Genetic Advances in COPD: Insights from COPDGene

Margaret F. Ragland^{*1}, Christopher J. Benway^{*2}, Sharon M. Lutz³, Russell P. Bowler⁴, Julian Hecker⁵, John E. Hokanson⁶, James D. Crapo⁴, Peter J. Castaldi², Dawn L. DeMeo^{2,7}, Craig P. Hersh^{2,7}, Brian D. Hobbs^{2,7}, Christoph Lange⁵, Terri H. Beaty⁸, Michael H. Cho^{2,7}, Edwin K. Silverman^{2,7}

Online Supplement

Details Regarding the COPDGene Study Population:

The Genetic Epidemiology of COPD study (COPDGene) began enrollment in January 2008 with enrollment ending in July 2011. Five-year follow-up data collection was completed and 10-year follow-up is now underway. The study includes 10,198 individuals with inclusion criteria of age 45 to 80 years old and at least a 10 pack-year smoking history. Individuals who self-identified as non-Hispanic white or African American were enrolled. Subjects were recruited via advertisements at outpatient clinics, word of mouth communication, and outreach to community groups and churches at 21 clinical sites across the United States. Data collected includes detailed medical history, respiratory symptoms, exposure questionnaires, demographics, functional measures (six minute walk distance), lung function (spirometry before and after bronchodilator), and quantitative chest computed tomography (CT) scans (at both full inspiration to total lung capacity and relaxed exhalation to functional residual capacity). In order to include the full range of COPD subjects, individuals diagnosed with asthma in either the COPD or smoking control groups were included in the study. Further, potential participants were not excluded based on spirometric bronchodilator responsiveness. Exclusion criteria include pregnancy, history of other lung disease (pulmonary fibrosis, extensive bronchiectasis, cystic fibrosis), previous surgical excision of at least one lung lobe, metal in the chest, recent exacerbation of COPD treated with antibiotics or steroids, recent eye surgery, recent myocardial infarction, recent hospitalization for other reason, recent chest or abdominal surgery, inability to use albuterol, multiple self-described racial categories, history of chest radiation therapy, and first or second degree relative already enrolled in the study.

Table E1. Description of study po	pulations described in this review
-----------------------------------	------------------------------------

Study	Total Subjects	COPD Cases	Non- cases	Male	Female	Description
COPDGene,	10371	3786*	6585 [†]	5524 (53%)	4847 (47%)	Enrolled 10,198 subjects of
all subjects						non-Hispanic white or African American ancestry, aged 45-
COPDGene, Non- Hispanic Whites	6933	2878*	4055†	3630 (52%)	3303 (48%)	80 years old, with a minimum of 10 pack-years of smoking and no other lung disease; 108 non-smoking controls and 65 subjects ineligible due to
COPDGene, African Americans	3438	908*	2530 [†]	1894 (55%)	1544 (45%)	bronchiectasis or interstitial lung disease were also enrolled.
GenKOLS	1929	973‡	9561	1051 (54%)	878 (46%)	Norwegian Genetics of Chronic Obstructive Lung Disease; subjects include Caucasians aged >40 years, current and former smokers with ≥ 2.5 pack-yrs of smoking history and no severe α 1-antitrypsin deficiency.
NETT	389 (in COPD genetics studies)	389‡	-	250 (64%)	139 (36%)	The National Emphysema Treatment Trial; multicenter clinical trial to evaluate lung volume reduction surgery. Subjects had severe airflow obstruction and evidence of emphysema by CT and were all former-smokers.
NAS	472 (in COPD genetics studies)	-	472¶	472 (100%)	0 (0%)	Normative Aging Study; longitudinal study of healthy men established in 1963; smoking controls were of self- reported white ancestry and at least 10 pack-years of cigarette smoking with no evidence of airflow obstruction on most recent spirometry
ECLIPSE	2746	2164 [§]	582	1411 ^{††} (65%)	750 ^{††} (35%)*	Evaluation of COPD Longitudinally to Identify Predictive Surrogate End- points; a large observational study of COPD patients and controls conducted at 46

						centres in 12 countries aimed at defining COPD phenotypes and identifying biomarkers and/or genetic parameters that help to predict disease progression
SPIROMICS	2877	1766#	1111**	1520 (53%)	1357 (47%)	Subpopulations and Intermediate Outcome Measures in COPD Study; smoking history ≥20 pack- years or <1 pack-year.
CHARGE (Studies included in lung function genetics publications described in this review)	37957	-	-	16593 (44%)	21364 (56%)	Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium; includes 5 prospective cohort studies from the United States and Europe: the Age, Gene/Environment Susceptibility (AGES)— Reykjavik Study, the Atherosclerosis Risk in Communities (ARIC) Study, the Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), and the Rotterdam Study (RS).
SpiroMeta	20288	-	-	8600 (42%)	11688 (58%)	Included 14 studies of individuals of European ancestry; all individuals had measures of FEV1 and FVC and smoking status recorded.
MESA- SHARe	8224	313 [‡] (not including Chinese)	1834 [¶] (not including Chinese)	1147 ^{††} (53%)	1000 ^{††} (47%)	Multi-Ethnic Study of Atherosclerosis; combined participants of MESA Lung, MESA Family, and MESA Air Pollution Studies comprised of approximately 33% White, 31% African American, 26% Hispanic, and 9% Chinese individuals; a longitudinal study of subclinical cardiovascular disease
ICGC	63192	15256 [‡]	47936 [¶]	31162 (49%)	32030 (51%)	International COPD Genetics Consortium; combination of 26 cohorts. Cases were based on pre-bronchodilator evidence of moderate-to- severe airflow limitation by modified GOLD criteria and

						controls had normal spirometry.
BiLEVE	48943	9498 [‡]	9748 [¶]	9986 (52%) ^{††}	9260 (48%) ^{††}	UK Biobank Lung Exome Variant Evaluation consortium; subset of UK Biobank; COPD status defined by spirometry; includes both heavy and never-smokers.

* GOLD Status 2/3/4 with a post-bronchodilator forced expiratory volume in 1 s (FEV1) less than 80% of the predicted value and the ratio between FEV1 and forced vital capacity (FVC) less than 0.7

† GOLD Stage 1, PRISm (preserved FEV1/FVC but reduced FEV1) and smokers and non-smokers with normal spirometry

 \ddagger FEV1 < 80% and FEV1 to FVC ratio of < 0.7

¶ FEV1 \ge 80% and FEV1/FVC \ge 0.7

§ Baseline post-bronchodilator FEV1 < 80% of the reference value and FEV1/FVC \leq 0.7 and current or ex-smokers with a smoking history of \geq 10 pack-years

|| Baseline post-bronchodilator FEV1 > 85% of the reference value and FEV1/FVC > 0.7; and current or ex-smokers with a smoking history \geq 10 pack-years and non-smokers

Post-bronchodilator FEV1/FVC < 0.7; and current or ex-smokers with a smoking history of \geq 20 pack-years

** Post-bronchodilator FEV1/FVC > 0.7 for current or ex-smokers with a smoking history of \geq 20 pack-years and non-smokers (< 1 pack-year smoking) with pre-bronchodilator FEV1/FVC > 0.7

Table E2. Summary of Genetic Findings in COPDGene African American subjects

Hobbs et al.	As part of this large, multi-cohort study of COPD status, a separate
2017 ¹⁹	analysis including only African-ancestry subjects (including 910
	cases and 1,566 controls from COPDGene) was performed. No
	unique genome-wide significant association signals were identified.
	Of the 22 lead variants from the combined meta-analysis across
	racial groups, the three most significant associations in this African-
	ancestry study were SNPs near THSD4 (p = 5.1×10^{-5}), CHRNA5 (p
	= 2.2 x 10 ⁻³), and <i>ADGRG6</i> (p = 5.3 x10 ⁻³).
Lutz et al.	In a GWAS for post-bronchodilator lung function, 3,260 COPDGene
2015 ²³	AA subjects were analyzed. The small number of genome-wide
	significant associations were all imputed SNPs, with low minor allele
	frequency (<5 %), and in a region with no other non-imputed SNPs.
	Of the significant results for FEV1/FVC in the meta-analysis, the
	three most significant associations in COPDGene AAs were near
	CHRNA5 (p = 3.14×10^{-6}), CHRNA3 (p = 6.02×10^{-6}), and TGFB2
	$(p = 5.24 \times 10^{-5}).$
Cho et al.	Meta-analysis of COPDGene NHW and AA subjects
2015 ²⁷	for emphysema and airway quantitative imaging phenotypes did not
	identify significant signals unique to AAs.
Castaldi et al.	GWAS of local histogram patterns analyzed 3,158 COPDGene AA
2014 ²⁹	subjects alone and as combined meta-analysis with NHW/s From
	the server generate wide similies there is the meta such size three
	the seven genome-wide significant loci in the meta-analysis, three

	exhibited narrower GWAS peaks in AAs (near CHRNA5, CYP2A6,
	and <i>VWA8</i>).
El-Boueiz et al.	Analyzed 2,955 COPDGene AA subjects as part of GWAS meta-
2017 ³⁰	analysis for emphysema distribution. Of the seven genome-wide
	significant loci for emphysema distribution in the meta-analysis, the
	most significant locus in COPDGene AAs was a variant near
	TRAPPC9 associated with the upper-third/lower-third emphysema
	percentage ratio (p = 4.98×10^{-6}).
McDonald et al.	Performed a GWAS of resting oxygen saturation of COPDGene
2014 ³⁴	AAs with COPD (n = 820). Reported five genome-wide significant
	associations: one variant near $FOXG1$ (p = 4.9 x 10 ⁻⁸), two near
	<i>LINC00928</i> (p = 4.8×10^{-9} , 2.2 x 10^{-8}), and two near <i>TICRR</i> (p = 2.5
	x 10 ⁻⁸ , 4.6 x 10 ⁻⁸).
Lee at al.	COPDGene AAs were incorporated in a GWAS meta-analysis for
2014 ³⁷	chronic bronchitis, leading to increasingly significant signals at
	FAM13A, AGPDG1, CHRNA3, and EFCAB4A loci.
Lee et al.	As part of a GWAS meta-analysis for pulmonary artery enlargement
2015 ³⁹	(PAE), 754 AA COPD cases and 1,749 AA control subjects were
	analyzed. Comparing COPD subjects with and without PAE, the
	meta-analysis identified significantly associated variants near
	IREB2/AGPHD1 and GALC. Comparing COPD PAE subjects to
	smokers with normal spirometry, the most significant signal in the
	meta-analysis and COPDGene AAs only was near CHRNA5 (poverall
	$= 6.93 \times 10^{-10}$, $p_{AA} = 9.26 \times 10^{-5}$).
Hardin et al.	Identified genetic variants of bronchodilator response (BDR) in 811
2016 ⁴⁶	COPDGene AA subjects. In African Americans, several variants in
	the genes CDH13, SGCD and GOLGA8B demonstrated genome-
	wide significance for their association with the response to β 2-

	agonists. The associated SNPs were of low minor allele frequency
	(<5%). It was also reported that there was a small but significant
	difference between AAs and NHWs in the response to inhaled β 2-
	agonists.
Begum et al.	Identified in COPDGene AAs a polymorphic CNV on chromosome
2016 ⁴⁷	5q35.2 located between two genes (FAM153B and SIMK1, but also
	harboring several pseudo-genes) giving genome-wide significance
	in tests of association with total lung capacity as measured by chest
	CT scans.
Begum et al.	Identified a CNV component (a hemizygous deletion) on
2016 ⁴⁸	chromosome 3p26.1 associated with two quantitative phenotypes
	related to smoking behavior among African Americans.
Foreman et al.	Demonstrated that the heterozygous PiMZ genotype for alpha-1
2017 ⁵⁷	antitrypsin in African Americans was associated with lower lung
	function, including FEV1 percent predicted and FEV1/FVC.

Table E3. Summary of Genome-wide Significant Associations with COPD-relatedPhenotypes

Study	Phenotype	Chr	rsID	Nearest Gene	Effect Allele	P value
Manichaikul et al. 2014 ²⁵	Percent emphysema	12	rs7957346	SNRPF/CCDC38	с	2.20E-08
		6	rs10947233	PPT2	Т	3.20E-08

	Upper-lower lobe					
	emphysema ratio	19	rs10411619	MAN2B1	Т	1.10E-09
		4	rs7698250	DHX15	Т	1.80E-10
		17	rs7221059	MGATA5B	С	2.70E-08
	Percent					
Cho et al.	emphysema at -950					
2015 ²⁷	HU	4	rs13141641	HHIP	Т	1.70E-12
		15	rs55676755	CHRNA3	С	2.40E-09
		6	rs2070600	AGER	Т	4.60E-09
		8	rs75200691	DLC1	Т	9.70E-09
		14	rs45505795	SERPINA10	С	1.40E-08
	15 th Percentile of					
	Lung Density					
	Histogram (Perc15)	8	rs74834049	DLC1	A	6.00E-10
		4	rs13141641	HHIP	Т	8.40E-10
	Wall Area %	4	rs142200419	MIR2054	Т	4.60E-09
	Square Root of					
	Wall Area of 10 mm					
	internal perimeter					
	airways (Pi10)	6	rs2070600	AGER	Т	3.50E-09
	Gas-trapping on					
	expiratory CT at -					
	856 HU	21	rs55706246	LINC00310	A	1.30E-08
Castaldi et al.	Local histogram:					
2014 ²⁹	Normal	15	rs17486278	CHRNA5	A	8.30E-13

		4	rs138641402	HHIP	A	1.70E-09
		1	rs1690789	TGFB2	С	2.90E-08
		11	rs17368659	MMP12	G	1.10E-08
	Local histogram:					
	moderate					
	centrilobular					
	emphysema	15	rs114205691	CHRNA3	С	3.10E-13
		19	rs56113850	CYP2A6	Т	1.30E-09
		11	rs17368582	MMP12	G	2.70E+09
		1	rs1690789	TGFB2	С	7.90E-09
	Local histogram:					
	severe centrilobular					
	emphysema	15	rs9788721	AGPHD1	Т	1.80E-13
		17	rs379123	MYO1D	Т	1.50E-08
	Local histogram:					
	panilobular					
	emphysema	15	rs11852372	AGPHD1	A	1.50E-10
		13	rs9590614	VWA8	G	1.10E-08
	Upper – Lower					
El-Boueiz et al.	Lobe Emphysema					
2017 ³⁰	(Diff950)	15	rs138544659	CHRNA3/5	Т	9.87E-15
		4	rs13141641	HHIP	Т	1.76E-11
	(Upper Lobe Emphysema)/(Lowe					
	r Lobe Emphysema					
	(Ratio950)	4	rs13141641	HHIP	Т	6.34E-18

		15	rs12914385	CHRNA3/5	Т	1.72E-17
						0.405.00
		4	rs2645694	SOWAHB	I	2.42E-08
		8	rs75755010	TRAPPC9	A	3.43E-08
		10	rs35374984	KIAA1462	A	3.83E-08
Halper-						
Stromberg et al.	Visual assessment					
2017 ³¹	of CT	15	rs2656072	IREB2	G	6.30E-09
	%LAA-950	15	rs2656072	IREB2	G	4.50E-08
McDonald et al.						
2014 ³⁴	Oxygen saturation	14	rs6576132	FOXG1	A	4.90E-08
		15	rs8038108	LINC00928	С	4.80E-09
		15	rs116033091	LINC00928	Т	2.20E-08
		15	rs8025537	TICRR	С	2.50E-08
		15	rs147566087	TICRR	Т	4.60E-08
Lee et al. 2014 ³⁷	Chronic bronchitis	4	rs2869967	FAM13A	С	5.61E-10
		4	rs2045517	FAM13A	Т	5.63E-10
		4	rs7671167	FAM13A	Т	5.58E-09
		4	rs2904259	FAM13A	С	6.25E-09
		11	rs34391416	EFCAB4A	A	6.11E-10
		11	rs147862429	CHID1	Т	2.90E-10
		11	rs13909846	CHID1	Т	5.67E-09
		11	rs143705409	AP2A2	G	7.19E-10
		11	rs185786041	AP2A2	С	8.44E-10

		11	rs117455145	AP2A2	G	8.50E-10
	Pulmonary artery					
	enlargement,					
Lee et al. 2015 ³⁹	COPD	15	rs7181486	IREB2	с	2.10E-08
		15	rs656219465	IREB2	G	2.12E-08
		15	rs17483929	IREB2	А	2.24E-08
		15	rs2009746	IREB2	G	2.25E-08
		15	rs72738718	IREB2	С	2.37E-08
		15	rs72736802	IREB2	Т	2.72E-08
		14	rs7140285	GALC	Т	3.75E-08
		15	rs8034191	AGPHD1	С	4.06E-08
		15	rs55983731	IREB2	Т	4.39E-08
		15	rs17483686	IREB2	T	4.74E-08
		15	rs17483721	IREB2	С	4.90E-08
	D have a state					
	Pulmonary aftery					
	enlargement,					
	COPD vs. smokers					
	w/ normal					
	spirometry	15	rs17486278	CHRNA5	С	6.93E-10
Hancock et al.	Nicotine					
2015 ⁴⁵	dependence	20	rs2273500	CHRNA4	С	8.00E-09
		20	rs6011779	CHRNA4	С	1.40E-08
		20	rs4809294	CHRNA4	A	3.80E-08
Hardin et al.						
2016 ⁴⁶	Bronchodilator	6	rs17575208	EPHA7	А	8.92E-09
	responsiveness					

as absolute					
volume of FEV1					
(BDRABS)					
	16	rs115067260	CDH13	A	5.05E-09
	17	rs140948272	PITPNA	С	5.24E-09
bronchodilator					
responsiveness					
as % of baseline					
FEV1					
(BDRBASE)	5	rs10056066	SGCD	А	4.86E-08
bronchodilator					
responsiveness					
as % of predicted					
FEV1					
(BDRPRED)	16	rs114132812	CDH13	А	1.19E-08
	15	rs76677753	GOLGA8B	A	1.90E-08