1	Cobaviruses – a new globally distributed phage group infecting
2	Rhodobacteraceae in marine ecosystems
3	
4	Vera Bischoff ¹ , Boyke Bunk ² , Jan P. Meier-Kolthoff ² , Cathrin Spröer ² , Anja Poehlein ³ , Marco Dogs ¹ ,
5 6	Mary Nguyen ⁴ , Jörn Petersen ² , Rolf Daniel ³ , Jörg Overmann ² , Markus Göker ² , Meinhard Simon ¹ , Thorsten Brinkhoff ¹ and Cristina Moraru ^{1*}
7	
8 9	¹ Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky –Str. 9 -11, D- 26111 Oldenburg
10	² Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,
11	Inhoffenstraße 7 B, 38124 Braunschweig
12	³ Georg-August-University Goettingen, Institute of Microbiology and Genetics, Department of
13 14	Genomic and Applied Microbiology & Goettingen Genomics Laboratory, Grisebachstr. 8, D-37077 Goettingen
15	⁴ Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The
16	University of New South Wales, Kensington, NSW, Australia
17	
18	*corresponding author:
19 20	Cristina Moraru, email: liliana.cristina.moraru@uni-oldenburg.de, telephone: 0049 441 798 3416 Fax +49-(0)441-798-3438
21	
22	Supplementary information
23	

24 Experimental procedures

25 *Cultivation media.*

26 Liquid cultures of the bacterial host, Lentibacter sp. SH36 (1), were grown in artificial saltwater 27 medium (1x ASW) (24.32 g/l NaCl, 10 g/l MgCl₂x6H₂O, 1.5 g/l CaCl₂x2H₂O, 0.66 g/l KCl, 4 g/l Na₂SO₄, 28 2.38 g/l HEPES, 0.6 g/l peptone, 0.3 g/l yeast extract, 84 mM KBr, 40 mM H₃BO₃, 15 mM SrCl₂, 40 mM 29 NH₄Cl, 4 mM KH₂PO₄, 7 mM NaF, pH 7.5), which was autoclaved and completed before use with 1 ml/l 30 of sterile filtered multi vitamin solution (after (Balch et al. 1979)), 0.25 ml/l of sterile filtered trace element solution A (1.5 g FeCl₂x4H₂O in 10 ml 25 % HCl and 250 ml MilliQ water) and 0.1 ml/l of 31 32 autoclaved trace element solution B (19 mg/l CoCl₂x6H₂O, 10 mg/l MnCl₂x2H₂O, 7 mg/l ZnCl₂, 3.6 mg/l 33 Na2MoO4x2H2O, 2.4 mg/l NiCl2x6H2O, 0.6 mg/l H3BO3, 0.2 mg/l CuCl2x2H2O).

The solid media used for plaque assays was Marine Broth. This media had the following recipe. 5.0 g/l peptone, 1.0 g/l yeast extract, 0.1 g/l C₆H₈FeO₇, 12.6 g/l MgCl₂x6H₂O, 3.24 g/l Na₂SO₄, 19.45 g/l NaCl, 2.38 g/l CaCl₂x2H₂O, 0.55 g/l KCl, 0.16 g/l NaHCO₃, 0.01 g/l Na₂HPO₄x2H₂O, 0.008 g/l KBr, 0.034 g/l SrCl₂x6H₂O, 0.022 g/l H₃BO₃, 0.007 g/l Na₂SiO₃x3H₂O, 0.0024 g/l NaF, 0.0016 g/l NH₄NO₃.

38

39 Purification of ICBM1 and ICBM2 phages.

Bacterial cells and their debris from the phage enrichments were removed by a centrifugation step
 (15 min, 4000 x g, 20 °C), followed by 0.2 μm filtration (0.2 μm, Rotilabo-syringe filters, Carl Roth) of
 the supernatant. The ICBM1 and ICBM2 phages were isolated from the enriched phage fractions by
 obtaining single phage plaques.

44 To obtain single plaques, serial dilutions $(10^{\circ}, 10^{-1}, \text{ etc.})$ were prepared from the phage fractions 45 by mixing with ASW base (ASW media without yeast extract, peptone and vitamins). 100 μ l of phage 46 dilution were mixed with 280 μ l of exponentially growing host culture (OD = 0.2-0.3) and incubated for 47 15 min on ice. Afterwards, the mixture was transferred to 3 ml MB-soft agar (0.6 % low melting point 48 Biozym Plaque GeneticPure agarose, Biozym, kept warm at 37°C), mixed by brief vortexing and poured 49 onto the bottom MB agar layer (1.8 % agar). After drying of the top layer, the plates were incubated 50 for three days at 20 °C. For isolation, when phage plaques were observed as clearing zones within the 51 grown bacterial lawn, they were picked with sterile Pasteur pipettes and incubated overnight in 500 µl 52 ASW base at 4 °C. After subsequent centrifugation (10 min, 10000 x g, 4 °C), the supernatant was used 53 for a next round of plaque assays. This procedure of plaque assay, picking of plaques and re-plating 54 was repeated three times to ensure purity of the newly isolated phages.

55 The ICBM1 and ICBM2 phages were stored either as phage lysate at +4°C or as glycerol stock of 56 free phages or infected cells at -80°C (for details, see below).

57 Spot assays.

To estimate phage numbers, serial dilutions $(10^0, 10^{-1}, \text{ etc.})$ were prepared from the phage fractions by mixing with ASW base (ASW media without yeast extract, peptone and vitamins). 280 µl of exponentially growing host culture (OD = 0.2-0.3) were mixed with 3 ml MB-soft agar (kept warm at 37°C) and poured onto the bottom MB agar layer. After drying of the top layer, 10 µl of each phage fraction dilution were pipetted on top as droplets. The plates were incubated at 20 °C.

63

64 Preparation of phage ICBM1 and ICBM2 stocks.

In two Erlenmeyer flasks, 20 ml 1xASW medium was inoculated with an exponentially growing
 Lentibacter sp. SH36 culture (final OD = 0.006). One culture was infected with 300 μl of the phage
 ICBM1 supernatant, the other was not infected and regarded as control. Both cultures were incubated
 at 20 °C and 100 rpm overnight, until bacterial lysis in the infected culture was indicated by low OD₆₀₀

- 69 (compared with the control culture) and disrupted cell particles. The phage fraction was obtained by
- ~70~ removing cells and debris by centrifugation (15 min, 4000 x g, 20 °C), followed by 0.22 μm filtration of
- the supernatant. The phage fraction was stored at +4°C. For long term storage, two types of glycerol
- stocks were prepared: i) stock of free phage particles (1 part phage fraction and 1 part MB media with
- $\,$ 73 $\,$ 50% glycerol) and ii) stock of infected host cells (1 part infected cells 375 μl phage fraction added to
- 74 375 μl host culture, 15 min on ice for absorption and 1 part MB media with 50% glycerol).
- 75

76 **TEM.**

77 Phages were concentrated from the ICBM1 or ICBM2 phage lysate by polyethylene glycol (PEG) 78 precipitation. 150 ml phage fraction resulting from two subsequent infections (see above) were 79 incubated for 2 h at 4 °C with PEG (final concentration 10%) and NaCl (final concentration 0.6 mM). 80 After centrifugation for 2 h at 7197 x g and 4 °C, the supernatant was discarded and the pellet 81 resuspended in 500 µl SM buffer (100 mM NaCl, 8 mM MgSO4, 50 mM Tris-HCl pH 7.4) in total. For 82 resuspension of the phages, 30 min incubation at 4 °C followed. PEG was removed by mixing with an 83 equal volume of 100 % chloroform, shaking for 5 min and incubation on ice for 5 min. After 84 centrifugation (10 min, 3000 x g, 4 °C), the upper layer was collected.

- 85 Further concentration and purification of the phages was done by cesium chloride gradient ultracentrifugation. In UltraClear[™] centrifuge tubes, a density gradient was set up from cesium 86 87 chloride solutions with different densities (from bottom up): 1.5 ml of 1.65 g/ml, 2 ml of 1.5 g/ml, 2 ml 88 of 1.4 g/ml, 1 ml of 1.2 g/ml. The PEG concentrated phage fraction was transferred on top. 89 Ultracentrifugation was run for 4 h at 20 °C and 25000 rpm (Beckman, SW 41 Ti). Afterwards, the 90 visible band corresponding to the phages was collected with syringe and needle through the side wall 91 of the ultracentrifuge tube (~500 µl). Removal of cesium chloride was done by dialysis with Slide-A-92 Lyzer® G2 Dialysis Cassettes 10K MWCO (ThermoScientific) against ASW base for 21 h with buffer 93 exchange after 3 h and 18 h.
- 94 30 μl of phage ICBM1 or ICBM2 concentrate were pipetted on top of a carbon coated grid (Formvar 95 162, 200 mesh) and phages were allowed to absorb for 3 min, followed by staining with 30 μl 96 uranylacetate (2 %) or ammonium molybdate (2 %) for 45 sec and gentle removal of the liquid with 97 filter paper. After air drying for 15 min, the grids were visualized with the transmission electron 98 microscope Zeiss EM902A. Images were documented with the Proscan High Speed SSCCD camera and 99 analyzed using the software ImageSP viewer (Version 1.2.5.16).
- 100

101 DNA extraction from the ICBM1 phage.

102 Phages were concentrated from the phage lysates by precipitation with polyethylene glycol. For this 103 purpose, 4 x 25 ml phage lysate prepared as above (with one exception: to avoid phage loss, cells and 104 debris were removed only by centrifugation, and not by filtration) were mixed with 50% PEG (final 105 concentration 10 %) and 5M sodium chloride (final concentration 0.6 M) and incubated for 2 h at 4 °C. 106 After centrifugation (2 h, 7197 x g, 10 °C) the phage pellets were resuspended in 500 µl SM buffer 107 (100 mM NaCl, 8 mM MgSO4, 50 mM Tris-HCl pH 7.4) each. Extracellular DNA was removed by 108 incubating the phage concentrates with 0.04 units/µl of Turbo DNase (Invitrogen, Ambion) for 30 min 109 at 37°C, followed by enzyme inactivation by incubating for 10 min at 75 °C with 15 mM EDTA. Further, 110 the phage DNA was extracted using the ChargeSwitch gDNA Mini Bacteria Kit (ThermoFisher Scientific), 111 according to the instructions manual, including the with the RNase digestion, but with the exception 112 of no lysosyme in the first step. The DNA was finally eluted in 1 ml elution buffer. The concentration 113 and quality of the obtained DNA was checked fluorometrically with Qubit 2.0 and the Qubit® dsDNA HS Assay, spectrophotometrically with Nanodrop 2000 spectrophotometer and visually by regular gel
electrophoresis (0.7 % agarose gel, 50 V, SYBR Gold staining).

116

117 DNA extraction of the intracellular phage fraction from the phage enrichments.

118 To extract the intracellular phage fraction from the phage enrichment, when lysis was observed, the 119 cells from the enrichments and the positive control were retrieved by centrifugation (15 min, 4000 x 120 g, 20 °C). The cell pellets were embedded in agarose plugs by mixing with SeaKem Gold Agarose for 121 PFGE, Lonza Rockland Inc. (final concentration 0.8 %), distributing the mixture into 100 µl molds and 122 allowing it to solidify for 30 min at 4 °C. Plugs were collected in a 50 ml Falcon tube and incubated 123 overnight at 50 °C in 2 ml ESP buffer (1 % N-laurylsarcosine, 1 mg/ml proteinase K, 0.5 M EDTA pH 9.0). 124 Afterwards, the ESP was discarded, the plugs were washed three times with TE buffer (10 mM Tris-HCl 125 pH 8.0, 2 mM EDTA pH 9.0) and stored in TE buffer at 4 °C until further use. The DNA from the agarose 126 plugs was separated during agarose gel electrophoresis (1 % SeaPlaque GTG Agarose, Lonza Rockland 127 Inc., TAE buffer - 40 mM Tris-acetate, 1 mM EDTA, pH 8.3, migration 2 h at 60 V). Afterwards, the gel 128 was cut into two halves. One half was stained with Ethidium bromide bath (1 μ g/ml, 30 min) and 129 documented with BioDocAnalyze system (Biometra). The distance from the loading pocket to the 130 phage DNA band was measured and used to localize the phage DNA band in the unstained half and to 131 cut it out from the gel. The agarose pieces were stored overnight in TE buffer (10 mM Tris-HCl pH 8.0, 132 5 mM EDTA pH 9.0), followed by agarose digestion with 1 unit of β-agarase (New England Biolabs Inc.), 133 according to the manufacturer's protocol. Undigested agarose was removed by centrifugation for 134 10 min at 20,000 x g. The obtained supernatants were concentrated to 100 μ l each using 100 kDa 135 Amicon Ultra centrifugal filters (0.5 ml volume, Merck Millipore) and then stored at -20 °C. Afterwards, 136 an additional purification step was performed using the ChargeSwitch gDNA Mini Bacteria Kit 137 (ThermoFisher Scientific) for DNA extraction. This was done according to the kit manual (including the 138 RNase digestion, but without lysozyme) and the DNA was finally eluted in 100 µl elution buffer. Concentration and quality of the obtained DNA were checked with Qubit 2.0 fluorometer, Nanodrop 139 140 2000 spectrophotometer and by regular gel electrophoresis (0.7 % agarose gel, 50 V, Ethidium 141 bromide staining).

142

143 Illumina genome sequencing.

144 The extracted DNA from the ICBM1 and ICBM2 phages and the phage enrichments was used to generate Illumina NexteraXT shotgun paired-end sequencing libraries, which were sequenced with a 145 146 MiSeq instrument and the MiSeq reagent kit version 3, as recommended by the manufacturer 147 (Illumina, San Diego, CA, USA). For quality-filtering, Trimmomatic version 0.35 (Bolger et al. 2014) or 148 Bbduk from the BBTools package (BBTools (<u>https://jgi.doe.gov/data-and-tools/bbtools/</u>) were used. 149 The assembly was performed with the SPAdes genome assembler software version 3.9.0 (Bankevich 150 et al. 2012) and the read coverage of the whole assembly determined with QualiMap version 2.1 151 (García-Alcalde et al. 2012). In addition, the read mapping of enrichments reads on individual phage 152 genomes was done BBMap from BBTools package.

153

154 *PacBio library preparation, sequencing and assembly.*

SMRTbell template library was prepared according to the instructions from Pacific Biosciences, Menlo
 Park, CA, USA, following the Procedure & Checklist Greater than 10 kb Template Preparation and
 Sequencing. Briefly, for preparation of 10kb libraries ~4µg of each phage DNA was sheared using a

- 158 Covaris S220, Woburn, MA, USA according to the manufacturer's instructions. DNA was end-repaired
- and ligated overnight to barcoded SMRTbell adapters applying components from the DNA/Polymerase

160 Binding Kit P6 from Pacific Biosciences (Menlo Park, CA, USA). Reactions were carried out according to the instructions of the manufacturer. One part VB-1 SMRTbell template was combined with 2.5 parts 161 162 Ex53-3 SMRTbell template. BluePippin Size-Selection to greater than 4 kb was performed according to 163 the manufacturer's instructions (Sage Science, Beverly, MA, USA). Conditions for annealing of 164 sequencing primers and binding of polymerase to purified SMRTbell template were assessed with the Calculator in RS Remote, PacificBiosciences, Menlo Park, CA, USA. SMRT sequencing was carried out 165 on the PacBio RSII (PacificBiosciences, Menlo Park, CA, USA) taking one 240-minutes movie for one 166 167 SMRT cell. Long read genome assemblies of all three phages have been performed using the HGAP4 168 Whitelisting protocol (https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP-169 Whitelisting-Tutorial) within SMRTPipe 2.3.0 applying a genome size of 100kb and a minimum subread 170 length of 1kb after demultiplexing using the RS_Subreads.1 protocol contained within SMRT Portal 171 2.3.0.

173 **Results**

174 Retrieval of similar phage genomes from public sequence datasets.

175 To find cultured and environmental relatives of the three phages, the following datasets were queried 176 for related sequences: i) the Tara Ocean Viromes (Brum et al. 2015), ii) the Earth Virome (Paez-Espino 177 et al. 2016), iii) the Global Ocean Virome (GOV, (Roux et al. 2016)), iv) the IMG/VR (Paez-Espino et al. 178 2017) and v) the Environmental Viral Genomes (Nishimura et al. 2017). Six highly similar genomes 179 belonged to cultivated phages: the P12053L phage (38889 bp) infecting Celeribacter marinus 180 IMCC12053^T, the SIO1 phage (39 898 bp) infecting *Roseobacter* sp. SIO67 and four other SIO1 related strains, infecting Roseobacter sp. SIO67 and Roseobacter sp. GAI-101 (Angly et al. 2009). The last four 181 182 phages had incomplete genomes, with several regions of uncertainty (long N stretches). Therefore, 183 they were included in the phylogenetic analysis as draft genomes, but excluded from further genomic 184 analysis. Several other genomes represented environmental fragments of different lengths. Only complete or close to complete genomes (>35 kbps, no long N stretches) were considered for further 185 186 phylogenetic and genomic analyses. One of these circularized due to terminal redundancies, indicating 187 genome completeness - EnvX (40752 bp), and five of them were incomplete, but close in size to the 188 complete genomes and contiguous - Env9 (41607 bp), EnvY (36003 bp), EnvZ (35824 bp), Env8 (38447 189 bp) and Env14 (35006 bp). EnvX, EnvZ, EnvZ, Env8 and Env9 were retrieved from IMG/VR /Earth Virome 190 datasets. Env14 was retrieved from the GOV dataset (see Table 2).

191 Genome termini and genome rearrangements..

192 ICBM1, ICBM2 and ICBM3. We sequenced the three phages by Illumina and PacBio, as isolates 193 or from the enrichments (Table S2). The three phage genomes were assembled as circular contigs of ~ 194 40kbps. Sequencing coverage data was used to determine the ends of the genomes. With Illumina 195 sequencing, a sharp drop in coverage was noticed for ICBM1 and ICBM2 genomes, which could indicate 196 linear, non-circularly permuted genomes, with cohesive ends (Merrill et al. 2016), (Figure S3). On the 197 other hand, for both genomes, we noticed a region of low coverage and high %GC (see Figure S3). The 198 low coverage could be due to the library preparation with the NexteraXT kit, which is known to have 199 low performance at the genome ends (Illumina 2015). Furthermore, the high %GC could contribute to 200 the drop in coverage (Aird et al. 2011). To elucidate the genome ends, we turned to PacBio single 201 molecule real time (SMRT) sequencing, because native DNA is used and thus, no PCR bias is observed. 202 Furthermore, much longer read lengths can be retrieved, which facilitates assembly, especially 203 important for mixed samples, for example the phage enrichments. Thus, the artificial redundancies 204 produced by the assembler at the end of the three phage contigs were larger, having a size of ~5kb, 205 which is equal to the mean subread length achieved with our PacBio sequencing approach (Figure S4). 206 In all three phage genomes, short DTRs of about 160 bps were easily recognized as spikes in coverage 207 (Figure S4 A). To delineate the final genome structure of the three phages, artificial redundancies were 208 removed and the phage genome was adjusted to their direct terminal repeats (Figure S4 C). The exact 209 genome start and stop positions were derived from long read mappings by a detailed inspection of the 210 respective regions in Integrative Genome Viewer (Robinson et al. 2011) (Figure S5). The sharp drop in 211 coverage in the Illumina assemblies corresponded to a GC rich region of the DTRs (see Figure S3), and 212 thus, explained the apparent discrepancy between the Illumina and PacBio read coverage data.

213 We used the DTRs from ICBM1 to define the genome termini and rearrange the gene order 214 accordingly, not only for the SIO1 phage, but also for the P12053L and environmental cobaviruses.

SIO1. A search with the ICBM1 DTR in the SIO1 genome revealed the presence of a similar region
 (80% nucleotide identity) at position 8716-8891. Based on this approach, base 8716 from the original

SIO1 genome became base 1 in the reordered genome, with the left side being concatenated at the end of the right side, and the ICBM1 phage DTR homologous region being added also at the right end, as depicted in Fig. S5. Similar regions were found in all four SIO1-related phages isolated by (Angly et al. 2009), having 90% to 99% nucleotide identity with the SIO1 DTR.

P12053L. A search with the ICBM1 DTR in the P12053L genome found a similar region (~94% identity) at position 244-415. Therefore, the genome was rearranged in a similar way to SIO1, with base 244 becoming base 1. No gene rearrangement was necessary in this case. The DTR sequence was determined by homology to ICBM1 DTR and added at the right end of the genome also.

225 Environmental cobaviruses. For two of the environmental genomes (EnvX and Env9) we 226 determined the genome start by finding regions with high identity with the left region of the ICBM2 227 DTR (>70% over 49 nt, see Figure S9). However, the complete sequence of the DTRs could not be 228 established, because of the low similarity over the remaining alignment (~50% identity). Env9 was not 229 circular, but because we established the start at position 3404, we plotted the position 1-3403 at the 230 end of the genome in Figure 3. The remaining environmental genomes showed no regions of similarity 231 with the ICBM1 or ICBM2 phage DTRs, presumably due to their incompleteness. The phylogenetic 232 positioning both in the GBPD and terminate trees strongly support the presence of DTRs at as genome

233 termini for all the environmental genome.

234 Table S1: List of *Rhodobacteraceae* strains used for the host range assay.

<u>Name</u>	Strain designation	<u>Strain</u>	<u>Infected (- no, + yes)</u>
Antarctobacter heliothermus	EL-219	DSM 11445	-
Celeribacter baekdonensis	L-6	DSM 27375	-
Celeribacter indicus	P73	DSM 27257	-
Celeribacter marinus	IMCC12053	DSM 100036	-
Celeribacter neptunius	H 14	DSM 26471	-
Citreicella aestuarii	AD8	DSM 22011	-
Citreicella marina	CK-I3-6	DSM 26424	-
Dinoroseobacter shibae	5 Plasmids	DSM 16493	-
Huaishuia halophila	ZXM137	DSM 26270	-
Hwanghaeicola aestuarii	Y26	DSM 22009	-
Jannaschia donghaensis	DSW-17	DSM 102233	-
Jannaschia helgolandensis	Hel10	DSM 14858	-
Jannaschia pohangensis	H1-M8	DSM 19073	-
Jannaschia rubra	4SM3	DSM 16279	-
Leisingera aquimarina	R-26159	DSM 24565	-
Leisingera caerulea	13	DSM 24564	-
Leisingera daeponensis	TF-218	DSM 23529	-
Leisingera methylohalidivorans	MB2	DSM 14336	-
Lentibacter sp.	SH36		
Litoreibacter albidus	KMM 3851	DSM 26922	-
Litoreibacter arenae	GA2-M15	DSM 19593	-
Litoreibacter janthinus	KMM 3842	DSM 26921	-
Litorimicrobium taeanense	G4	DSM 22007	-
Loktanella cinnabarina	LL-001	DSM 29954	-
Loktanella fryxellensis	R-7670	DSM 16213	-
Loktanella hongkongensis	UST950701-009P	DSM 17492	-
Loktanella koreensis	GA2-M3	DSM 17925	-
Loktanella pyoseonensis	JJM85	DSM 21424	-
Loktanella salsilacus	R-8904	DSM 16199	-
Loktanella tamlensis	SSW-35	DSM 26879	-
Loktanella vestfoldensis	R-9477	DSM 16212	-
Maribius pelagius	B5-6	DSM 26893	-
Maribius salinus	CL-SP27	DSM 26892	-
Marinovum algicola	FF3	DSM 10251	-
Marinovum algicola	DG898	DSM 27768	-
Maritimibacter alkaliphilus	HTCC2654	DSM 100037	-
Nautella italica	R11	DSM 26436	-
Oceanibulbus indolifex	HEL-45	DSM 14862	-
Oceanicola batsensis	HTCC2597	DSM 15984	-
Oceanicola granulosus	HTCC2516	DSM 15982	-
Oceanicola nanhaiensis	SS011B1-20	DSM 18065	-
Octadecabacter temperatus	SB1	DSM 26878	-
Palleronia marisminoris	B33	DSM 26347	-
Pelagibaca bermudensis	HTCC2601	DSM 26914	-
Phaeobacter gallaeciensis	BS 107	DSM 26640	-
Phaeobacter inhibens		DSM 17395	-

Phaeobacter inhibens	Т5	DSM 16374
Phaeobacter inhibens	2.10	DSM 24588
Ponticoccus litoralis	CL-GR66	DSM 18986
Pseudophaeobacter arcticus	20188	DSM 23566
Pseudoruegeria lutimaris	HD-43	DSM 25294
Roseibacterium elongatum	Och 323	DSM 16469
Roseivivax isoporae	sw2	DSM 22223
Roseivivax roseus	BH87090	DSM 23042
Roseobacter denitrificans	Och 114	DSM 7001
Roseobacter litoralis	Och 149	DSM 6996
Roseovarius crassostreae	CV919-312, CVSP	DSM 16950
Roseovarius halocynthiae	MA1-10	DSM 27840
Roseovarius indicus	B108	DSM 26383
Roseovarius lutimaris	112	DSM 28463
Roseovarius marinus	HDW-9	DSM 25228
Roseovarius mucosus	DFL-24	DSM 17069
Roseovarius nubinhibens	ISM	DSM 15170
Ruegeria atlantica	1480	DSM 5823
Ruegeria conchae	TW15	DSM 29317
Ruegeria marina	ZH17	DSM 24837
Ruegeria pomeroyi	DSS-3	DSM 15171
Sagittula stellata	EE-37	DSM 11524
Salinihabitans flavidus	ISL-46	DSM 27842
Salipiger mucosus	A3	DSM 16094
Sedimentitalea nanhaiensis	NH52F	DSM 24252
Sediminimonas qiaohouensis	YIM B024	DSM 21189
Shimia haliotis	WM35	DSM 28453
Shimia marina	CL-TA03	DSM 26895
Sulfitobacter delicatus	KMM 3584	DSM 16477
Sulfitobacter dubius	KMM 3554	DSM 16472
Sulfitobacter litoralis	lso 3	DSM 17584
Sulfitobacter marinus	SW-265	DSM 23422
Sulfitobacter mediterraneus	CH-B427	DSM 12244
Sulfitobacter noctilucae	NB-68	DSM 100978
Sulfitobacter noctilucicola	NB-77	DSM 101015
Sulfitobacter pseudonitzschiae	H3	DSM 26824
Sulfitobacter sp.	EE-36	DSM 11700
Thalassobius aestuarii	JC2049	DSM 15283
Thalassobius maritimus	GSW-M6	DSM 28223
Thalassococcus halodurans	UST050418-052	DSM 26915
Thioclava dalianensis	DLFJ1-1	DSM 29618
Thioclava pacifica	TL 2	DSM 10166
Tranquillimonas alkanivorans	A34	DSM 19547
Tropicibacter multivorans	MD5	DSM 26470
Tropicibacter naphthalenivorans	C02	DSM 19561
Tropicimonas isoalkanivorans	B51	DSM 19548
Wenxinia marina	HY34	DSM 24838
Yangia pacifica	DX5-10	DSM 26894

-

_

_

_

-

-

_

-

_

-

-

Table S2: Sequencing and assembling phage genomes from isolates and enrichments

	Phage isolates	- sequenced by	Enrichments –	sequenced by
	Illumina PacBio		Illumina (S1 and	PacBio (S2 only)
			S2)	
ICBM1	yes	yes	not assembled	not assembled
ICBM2	yes	no	assembled in S2	assembled in S2
ICBM3	n.a.	n.a.	assembled in S1,	assembled in S2
			S2	

237

238

239 Table S3: Cobaviral genomes - % GC and length (bases).

Name	%GC	Sequence Length (bases)
vB_LenP_ICBM1	47.00%	40163
vB_LenP_ICBM2	47.80%	40907
vB_LenP_ICBM3	47.30%	40498
SIO1	46.20%	40072
P12053L	46.10%	39061
EnvX	40.20%	40752
EnvY	40.10%	36003
EnvZ	44.80%	35824
Env8	39.80%	38447
Env9	40.30%	41607
Env14	40.30%	35066

240

Table S4: Bi-directional rho-independent transcriptional terminators in the genomes of the Cobavirus group (blue - stems, red - loops).

phage	Terminat	Position	sequence	strand	delta G
	or name				
ICBM1	t1	15927-15979	CAAATAAGTAAAGCCCCCAAGGAGAAATCCAA	-	-13.84
			GGGGGCTaTTTCTTTGTGTAT		
ICBM1	t2	15930-15981	CACAAAGAAATAGCCCCCTTGGATTTCTCCTTGG	+	-13.64
			GGGCTTTACTTATTTGGA		
ICBM3	t1	15916-15968	CAAATAAGTAAAGCCCCCAAGGAGAAATCCAA	-	-13.84
			GGGGGCTaTTTCTTTATGTAT		
ICBM3	t2	15919-15970	CATAAAGAAATAGCCCCCTTGGATTTCTCCTTGG	+	-13.64
			GGGCTTTACTTATTTGGA		
ICBM2	t1	14733-14782	AACACAAAGAAGCCCCCAAGGAGAAATCCAAG	-	-12.64
			GGGGCTTTTGCTTGTCTA		
ICBM2	t2	14735-14784	GACAAGCAAAAGCCCCCTTGGATTTCTCCTTGG	+	-13.14
			GGGCTTCTTTGTGTTTA		
P12053L	t1	17261-17316	TAAACACAAAGAAGCCCCCAAGGATTTTACTCC	-	-14.09
			AAGGGGGCTTTTGCTTGTTCATC		
P12053L	t2	17265-17316	AACAAGCAAAAGCCCCCTTGGAGTAAAATCCTT	+	-12.99
			GGGGGCTTCTTTGTGTTTA		
SIO1	t1	15149-15204	TAAACACAAAGAAGCCCCCAAGGATTAATCTCC	-	-14.09
			AAGGGGGCTTTTGTTTGTCTATA		

SIO1	t2	15153-15204	GACAAACAAAAGCCCCCTTGGAGATTAATCCTT	+	-12.99
			GGGGGCTTCTTTGTGTTTA		
EnvX	t1	12131-12185	GAAATAAAGAAGAAGCCCCAAGGAGAAATCCT	-	12.06
			GAGGGGCTTTTTTATTACTCTTG		
EnvX	t2	12134-12187	GAGTAATAAAAAAGCCCCTCAGGATTTCTCCTT	+	-11.26
			GGGGCTTcTTCTTTATTTCTT		
EnvY	t1	12048-12102	GAAATAAAGAAGAAGCCCCAAGGAGAAATCCT	-	-12.06
			GAGGGGCTTTTTTATTACTCTTG		
EnvY	t2	12051-12104	GAGTAATAAAAAAGCCCCTCAGGATTTCTCCTT	+	-11.26
			GGGGCTTcTTCTTTATTTCTT		
Env8	t1	11722-11764	AGAAAAAGTAAGGGAGCCTAAGTAGCTCCCcTT	-	-10.60
			TTTTATACCT		
Env8	t2	11724-11765	GTATAAAAAAGGGGAGCTACTTAGGCTCCCTTA	+	-12.70
			СТТТТТСТТ		
Env9	t1	18115-18164	AAATAAAATAAACCCCCTTGGATTTCTCCTTGGG	-	-10.44
			GGTTTTTTCTTACTTG		
Env9	t2	18115-18169	CAAGTAAGAAAAACCCCCAAGGAGAAATCCA	+	-12.34
			AGGGGGTTTaTTTATTTCTTTT		
Env14	t1	12255-12297	TAAAAGAAGAAGGGAGCCTAAGTAGCTCCCcTT	-	-10.60
			TTTTTTATGC		
Env14	t2	12257-12298	ATAAAAAAAGGGGAGCTACTTAGGCTCCCTTC	+	-12.70
			ТТСТТТТАА		

245 Table S5: DTRs from related phages.

Group	phages	DTRs - length	DTRs - nucleotide identity (excluding gaps)	DTRs - alignment
	Acinetobacter phage		- 5ab3/	Identity
1	phiAB1	410	87%	C+ 1. NC_028675_DTR 41,117 41,314 41,52
	Acinetobacter phage phiAB6	421		C+ 2. NC_031086_DTR
2	Yersinia phage Berlin	227	05%	Identity 38,338 38,437 38,56
2	Yersinia phage Yep- phi	222	95%	C* 1. NC_008694_DTR 90 222 C* 2. NC_023715_DTR
3	Pseudomonad phage gh-1	217	92%	Identity 37,143 37,242 37,359 Image: Contract of the state of th
	Pseudomonas phage phiPSA2	216		C≠ 2. NC_024362_DTR
Δ	Yersinia phage phiA1122	148	80%	Identity 37,408 37,457 37,507 37,555 □▲ 1. NC_004777_DTR □
	Enterobacteria phage 13a	170		C ≥ 2. NC_011045_DTR
5	Citrobacter phage SH5	191	100%	Identity 50 100 191 □ ▲ 1. KU687351.1_DTR □ 0004_00132 00132 000314
5	Citrobacter phage SH4	191		C+ 2. NC_031018_DTR
	Klebsiella phage K11	180		Identity 1 49 99 149 180
6	Klebsiella phage vB_KpnP_KpV289	179	83%	C
	Enterobacteria phage	393		Identity
7	Klehsiella nhage K5	302	80%	C+ 1. NC_015719_DTR 200 309 392
	Enterobacteria phage	194		Identity
8	Kluyvera phage Kvp1	194	83% - 93%	C = 1. NC_011040_DTR C = 2. NC_011534_DTR IIII I IIII I C = 3. NC 022744 DTR IIII I IIII I IIII I IIII I IIII I IIII
	Pseudomonas phage	413		Identity
9	Pseudomonas phage phiKMV	414	98% - 100%	C* 1. E0056923_DTR C* 2. NC_005045_DTR C* 3. NC_011107_DT
	Pseudomonas phage PT2	488		
	Klebsiella phage KP34	216		Identity ▷ 1. NC_013649_DTR
10	Klebsiella phage vB_KpnP_KpV41	214	71% - 87%	C* 2. NC_028670_DTR IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
10	Klebsiella phage vB_KpnP_KpV475	243	/ 1/0 - 0/ /0	
	Klebsiella phage vB_KpnP_KpV71	246		

	Enterobacteria phage	178		ldentity			
11	Citrobacter phage CR44b	183	940/ 020/	№ 1. NC_011042_DTR № 2. NC_023576_DTR № 3. NC_031123_DTR № 4. NC_031042_DTR			
11	Citrobacter phage SH3	184	64% - 95%	L# 4. NC_031943_D1			
	Escherichia phage vB_EcoP_GA2A	165					
	Pseudomonas phage LUZ24	184		Identity De 1. NC_010325_DTR			
	Pseudomonas phage phiIBB-PAA2	183	88% - 99%	C* 2. NC_022971_DTR C* 3. NC_023583_DT			
12	Pseudomonas phage TL	207		C+ 4. NC_028933_DTR	11 11		
	Pseudomonas phage vB_PaeP_C2- 10_Ab22	184					
	Pseudomonas phage PhiCHU	185					
	Enterobacteria phage T7M	230		Identity [* 1. JX421753 - T7M			
	Yersinia phage phiYeO3-12	232			D* 2. NC_001271_DTR D* 3. NC_003298_DTR D* 4. NC_010807_DTR		
	Enterobacteria phage T3	231		C+ 5. NC_025451_DTR C+ 6. NC_031066_DTR			
13	Salmonella phage phiSG-JL2	230	83% - 100%	▷ 7. NC_031092_DTR	111		
	Yersinia phage vB_YenP_AP5	235					
	Citrobacter phage SH1	231					
	Citrobacter phage SH2	243					

Organism	Contig accession	Predicted prophage position	Prophage score	Spanin position	Spanin accession	Spanin associated to prophage
Thalassobius						
gelatinovorus strain DSM						
5887	NZ_FOFW01000006	189621-213252	intact	208342208716	WP_058264408.1	yes
Salinihabitans flavidus		none, too short				
strain DSM 27842	FODS01000069	contig		13231676	SEP27667	unknown
Ruegeria mobilis strain						
DSM 23403	NZ_FNNK01000005	157938-194421	intact	178515178898	WP_065332003	yes
Ruegeria mobilis strain						
M41-2.2	NZ_LNWW01000004	700765-722736	incomplete	721841722224	WP_065329472	yes
Silicibacter sp. TM1040	NC_008044.1	1376648-1397748	intact	13969551397338	WP_011538643	yes
Rhodovulum sp. MB263	NZ_CP020384	862737-879872	incomplete	865553865897	WP_080615430	yes
Rhodovulum		many, not associated				
sulfidophilum strain AB26	MSYQ01000001	with the spanin		19048881905244	OLS44559.1	no
Phaeobacter sp. P97	NZ_CP016364	1925407-1946347	incomplete	19452361945619	WP_072504847	yes
Phaeobacter inhibens						
strain S4Sm	NZ_LOHU01000025	4300-27092	questionable	50285411	WP_061047696	yes
Phaeobacter sp. S26	NZ_JSWK0100008	125831-162508	questionable	140888141271	WP_040172280	yes
Phaeobacter inhibens						
DSM 16374	NZ_KI421498	1832819-1867875	intact	18540391854422	WP_027247877	yes
Phaeobacter inhibens						
DSM 17395	NC_018290.1	1905561-1926725	intact	19255961925973	WP_014880219	yes
Leisingera sp. ANG-M7	NZ JWLI0100008.1	60402-97630	intact	7788578262	WP 052272404	yes

Table S6: Prophage predictions using Phaster for the contigs containing the spanin gene

Table S7: Environmental distribution of *Celeribacter marinus* IMCC 12053, based on the 16S rRNA blast hits in the NR Blast databases from

252 NCBI, with minimum 99.0% identity.

253

Blast hit				% nucleotide	Alignment	
Accession	Isolation source	Country	coordinates	Identity	length	evalue
AJ391195.1	Adriatic Sea			100	1338	0
AJ391196.1	Adriatic Sea			100	1360	0
CP012023.1	coastal surface seawater of the Yellow Sea	South Korea		100	1471	0
AM990783.1	sea water North Western Mediterranean Sea	France	42.29 N 3.08 E	99.858	1407	0
AY697903.1	seawater	Antarctica		100	1410	0
NR_133717.1	seawater, Yellow Sea	South Korea		99.853	1359	0
HM140667.1	toxigenic diatom Pseudo-nitzschia, Puget Sound	WA (Main Basin)		99.29	1409	0
GU061042.1	Yellow Sea intertidal beach	Korea		99.283	1394	0
GU061048.1	Yellow Sea intertidal beach	Korea		99.211	1394	0
HM140672.1	Puget Sound	WA (Main Basin)		99.219	1409	0
HM140674.1	Puget Sound	WA (Main Basin)		99.148	1409	0

254

Table S8: Environmental distribution of *Lentibacter* sp. SH36, based on the 16S rRNA blast hits in the NR Blast databases from NCBI, with minimum 99.0% identity.

Blast hit				% nucleotide	Alignment	
Accession	Isolation source	Country	coordinates	Identity	length	evalue
AJ391182.1	Adriatic Sea			100	1429	0
JQ269272.1	estuary zone of Jiulong River	China		99.508	1422	0
AF305498.1	German bight			99.502	1405	0
		Tasmania				
AY701455.1	Gymnodinium catenatum from Huon Estuary,	(Australia)		99.71	1381	0
DQ234098.2	mangrove, Danshui river estuary	Northern Taiwan		99.862	1452	0
DQ234152.2	mangrove, Danshui river estuary	Northern Taiwan		99.931	1452	0

DQ234180.2	mangrove, Danshui river estuary	Northern Taiwan		99.931	1452	0
DQ234196.2	mangrove, Danshui river estuary	Northern Taiwan		99.931	1452	0
DQ234202.2	mangrove, Danshui river estuary	Northern Taiwan		99.862	1452	0
DQ234210.2	mangrove, Danshui river estuary	Northern Taiwan		99.931	1452	0
DQ234244.2	mangrove, Danshui river estuary	Northern Taiwan		99.862	1452	0
AY145564.1	marine section of the Weser estuary	Germany		99.778	1350	0
EU799040.1	Newport Harbour, RI	USA	41.486 N 71.351 W	99.86	1428	0
EU799044.1	Newport Harbour, RI	USA	41.486 N 71.351 W	99.93	1428	0
EU799171.1	Newport Harbour, RI	USA	41.486 N 71.351 W	99.72	1428	0
EU799468.1	Newport Harbour, RI	USA	41.486 N 71.351 W	100	1403	0
EU799546.1	Newport Harbour, RI	USA	41.486 N 71.351 W	99.79	1428	0
EU799658.1	Newport Harbour, RI	USA	41.486 N 71.351 W	99.86	1428	0
EU800046.1	Newport Harbour, RI	USA	41.486 N 71.351 W	99.719	1426	0
FJ882054.1	North Sea, 2 m depth		54.420 N 6.480 E	99.717	1415	0
FJ154967.1	ocean water from Bohai Bay	China		99.93	1422	0
HM057661.1	ocean water from the Yellow Sea			99.93	1422	0
JQ712107.1	oil-contaminated seawater			100	1422	0
KJ094194.1	polluted marine sediments			99.848	1319	0
EF659446.1	Poole Harbour seawater			99.854	1371	0
	pretreatment systems for seawater reverse					
HM591431.1	osmosis process	South Korea		99.789	1423	0
	pretreatment systems for seawater reverse					
HM591461.1	Osmosis process	South Korea		99.93	1423	0
JE51/256 1	Cingdao	China		99.79	1426	0
ΔMQ/5553 1	sea water Adriatic sea		11 69 N 12 52 F	99 77/	1320	0
AM945553.1	sea water, Adriatic sea	Italy	44.09 N 12.52 E	<u> </u>	1323	0
ΔΜ945577 1	sea water. Adriatic sea		44.09 N 12.52 L	00 02/	1209	0
AM045572 1	sea water. Adriatic sea	Italy	11 60 N 12 52 E	00 075	1275	0
	sea water, Adriatic sea	Italy	44.03 N 12.32 E	99.925	1323	
AN1943360.1	sea waler, Aurialic sea	ιταιγ	44.05 N 12.32 E	99.774	1220	0

AM945584.1	sea water, Adriatic sea	Italy	44.69 N 12.52 E	99.696	1317	0
AM945585.1	sea water, Adriatic sea	Italy	44.69 N 12.52 E	99.699	1328	0
EU930869.3	sea water sample, Gwangyang Bay	South Korea		99.928	1385	0
AB496659.1	Seawater, Shizuoka, Shimoda, Oura Bay	Japan		100	1361	0
FJ425223.1	seawater			99.783	1384	0
			36.0276 N 120.1846			
FJ436731.1	seawater, coast of Qingdao	China	E	99.925	1328	0
		USA: San Diego,				
JQ195110.1	seawater; next to dolphin A, San Diego Bay	CA		99.844	1281	0
		USA: San Diego,				
JQ195194.1	seawater; next to dolphin A, San Diego Bay	CA		99.844	1283	0
		USA: San Diego,				
JQ195765.1	seawater; next to dolphin C, San Diego Bay	CA		99.922	1281	0
		USA: San Diego,				
JQ195767.1	seawater; next to dolphin C, San Diego Bay	CA		100	1281	0
		USA: San Diego,				
JQ196782.1	seawater; next to dolphin E, San Diego Bay	CA		100	1281	0
JQ712031.1	surface seawater offshore Qingdao	China		99.367	1422	0
JQ712040.1	surface seawater offshore Qingdao			99.93	1422	0
JQ712053.1	surface seawater offshore Qingdao			99.93	1422	0
JQ712057.1	surface seawater offshore Qingdao			100	1422	0
NR_108333.1	coastal region of Qingdao	China	36.027N 120.184E	100	1370	0

Table S9: Environmental distribution of *Roseobacter* sp. GAI101, based on the 16S rRNA blast hits in the NR Blast databases from NCBI, with minimum 99.0% identity.

Blast hit				% nucleotide	Alignment	
Accession	Isolation source	Country	coordinates	Identity	length	evalue
	500m depth water samples filtered on 0.22					
	micron filter paper; derived from the Southern					
JX529099.1	ocean iron fertilization experiment (LOHAFEX)		47.9533 S 15.1437 W	99.561	1367	0

	500m depth water samples filtered on 0.22				
	micron filter paper; derived from the Southern				
JX529112.1	ocean iron fertilization experiment (LOHAFEX)	47.9533 S 15.1437 W	99.634	1367	0
	500m depth water samples filtered on 0.22				
	micron filter paper; derived from the Southern				
JX529220.1	ocean iron fertilization experiment (LOHAFEX)	47.9533 S 15.1437 W	99.561	1367	0
	500m depth water samples filtered on 0.22				
	micron filter paper; derived from the Southern				
JX531118.1	ocean iron fertilization experiment (LOHAFEX)	47.5015 S 15.4450 W	99.561	1367	0
	500m depth water samples filtered on 0.22				
	micron filter paper; derived from the Southern				
JX531139.1	ocean iron fertilization experiment (LOHAFEX)	47.5015 S 15.4450 W	99.635	1368	0
	500m depth water samples filtered on 0.22				
	micron filter paper; derived from the Southern				
JX531386.1	ocean iron fertilization experiment (LOHAFEX)	47.5015 S 15.4450 W	99.415	1368	0
AJ278782.1	Antarctic seawater isolate		99.571	1399	0
EU016167.1	Arctic deep-sea sediment		99.719	1424	0
FJ889522.1	Arctic Ocean		99.58	1430	0
FJ889535.1	Arctic Ocean		99.579	1424	0
FJ889536.1	Arctic Ocean		99.579	1424	0
FJ889527.1	Arctic Ocean		99.51	1430	0
FJ889528.1	Arctic Ocean		99.511	1431	0
FJ889530.1	Arctic Ocean		99.368	1424	0
FJ889531.1	Arctic Ocean		99.28	1388	0
FJ889542.1	Arctic Ocean		99.298	1424	0
EU365544.1	Arctic seawater		99.58	1430	0
EU365589.1	Arctic seawater		99.65	1430	0
	chlrophyll maxima (~30m) water samples				
	filtered on 0.22 micron filter paper; derived				
	from the Southern ocean iron fertilization				
JX525417.1	experiment (LOHAFEX)	48.0329 S 15.7856 W	99.561	1367	0

	chlrophyll maxima (~30m) water samples					
	filtered on 0.22 micron filter paper; derived					
	from the Southern ocean iron fertilization					
JX525429.1	experiment (LOHAFEX)		48.0329 S 15.7856 W	99.707	1367	0
	chlrophyll maxima (~30m) water samples					
	filtered on 0.22 micron filter paper; derived					
	from the Southern ocean iron fertilization					
JX525500.1	experiment (LOHAFEX)		48.0329 S 15.7856 W	99.489	1370	0
	chlrophyll maxima (~30m) water samples					
	filtered on 0.22 micron filter paper; derived					
	from the Southern ocean iron fertilization					
JX525579.1	experiment (LOHAFEX)		48.0329 S 15.7856 W	99.634	1367	0
	chlrophyll maxima (~30m) water samples					
	filtered on 0.22 micron filter paper; derived					
	from the Southern ocean iron fertilization					
JX527826.1	experiment (LOHAFEX)		47.9533 S 15.1437 W	99.488	1368	0
	clay-like sticky sediment with cylindrical	Svalbard, Kongsfjord				
FN377731.1	plants/weeds on surface less than KB3	region	78.59 N 11.56 E	99.52	1459	0
KJ939484.1	continental shelf sediments of Bay of Bengal			99.56	1364	0
NR_043547.1	East Sea	Korea		99.217	1404	0
FR684971.1	marine biome, fjord, coastal water	Norway, Raunefjord	60.27 N 5.22 E	99.508	1423	0
			76°06'17.10''S/			
			169°12'45.36''E -			
			76°41'03.60"S/			
KJ475186.1	marine sediment, Ross Sea, Antarctica		169°11'30.66"E	99.634	1365	0
	Nansei-Shotō Trench off Miyako Island, Okinawa					
AB733557.1	Prefecture, southern Japan			99.719	1421	0
AY573043.1	Ny-Alesund, Svalbard, Norway	arctic	79° N, 12° E	99.579	1426	0
AY697915.1	seawater	Antarctica		99.37	1428	0
GQ358930.1	seawater from Kongsfjorden, Spitsbergen	Norway		99.579	1424	0
AF007257.2	seawater, Skidaway River			99.929	1414	0

			54°80' S and 68°13'			
AY794211.1	Soil from Ushuaia	Argentina	W	99.37	1429	0
			47–48° South and			
JX310158.1	Southern Ocean		15–17° West	99.04	1458	0
			47–48°S and 15–			
GU584137.1	water sample	Antarctica	17°W	99.588	1458	0
EF471650.1	whole surface water from Chesapeake Bay		39.13 N 76.33 W	99.719	1423	0
AY902203.1				99.489	1369	0
	500m depth water samples filtered on 0.22					
	micron filter paper; derived from the Southern					
JX529304.1	ocean iron fertilization experiment (LOHAFEX)		47.9533 S 15.1437 W	99.122	1367	0

Table S10: Environmental distribution of *Roseobacter* sp. SIO, based on the 16S rRNA blast hits in the NR Blast databases from NCBI, with 261 262 minimum 99.6% identity.

				%		
Blast hit				nucleotide	Alignment	_
Accession	Isolation source	Country	coordinates	Identity	length	evalue
	5m depth, the Gulf of Trieste,					
JX864948.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	5m depth, the Gulf of Trieste,					
JX865037.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	5m depth, the Gulf of Trieste,					
JX865038.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	5m depth, the Gulf of Trieste,					
JX865039.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	5m depth, the Gulf of Trieste,					
JX865040.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	5m depth, the Gulf of Trieste,					
JX865041.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	5m depth, the Gulf of Trieste,					
JX865044.1	northernAdriatic Sea, NE Mediterranean			99.688	320	1.16E-163
	5m depth, the Gulf of Trieste,					
JX865047.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	5m depth, the Gulf of Trieste,					
JX865055.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	5m depth, the Gulf of Trieste,					
JX865056.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	5m depth, the Gulf of Trieste,					
JX865060.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	5m depth, the Gulf of Trieste,					
JX865061.1	northernAdriatic Sea, NE Mediterranean			99.692	325	1.92E-166
	coastal hot spring, Kagoshima, Ibusuki					
AB703474.1	hot spring	Japan:		99.692	325	1.92E-166
	coastal hot spring, Kagoshima, Ibusuki					
AB703500.1	hot spring	Japan:		99.692	325	1.92E-166

AF007250.1	coastal seawater, Sapelo Island			99.686	318	1.50E-162
LT549272.1	corrosion biofilm Boothbay Harbor	USA:Maine	43.8443 N 69.6409 W	99.692	325	1.92E-166
LT549313.1	corrosion biofilm Boothbay Harbor	USA:Maine	43.8443 N 69.6409 W	99.692	325	1.92E-166
LT549329.1	corrosion biofilm Boothbay Harbor	USA:Maine	43.8443 N 69.6409 W	99.692	325	1.92E-166
LT549343.1	corrosion biofilm Boothbay Harbor	USA:Maine	43.8443 N 69.6409 W	99.692	325	1.92E-166
DQ234090.2	Danshui river estuary, mangrove	Northern Taiwan		99.692	325	1.92E-166
DQ234137.2	Danshui river estuary, mangrove	Northern Taiwan		99.692	325	1.92E-166
DQ234157.2	Danshui river estuary, mangrove	Northern Taiwan		99.692	325	1.92E-166
DQ234162.2	Danshui river estuary, mangrove	Northern Taiwan		99.692	325	1.92E-166
DQ234224.2	Danshui river estuary, mangrove	Northern Taiwan		99.692	325	1.92E-166
KC006265.1	estuary in middle of Jiulong River	China	24.26 N 117.127 E	99.69	323	2.48E-165
KC006295.1	estuary in middle of Jiulong River	China	24.26 N 117.129 E	99.692	325	1.92E-166
	Gut of Olive Flounder Paralichthys					
KT275136.1	olivaceus			99.692	325	1.92E-166
	inert artificial surfaces submerged in					
EF215736.1	marine water on Qingdao coast	China		99.692	325	1.92E-166
	lon=81.2699W, lat=31.3929N; surface					
	water collected on Jul 18, 2001, Sapelo					
	Island Microbial Observatory Dean					
AY712068.1	Creek Marsh sampling site	USA: Georgia		99.692	325	1.92E-166
AY937021.1	marine sediment Nagasaki	Japan:		99.692	325	1.92E-166
AY941090.1	marine sediment Nagasaki	Japan:		99.692	325	1.92E-166
KC462965.1	nature reserve Kullaberg	Sweden		99.692	325	1.92E-166
KC462968.1	nature reserve Kullaberg	Sweden		99.692	325	1.92E-166
EU799217.1	Newport Harbour, RI	USA	41.486 N 71.351 W	99.692	325	1.92E-166
EU799316.1	Newport Harbour, RI	USA	41.486 N 71.351 W	99.692	325	1.92E-166
EU799841.1	Newport Harbour, RI	USA	41.486 N 71.351 W	99.692	325	1.92E-166
	Northern Adriatic Sea, NE					
JQ432672.1	Mediterranean			99.692	325	1.92E-166

	Northern Adriatic Sea: Gulf of					
	Trieste, coastal seawater sample 10m					
KF185598.1	depth			99.692	325	1.92E-166
AY576710.1	northwestern Mediterranean Sea			99.692	325	1.92E-166
			48.5883 N 123.5037			
GQ347802.1	Saanich Inlet, 10 m depth		W	99.692	325	1.92E-166
AF190747.1	Scripps Institution of Oceanography Pier			100	325	4.13E-168
U64005.1	Scripps Pier			99.692	325	1.92E-166
AM945581.1	sea water	Italy:Adriatic sea	44.69 N 12.52 E	99.692	325	1.92E-166
HQ203887.1	seawater			99.692	325	1.92E-166
HM921237.1	seawater, Kiel Fjord		54°27′4N, 10°12′E	99.692	325	1.92E-166
FJ161222.1	Shandong coast	China		99.69	323	2.48E-165
FJ161239.1	Shandong coast, China			99.692	325	1.92E-166
	steel surfaces immerged in marine					
EF491274.1	waterof Qingdao Coast			99.692	325	1.92E-166
		Japan:Niigata, Urahama				
AB362414.1	surface seawater	coast		99.692	325	1.92E-166
		Spain:Mallorca Island,				
HE981601.1	surface seawater	Palma Harbour		99.688	321	3.21E-164
KP198349.1	surface seawater	USA: Cape Cod Bay	41.744 N 70.219 W	99.692	325	1.92E-166
GU061006.1	Yellow Sea intertidal beach	Korea		99.692	325	1.92E-166
GU061090.1	Yellow Sea intertidal beach	Korea		99.692	325	1.92E-166
GU061106.1	Yellow Sea intertidal beach	Korea		99.692	325	1.92E-166
AF365990.1		USA: off La Jolla, CA		99.692	325	1.92E-166
AY536559.1				99.692	325	1.92E-166
		USA: Bayboro Harbor,				
JN653206.1		Florida	27.76 N 82.63 W	99.692	325	1.92E-166

Table S11: Prophage prediction using Phaster for the contigs contain	ining the glutaredoxin gene

Organism	Contig accession	Predicted prophage position	Prophage score	Glutaredoxin position	Glutaredoxin accession	Glutaredoxin associated to prophage
Rhizobium sp. Leaf383	NZ_LMQD01000008	1407-72420	intact	3935339715	WP_082506598	yes
Sinorhizobium sp. LM21						
(plasmid)	KM659098	11856-47482	questionable	2615726360	AJW30150	yes
Hepatospora eriocheir						
strain GB1	LVKB01000119	none		38614241	ORD96177	
Hepatospora eriocheir						
strain GB2	LVKB01000120	none		30033317	ORD96175	

Table S12: Prophage prediction using Phaster for the contigs containing the RNR genes

		Predicted prophage	Prophage			RNR associated to
Organism	Contig accession	position	score	RNR position	RNR accession	prophage
Aminobacter sp. J41	NZ_JAGL01000009.1	44041-86811	intact	72083-74071	WP_024847845	yes
Inquilinus limosus MP06	NZ_JANX01000001.1	32458-86185	questionable	4740949382	WP_034830439	yes
Azorhizobium caulinodans		4097072-				
ORS 571	NC_009937.1	4138015	questionable	41226524124646	WP_012172112	yes
Microvirga flocculans		156454-				
ATCC BAA-817	NZ_JAEA01000002.1	179652	incomplete	163007164998	WP_027314944	yes
		8923271-				
Streptomyces sp. RTd22	NZ_CP015726.1	8946147	incomplete	89230158924970	WP_063728949.1	yes
Streptomyces sp.		231547-				
CB03238	NZ_NBCN01000010	250436	incomplete	227661229613	WP_084899922	in vicinity
Streptomyces sp. NRRL F-						
4489	NZ_LLZI01000124	13535-24084	incomplete	1944321374	WP_066977110	yes
Streptomyces rimosus						
subsp. rimosus strain		101674-				
NRRL WC-3904	NZ_JOCQ01000004	119267	incomplete	111002112933	WP_050514495	yes

Solirubrobacter sp.		344542-					
URHD0082	NZ AUEK0100007	357687	incomplete	307203309158	WP 051323998	in vicinity	
Labrenzia alexandrii DFL-							
11	EQ973124	3254-38475	questionable	1595518009	EEE42840	yes	
Methylobacterium sp.		581118-					
Leaf361	NZ_LMPY01000023.1	616465	questionable	594636596663	WP_082557943	yes	
Methylobacterium							
aquaticum plasmid							
pMaq22A_3p	NZ_AP014707	65911-85601	incomplete	8357185601	WP_060851403	yes	
Marinobacter similis		3645543-					
strain A3d10	CP007151.1	3690844	intact	36535413655502	AHI29708.1	yes	
Protochlamydia							
amoebophila strain EI2							
DB44_AM	NZ_JSAN01000012.1	none		2312243	WP_039355956	no	
Gonium pectorale isolate							
NIES-2863	LSYV01000168	none		3148437421	KXZ42284.1	no	
Volvox carteri f.							
nagariensis	NZ_JOCQ01000004.1	none		<195692>202991	XP_002955713	no	
Criblamydia sequanensis	NZ_CCEJ01000007	none		134416136428	WP_041017866	no	
Parachlamydia							
acanthamoebae strain							
Bn9	NZ_BAWW01000003	none		161269163278	WP_006342605	no	
Parachlamydia							
acanthamoebae strain							
OEW1 DB43_DW	NZ_JSAM01000017	none		1505117060	WP_006342605	no	
Parachlamydia							
acanthamoebae UV7	NC_015702	none		895276897285	WP_006342605	no	
Parachlamydia							
acanthamoebae str. Hall's							
coccus	NZ_ACZE01000088	none		1736919378	WP_006342605	no	
Estrella lausannensis	CWGJ01000019	none		124560126572	CRX38802	no	
Candidatus Rubidus		1811588-					
massiliensis	CCSC01000001	1828589	incomplete	14128881414906	CDZ80757	no	
Waddlia chondrophila	NC_014225	none		368424370439	WP_013181434	no	
Waddlia chondrophila							
2032/99	FR872643	none		2656028614	CCB90950	no	

Neochlamydia sp. TUME1	NZ_JRXI01000032	none	3203334045	WP_039383590	no
Neochlamydia sp. S13	NZ_BASK01001259	none	3627138283	WP_042242257	no
Neochlamydia sp. EPS4	NZ_JSDQ01000098	none	40266038	WP_044882767	no
Parachlamydia sp. C2	NZ_FCNU01000032.1	none	238258240270	WP_068471381	no
Candidatus					
Protochlamydia					
amoebophila UWE25	NC_005861	none	178729180741	WP_011174661	no
Candidatus					
Protochlamydia sp. W-9	NZ_BCPZ01000156.1	none	5065852670	WP_075883166	no
Candidatus					
Protochlamydia sp. R18	NZ_BASL01000738	none	15273539	WP_042281843	no

		1 2,000	4,000	6,000	8,000	10,000	12,000	14,000	16,000	18,000	20,000	22,000	24,000	26,000	28,000	30,000	32,000	34,000	36,000	38,000	40,498
	Consensus identity																				
	S1_ICBM3-like																				_
271	ICBM3													11							

- Figure S1: Pairwise genome comparison between ICBM3 and the ICBM3-like genome assembled from the S1 enrichment. In the alignment field, the differences are marked in black.
- 273 In the consensus identity field, the presence of mismatches is signaled in orange.

ICBM3__S1

S1-ICBM3-like-genome S1

Figure S2: Plots showing the read coverage along the phage genomes for the S1 and S2 phage enrichments. In black - coverage of reads with 100% identity. In red – coverage of reads with >95% identity. The small differences between ICBM3 and the ICBM3-like genome from S1 enrichment could be due to sequencing errors, as the coverage in the variable regions dropped sharply for the genome retrieved from S1, but not for ICBM3 (see Figure S1).

Figure S3: Illumina short read sequencing, distribution of reads along the assembled contigs for ICBM1 (A) and ICBM2 (B) phages. The position of the drop in coverage is indicated in

blue numbers. The magnifications show the region corresponding to the drop in coverage, with the corresponding %GC graph (blue line) and the DTR positions (as determined from
 PacBio read coverage) marked in red.

- 300 Figure S4. A. Coverage plots (window = 100 bp) of long read genome assemblies of both phages ICBM1 and ICBM2 contained within enrichment. Distinct
- 301 coverage spikes of about 100 bp can be observed at position 5kb (terminal redundancies, red arrows).
- 302 B. Artificial redundancies at the end of the contigs (shown here as dotplots) are produced by the genome assembler usually at the size of the mean subread
- 303 length suggesting a circular genome structure.

- **C.** Delineation of the final phage genome structure applying the "linearization" process. The artificial redundancy (yellow) is removed and the terminal 305 repeat (red) placed twice at the end of the phage genomes

- 310 Figure S5. Distinct start (A) and end positions (B) of a linear phage genome as retrieved from a visualization of a long read genome mapping by IGV.

315 Figure S6: Genome comparison of ICBM1 and ICBM3 phages: A) showing the location of mismatches and deletions and B) showing the predicted genes.

Figure S7: Phylogenetic analysis of the Terminase large subunit from cobaviruses and other phages with known genome ends and packaging strategies. The evolutionary history was inferred using the approximately-maximum-likelihood method implemented in FastTree 2.1.5. The node labels represent Fast Tree support values. The tree is drawn to scale, with branch lengths measured in number of substitutions per site. The tree is unrooted.

Figure S8: Genomic maps of the SIO1 phage, before and after genome end correction. Purple arrows: position of the inverted repeats. Pink arrows: position of DTRs.

329 Figure S9: Multiple alignments of genomic ends from all cobaviruses with complete genome.

Figure S10: Neighbour joining tree based on 16S rRNA gene similarity showing the phylogenetic affiliation of bacterial hosts analysed in this study (bold) within the *Rhodobacteraceae*. Sequences of type material (>1300bp) were used to construct the backbone tree. Only bootstrap values ≥50% (derived from 1500 replicates) are shown. Selected sequences related to *Gammaproteobacteria* were used as outgroup to define the root of the tree (not shown). GenBank accession numbers are given in parentheses. Scale bar indicates percentage of sequence divergence.

Figure S11: Phylogenetic positioning of the Cobaviruses (green font) and spanin containing prophages from *Rhodobacteraceae* (blue font). The whole-genome-based phylogeny was inferred using the Genome-BLAST Distance Phylogeny method implemented in the VICTOR web service, using the amino acid data.

344

Figure S12: Locations in which cobavirus hosts were found based on a 16S rRNA survey in the NR
 Blast database and in the Tara Ocean samples.

348 **Publication bibliography**

- Aird, Daniel; Ross, Michael G.; Chen, Wei-Sheng; Danielsson, Maxwell; Fennell, Timothy; Russ, 349 Carsten et al. (2011): Analyzing and minimizing PCR amplification bias in Illumina sequencing 350 351 libraries. In Genome biology 12 (2), R18. DOI: 10.1186/gb-2011-12-2-r18. Angly, Florent; Youle, Merry; Nosrat, Bahador; Srinagesh, Shailaja; Rodriguez-Brito, Beltran; 352 353 McNairnie, Patrick et al. (2009): Genomic analysis of multiple Roseophage SIO1 strains. In Environmental microbiology 11 (11), pp. 2863–2873. DOI: 10.1111/j.1462-2920.2009.02021.x. 354 355 Balch, W. E.; Fox, G. E.; Magrum, L. J.; Woese, C. R.; Wolfe, R. S. (1979): Methanogens: reevaluation of a unique biological group. In Microbiological Reviews 43 (2), pp. 260–296. 356 357 Bankevich, Anton; Nurk, Sergey; Antipov, Dmitry; Gurevich, Alexey A.; Dvorkin, Mikhail; Kulikov, 358 Alexander S. et al. (2012): SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. In Journal of Computational Biology 19 (5), pp. 455-477. DOI: 359 360 10.1089/cmb.2012.0021. Bolger, Anthony M.; Lohse, Marc; Usadel, Bjoern (2014): Trimmomatic: a flexible trimmer for Illumina 361 sequence data. In Bioinformatics (Oxford, England) 30 (15), pp. 2114–2120. DOI: 362 10.1093/bioinformatics/btu170. 363 364 Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Roux, Simon; Doulcier, Guilhem; Acinas, Silvia G.; 365 Alberti, Adriana et al. (2015): Patterns and ecological drivers of ocean viral communities. In 366 Science 348. DOI: 10.1126/science.1261498. 367 García-Alcalde, Fernando; Okonechnikov, Konstantin; Carbonell, José; Cruz, Luis M.; Götz, Stefan; Tarazona, Sonia et al. (2012): Qualimap: evaluating next-generation sequencing alignment data. In 368
 - Bioinformatics (Oxford, England) 28 (20), pp. 2678–2679. DOI: 10.1093/bioinformatics/bts503.

- 370 Illumina, Inc (2015): Nextera XT Library Prep: Tips and Troubleshooting. Available online at
- 371 <u>https://support.illumina.com/content/dam/illumina-</u>
- 372 <u>support/documents/documentation/chemistry_documentation/samplepreps_nextera/nextera-</u>
- 373 <u>xt/nextera-xt-troubleshooting-guide.pdf</u>.
- Merrill, Bryan D.; Ward, Andy T.; Grose, Julianne H.; Hope, Sandra (2016): Software-based analysis of
 bacteriophage genomes, physical ends, and packaging strategies. In *BMC genomics* 17, p. 679.
 DOI: 10.1186/s12864-016-3018-2.
- Nishimura, Yosuke; Watai, Hiroyasu; Honda, Takashi; Mihara, Tomoko; Omae, Kimiho; Roux, Simon et
 al. (2017): Environmental viral genomes shed new light on virus-host interactions in the ocean. In
 mSphere 2 (2). DOI: 10.1128/mSphere.00359-16.
- Paez-Espino, David; Chen, I-Min A.; Palaniappan, Krishna; Ratner, Anna; Chu, Ken; Szeto, Ernest et al.
 (2017): IMG/VR. A database of cultured and uncultured DNA Viruses and retroviruses. In *Nucleic acids research* 45 (D1), pp. D457-D465. DOI: 10.1093/nar/gkw1030.
- Paez-Espino, David; Eloe-Fadrosh, Emiley A.; Pavlopoulos, Georgios A.; Thomas, Alex D.; Huntemann,
 Marcel; Mikhailova, Natalia et al. (2016): Uncovering Earth's virome. In *Nature* 536 (7617),
 pp. 425–430. DOI: 10.1038/nature19094.
- Robinson, James T.; Thorvaldsdóttir, Helga; Winckler, Wendy; Guttman, Mitchell; Lander, Eric S.;
 Getz, Gad; Mesirov, Jill P. (2011): Integrative genomics viewer. In *Nature Biotechnology* 29. DOI:
 10.1038/nbt.1754.
- 389 Roux, Simon; Brum, Jennifer R.; Dutilh, Bas E.; Sunagawa, Shinichi; Duhaime, Melissa B.; Loy,
- Alexander et al. (2016): Ecogenomics and potential biogeochemical impacts of globally abundant
- 391 ocean viruses. In *Nature* 537 (7622), pp. 689–693. DOI: 10.1038/nature19366.