Title: Alkaline Phosphatase Treatment of Acute Kidney Injury in an Infant Piglet Model of Cardiopulmonary Bypass with Deep Hypothermic Circulatory Arrest

Supplementary Figures

<u>Authors</u>: Jesse A. Davidson^{1*}, Ludmila Khailova¹, Amy Treece², Justin Robison¹, Danielle E. Soranno¹, James Jaggers³, Richard J. Ing⁴, Scott Lawson⁵, Suzanne Osorio Lujan¹

Institutions: ¹University of Colorado Denver, Department of Pediatrics; ²University of Colorado Denver, Department of Pathology; ³University of Colorado Denver, Department of Surgery; ⁴University of Colorado Denver, Department of Anesthesiology; ⁵Children's Hospital Colorado, Heart Institute

*<u>Corresponding Author</u>:

Jesse A. Davidson, MD, MPH, MSc Address: 13123 East 16th Ave, Box 100, Aurora, CO 80045 Phone: (303) 524-4709 Email: jesse.davidson@childrenscolorado.org

Supplemental Figure S1: Differences in physiologic parameters between animals undergoing CPB/DHCA compared to anesthesia controls. CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest

Supplemental Figure S2: Distribution of pre-euthanasia serum lactate levels in animals exposed to CPB/DHCA versus anesthesia-only controls. CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest

Supplemental Figure S3: Distribution of pre-euthanasia VIS in animals exposed to CPB/DHCA versus anesthesia-only controls. CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest; VIS=vasoactive inotropic score

Supplemental Figure S4: Distribution of relative kidney tissue KIM-1 mRNA levels in animals exposed to CPB/DHCA versus anesthesia-only controls. CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest; KIM-1=kidney injury molecule-1

Supplemental Figure S5: Distribution of relative kidney tissue IL-6 mRNA levels in animals exposed to CPB/DHCA versus anesthesia-only controls. CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest; IL-6=interleukin-6

Supplemental Figure S6: Distribution of pre-euthanasia serum creatinine levels in animals with and without histologic evidence of acute kidney injury (kidney injury score 1-4 vs 0).

Supplemental Figure S7: Distribution of pre-euthanasia serum NGAL levels in animals with and without histologic evidence of acute kidney injury (kidney injury score 1-4 vs 0). NGAL=neutrophil gelatinase-associated lipocalin

Supplemental Figure S8: Distribution of relative kidney tissue NGAL mRNA grouped by histologic kidney injury score (kidney injury score 0 vs 1-2 vs 3-4). P-value for Kruskal Wallis testing among multiple groups NGAL=neutrophil gelatinase-associated lipocalin

Supplemental Figure S9: Distribution of pre-euthanasia urine NGAL/creatinine ratios in animals with and without histologic evidence of acute kidney injury (kidney injury score 1-4 vs 0). NGAL=neutrophil gelatinase-associated lipocalin

Supplemental Figure S10: Distribution of relative kidney tissue KIM-1 mRNA levels in animals with and without histologic evidence of acute kidney injury (kidney injury score 1-4 vs 0). KIM-1=kidney injury molecule-1

Supplemental Figure S11: Distributions of pre-euthanasia lactate, VIS, and heart rate in animals undergoing CPB/DHCA with high dose AP compared to the remaining CPB/DHCA animals or anesthesia controls. VIS=vasoactive inotropic score; CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest; AP=alkaline phosphatase

Supplemental Figure S12: Distribution of pre-euthanasia serum NGAL in animals undergoing CPB/DHCA with high dose AP compared to the remaining CPB/DHCA animals or anesthesia controls. NGAL= neutrophil gelatinase-associated lipocalin; CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest; AP=alkaline phosphatase

Supplemental Figure S13: Distribution of pre-euthanasia urine NGAL in animals undergoing CPB/DHCA with high dose AP compared to the remaining CPB/DHCA animals or anesthesia controls. NGAL= neutrophil gelatinase-associated lipocalin; CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest; AP=alkaline phosphatase

Supplemental Figure S14: Distribution of pre-euthanasia urine NGAL/creatinine ratios in animals undergoing CPB/DHCA with high dose AP compared to the remaining CPB/DHCA animals or anesthesia controls. NGAL= neutrophil gelatinase-associated lipocalin; CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest; AP=alkaline phosphatase

Supplemental Figure S15: Distribution of relative kidney tissue NGAL mRNA levels in animals undergoing CPB/DHCA with high dose AP compared to the remaining CPB/DHCA animals or anesthesia controls. NGAL= neutrophil gelatinase-associated lipocalin; CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest; AP=alkaline phosphatase

Supplemental Figure S16: Distribution of relative kidney tissue KIM-1 mRNA levels in animals undergoing CPB/DHCA with high dose AP compared to the remaining CPB/DHCA animals or anesthesia controls. KIM-1=kidney injury molecule-1; CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest; AP=alkaline phosphatase

Supplemental Figure S17: Distribution of relative kidney tissue IL-6 mRNA levels in animals undergoing CPB/DHCA with high dose AP compared to the remaining CPB/DHCA animals or anesthesia controls. IL-6=interleukin-6; CPB/DHCA= cardiopulmonary bypass with deep hypothermic circulatory arrest; AP=alkaline phosphatase; NS=not significant on Kruskal Wallis testing for differences among groups