteration (S7) requires only the computation of the order of O(N), where

N is the number of spikes contained in the CC.

A set of parameters of our GLMCC, θ, consists of J12, J21, and {a(t)}. The function {a(t)}

is treated as a set of values {a(t1), a(t2), · · · , a(tM)} discretized at 1 [ms] in an interval of

[−W,W ] = [−50, 50] [ms], where M = 100 is the number of intervals.
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Supplementary Note 4: Translating synaptic conductance into postsynaptic

potential (PSP)

Our numerical simulation was performed on a network of Hodgkin−Huxley type neurons

whose synaptic connections are given in terms of conductance. Even with a fixed conduc-

tance, PSP may vary depending on the voltage of the postsynaptic neuron as well as the

firing activity of the presynaptic neuron. To represent conductance in terms of PSP, we

must estimate the typical level of PSP induced by the given conductance level. This was

done by setting the membrane voltage of the postsynaptic neuron at the resting level and

the firing rate of the presynaptic neuron at 3 Hz.

The typical excitatory PSP (EPSP) and inhibitory PSP (IPSP) were calculated using a

neuron model:

dV

dt
= −geff(V − Eeff) + IAMPA/GABA(t), (S8)

where geff = 0.27 mS/cm2 and Eeff = −67 mV are the effective conductance and resting

voltage, respectively, and IAMPA/GABA(t) is a synaptic current mediated by either the AMPA

or GABA receptor, respectively representing excitatory or inhibitory synapses. This model

is known to reproduce the sub-threshold voltage trace of HH-type neurons and cortical

neurons recorded in vitro11,12. Typical EPSP (mV) and IPSP (mV) values were well-fitted

by the following equations (Supplementary Fig. 8):

EPSP = 13.1 gAMPA, IPSP =
9.5 gGABA

3.2 + gGABA

, (S9)

On the basis of these empirical relations, the model conductances gAMPA and gGABA are

translated into EPSP and IPSP, respectively.
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Supplementary Table 1. Model description after Nordlie et al.,13: Large-scale cortical network

Model Summary

Populations 2 populations, one of which consisting of excitatory, the other of inhibitory neurons

Connectivity random connectivity with fixed outdegree for each neuron

Neuron model leaky integrate-and-fire (LIF), fixed absolute refractory period

Synapse model exponential post-synaptic current

Input independent homogenous Poisson spike trains, constant injected current

Measurement spiking activity

Populations

Population size 8, 000 excitatory, 2, 000 inhibitory neurons

Neuron and synapse model

Subthreshold dynamics dV
dt = − V

τm
+ I(t)

Cm
, Isyn = we−(t−t∗−d)/τsynθ(t− t∗ − d).

Spiking If V (t−) < Vth and V (t+) ≥ Vth,

1. Set t∗ = t and V (t) = Vres, and 2. Emit spike with time stamp t∗.

Connectivity

Type fixed outdegree,

i.e. for each neuron number of outdegree target-neurons drawn with replacement

Weights fixed excitatory and inhibitory weights

Delays d fixed delay
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Supplementary Table 2. Parameters: Large-scale cortical network

Neuron parameters

τm 20 ms membrane time constant

τr 2 ms absolute refractory period

τs 0.5 ms postsynaptic current time constant

Cm 0.45 pF membrane capacity

Vres 0 mV reset potential

Vth 20 mV firing threshold

Synapse parameters

wex 2 mV synaptic efficacy in maximal EPSP value

g 7.5 relative inhibitory synpatic efficacy

d 2 ms synaptic delay
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Supplementary Table 3. Variants of outdegree with corresponding inputs; average incoming

excitatory conenctions to a neuron are 10, 20, 50, 100, and 200

Outdegree of excitatory neurons 12 25 62 125 250

Outdegree of inhibitory neurons 24 50 124 250 500

Poisson input to excitatory neurons in Hz 550 550 550 550 550

Poisson input to inhibitory neurons in Hz 600 600 600 600 650

Injected current to excitatory neurons in pA −0.32 −0.28 −0.19 −0.06 0.31

Injected current to inhibitory neurons in pA −0.32 −0.28 −0.19 −0.06 0.3
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