(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 313509, 5964] NotebookOptionsPosition[ 309650, 5900] NotebookOutlinePosition[ 309996, 5915] CellTagsIndexPosition[ 309953, 5912] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\<\ Find three-species coexistent steady states in parameter range\ \>", "Subsection", CellChangeTimes->{{3.735976246957841*^9, 3.7359762797063293`*^9}, { 3.735976723420952*^9, 3.735976725149682*^9}, {3.735988416095451*^9, 3.7359884167586184`*^9}, {3.73599367607873*^9, 3.7359936858616858`*^9}, { 3.7361638559183316`*^9, 3.736163866270722*^9}, {3.736572242539981*^9, 3.7365722430829945`*^9}, {3.736587013826415*^9, 3.7365870182337313`*^9}, { 3.739551784627231*^9, 3.7395518074975185`*^9}},ExpressionUUID->"b0140eac-f337-432f-9ba6-\ a8c5f5983658"], Cell[CellGroupData[{ Cell["\<\ Define and symbolically solve steady state equations of the non-perturbed \ three-species Lotka-Volterra system, selecting the solution with 3 \ (potentially) non-zero values i.e. coexistence of three species \ \>", "Text", CellGroupingRules->{"GroupTogetherGrouping", 10000.}, CellChangeTimes->{{3.739551886233329*^9, 3.739552018876029*^9}},ExpressionUUID->"45aa5238-614a-4bbb-bb79-\ 1010f8c01b84"], Cell[BoxData[{ RowBox[{ RowBox[{"noPerturbSteady1", "=", RowBox[{ RowBox[{ RowBox[{"mu1", "*", "x"}], "+", RowBox[{"x", "*", RowBox[{"(", RowBox[{ RowBox[{"a", "*", "x"}], "+", RowBox[{"b", "*", "y"}], " ", "+", " ", RowBox[{"c", "*", "z"}]}], ")"}]}]}], " ", "\[Equal]", " ", "0"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"noPerturbSteady2", "=", " ", RowBox[{ RowBox[{ RowBox[{"mu2", "*", "y"}], "+", RowBox[{"y", "*", RowBox[{"(", RowBox[{ RowBox[{"d", "*", "x"}], "+", RowBox[{"e", "*", "y"}], " ", "+", " ", RowBox[{"f", "*", "z"}]}], ")"}]}]}], " ", "\[Equal]", " ", "0"}]}], ";"}], "\n", RowBox[{ RowBox[{"noPerturbSteady3", "=", " ", RowBox[{ RowBox[{ RowBox[{"mu3", "*", "z"}], "+", RowBox[{"z", "*", RowBox[{"(", RowBox[{ RowBox[{"g", "*", "x"}], "+", RowBox[{"h", "*", "y"}], " ", "+", " ", RowBox[{"i", "*", "z"}]}], ")"}]}]}], " ", "\[Equal]", " ", "0"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"symbolicSSall", " ", "=", " ", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "/.", RowBox[{"Solve", "[", RowBox[{ RowBox[{"{", RowBox[{ "noPerturbSteady1", ",", "noPerturbSteady2", ",", "noPerturbSteady3"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"symbolicSS3", " ", "=", " ", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "/.", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"{", RowBox[{ "noPerturbSteady1", ",", "noPerturbSteady2", ",", "noPerturbSteady3"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "[", RowBox[{"[", "4", "]"}], "]"}]}]}], ";"}]}], "Input", CellGroupingRules->{"GroupTogetherGrouping", 10000.}, CellChangeTimes->{{3.735976344171196*^9, 3.735976346184461*^9}, { 3.7359764737311487`*^9, 3.7359765541136875`*^9}, {3.7359765985885983`*^9, 3.735976606822856*^9}, {3.7359813782519693`*^9, 3.7359814066844797`*^9}, { 3.7359814372043643`*^9, 3.735981484022524*^9}, {3.7359815954607463`*^9, 3.735981657636685*^9}, {3.7359818142610435`*^9, 3.735981909294848*^9}, { 3.7359819936912837`*^9, 3.7359819991325235`*^9}, {3.735983096210145*^9, 3.735983113831846*^9}, {3.7359831909220743`*^9, 3.735983200888612*^9}, { 3.7359834099963026`*^9, 3.7359834309913783`*^9}, {3.7359837757769613`*^9, 3.7359838104482803`*^9}, {3.7359838485211153`*^9, 3.7359838996157627`*^9}, {3.735984351615974*^9, 3.7359845453586483`*^9}, { 3.7359846113469906`*^9, 3.735984650951182*^9}, {3.735984822126934*^9, 3.7359848534941683`*^9}, {3.735985333222081*^9, 3.7359853582216606`*^9}, 3.7359854341543145`*^9, {3.7359855008460445`*^9, 3.735985502782256*^9}, { 3.735985858782626*^9, 3.7359858739093738`*^9}, {3.735985941301814*^9, 3.7359860061886215`*^9}, {3.735986061158315*^9, 3.7359860724929667`*^9}, { 3.735986293668426*^9, 3.7359863381346426`*^9}, {3.7359864083335724`*^9, 3.7359865853449287`*^9}, {3.7359868160120325`*^9, 3.735986938854027*^9}, { 3.7359869947794166`*^9, 3.735987063972933*^9}, {3.735987137412629*^9, 3.7359873292672157`*^9}, {3.735987361977377*^9, 3.7359874222619743`*^9}, { 3.7359874543021545`*^9, 3.7359874593808365`*^9}, {3.735987528462125*^9, 3.735987530934739*^9}, {3.7359876328983603`*^9, 3.7359876600264797`*^9}, { 3.7359881369471073`*^9, 3.735988145722411*^9}, {3.7359886932039347`*^9, 3.7359886946654453`*^9}, {3.735988755145262*^9, 3.7359887723774242`*^9}, { 3.7359917022609158`*^9, 3.7359917353512573`*^9}, {3.735991814539777*^9, 3.7359918168529415`*^9}, {3.7359919182426715`*^9, 3.735991931110108*^9}, { 3.7359920030594444`*^9, 3.735992112237917*^9}, {3.735992335713188*^9, 3.7359923547433257`*^9}, {3.735992446901331*^9, 3.735992560880988*^9}, { 3.735993355761505*^9, 3.735993438472089*^9}, {3.7359937125609903`*^9, 3.7359937193689365`*^9}, 3.7359937954568014`*^9, {3.735993886738513*^9, 3.735993913319526*^9}, {3.735993958351666*^9, 3.735993966375642*^9}, { 3.7359941939455647`*^9, 3.7359942688696804`*^9}, {3.735994352330081*^9, 3.7359943855197315`*^9}, {3.7359944191191645`*^9, 3.7359944566002693`*^9}, {3.7359944881467533`*^9, 3.7359944987761374`*^9}, {3.7359951122788916`*^9, 3.735995136605752*^9}, { 3.735995291095492*^9, 3.7359953230315385`*^9}, {3.7360687427084255`*^9, 3.736068750175307*^9}, {3.736074624146277*^9, 3.736074646528666*^9}, { 3.736074820412537*^9, 3.7360748263949833`*^9}, {3.7360753791612196`*^9, 3.736075405938535*^9}, {3.736572490245482*^9, 3.736572534303892*^9}, { 3.736572573654127*^9, 3.7365725934624863`*^9}, {3.7365726794092784`*^9, 3.7365727606041193`*^9}, {3.7365727968226213`*^9, 3.736572967373226*^9}, 3.736574246257823*^9, 3.736574517975504*^9, {3.736574984696294*^9, 3.736574986015438*^9}, {3.7365750935110445`*^9, 3.736575142574459*^9}, { 3.736575279399937*^9, 3.7365752899765463`*^9}, {3.736575334282615*^9, 3.7365753377209225`*^9}, {3.73657539822469*^9, 3.7365754043901463`*^9}, { 3.7365756156799574`*^9, 3.736575665342912*^9}, {3.736575703038997*^9, 3.7365757035342903`*^9}, {3.73657573804937*^9, 3.736575810694786*^9}, { 3.7365758523996215`*^9, 3.7365759609276333`*^9}, {3.736576015341816*^9, 3.7365760573497133`*^9}, 3.7365761355546527`*^9, {3.736577352940401*^9, 3.7365773744665017`*^9}, {3.7365775666915417`*^9, 3.73657761401121*^9}, { 3.7365776681793113`*^9, 3.7365776686459785`*^9}, {3.7365777018759813`*^9, 3.736577806034382*^9}, {3.736578054955967*^9, 3.7365780689939*^9}, { 3.7365781203163347`*^9, 3.736578187844613*^9}, {3.736579653593894*^9, 3.736579670047967*^9}, {3.7365797004735603`*^9, 3.7365797364494886`*^9}, { 3.7365799092072515`*^9, 3.7365799399289875`*^9}, {3.736579972911235*^9, 3.7365800567124605`*^9}, {3.7365801109611187`*^9, 3.736580147455422*^9}, { 3.7365802647040815`*^9, 3.736580362782599*^9}, {3.736581429902087*^9, 3.7365814534921474`*^9}, {3.7365821005428753`*^9, 3.7365821024211206`*^9}, {3.736583126217905*^9, 3.736583135056788*^9}, { 3.7365831684337006`*^9, 3.736583171992787*^9}, {3.736583232401139*^9, 3.7365832937448463`*^9}, {3.7365846533214636`*^9, 3.736584675798703*^9}, 3.7365847569592347`*^9, {3.736584790502676*^9, 3.7365847954461584`*^9}, { 3.7365848557429132`*^9, 3.7365849263835373`*^9}, {3.7365850123027105`*^9, 3.7365851888938437`*^9}, 3.736587366035884*^9, {3.736587950659997*^9, 3.736587952226054*^9}, {3.7366033907916346`*^9, 3.7366034662488365`*^9}, { 3.7366595441246753`*^9, 3.736659565282916*^9}, 3.736665049299791*^9, { 3.7369309409715014`*^9, 3.736930986033873*^9}, {3.736931330563422*^9, 3.736931353910338*^9}, {3.7369330100077095`*^9, 3.7369330338216257`*^9}, { 3.7369344598561344`*^9, 3.736934495979822*^9}, {3.7369345273489933`*^9, 3.7369345529047117`*^9}, {3.7371005974233503`*^9, 3.737100602111229*^9}, { 3.737171517019198*^9, 3.737171518012415*^9}, {3.7371765969835987`*^9, 3.737176607292176*^9}, {3.737548212745375*^9, 3.7375482134246764`*^9}, { 3.7375510116257553`*^9, 3.7375510873927975`*^9}, {3.7375511315455265`*^9, 3.7375511536928024`*^9}, {3.737551460335168*^9, 3.737551462181964*^9}, { 3.737551698811722*^9, 3.7375517021545496`*^9}, {3.737551903304531*^9, 3.7375519077138944`*^9}, {3.73755213464116*^9, 3.7375521882308893`*^9}, { 3.737553162792139*^9, 3.7375531641392775`*^9}, {3.7375536612213364`*^9, 3.7375536643614902`*^9}, {3.7375536982234015`*^9, 3.7375537124756737`*^9}, {3.737609040696412*^9, 3.7376090512161427`*^9}, { 3.737609225327742*^9, 3.7376092484791565`*^9}, {3.737609407201145*^9, 3.7376094420952635`*^9}, {3.7376102857730775`*^9, 3.737610303597628*^9}, { 3.737610468310465*^9, 3.737610493734821*^9}, {3.7376106711943483`*^9, 3.73761069575216*^9}, {3.737610776346817*^9, 3.7376107798565416`*^9}, { 3.7376108347953625`*^9, 3.7376108456197433`*^9}, {3.7376110344018106`*^9, 3.7376110561587696`*^9}, {3.7376111017249064`*^9, 3.7376111047847347`*^9}, {3.737611524301835*^9, 3.737611530568616*^9}, { 3.7395518409733405`*^9, 3.7395518545123296`*^9}, {3.7395518945334015`*^9, 3.7395519119717717`*^9}, {3.7395519760095253`*^9, 3.7395519763714037`*^9}, {3.739553262639616*^9, 3.7395532708832655`*^9}},ExpressionUUID->"372b1ec2-6388-4444-9b7e-\ 1aaab8029317"] }, Open ]], Cell["\<\ Calculate the Jacobian of the steady state system. This will be used to look \ for stability of the steady states.\ \>", "Text", CellChangeTimes->{{3.7395520369958544`*^9, 3.7395520957273207`*^9}},ExpressionUUID->"079e0141-263e-40b4-bcd0-\ 8234eeefd044"], Cell[BoxData[{ RowBox[{ RowBox[{"jacobian", " ", "=", " ", RowBox[{"D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"mu1", "*", "x"}], "+", RowBox[{"x", "*", RowBox[{"(", RowBox[{ RowBox[{"a", "*", "x"}], "+", RowBox[{"b", "*", "y"}], " ", "+", " ", RowBox[{"c", "*", "z"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"mu2", "*", "y"}], "+", RowBox[{"y", "*", RowBox[{"(", RowBox[{ RowBox[{"d", "*", "x"}], "+", RowBox[{"e", "*", "y"}], " ", "+", " ", RowBox[{"f", "*", "z"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"mu3", "*", "z"}], "+", RowBox[{"z", "*", RowBox[{"(", RowBox[{ RowBox[{"g", "*", "x"}], "+", RowBox[{"h", "*", "y"}], " ", "+", " ", RowBox[{"i", "*", "z"}]}], ")"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"jacobianVal", "[", RowBox[{"p_", ",", "q_"}], "]"}], ":=", " ", RowBox[{"jacobian", " ", "/.", " ", RowBox[{"{", RowBox[{ RowBox[{"x", " ", "\[Rule]", " ", RowBox[{"p", "[", RowBox[{"[", "1", "]"}], "]"}]}], ",", " ", RowBox[{"y", " ", "\[Rule]", " ", RowBox[{"p", "[", RowBox[{"[", "2", "]"}], "]"}]}], ",", " ", RowBox[{"z", " ", "\[Rule]", " ", RowBox[{"p", "[", RowBox[{"[", "3", "]"}], "]"}]}], ",", " ", RowBox[{"mu1", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "4", "]"}], "]"}]}], ",", RowBox[{"mu2", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "5", "]"}], "]"}]}], ",", RowBox[{"mu3", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "6", "]"}], "]"}]}], ",", RowBox[{"a", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "7", "]"}], "]"}]}], ",", RowBox[{"b", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "8", "]"}], "]"}]}], ",", RowBox[{"c", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "9", "]"}], "]"}]}], ",", RowBox[{"d", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "10", "]"}], "]"}]}], ",", RowBox[{"e", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "11", "]"}], "]"}]}], ",", RowBox[{"f", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "12", "]"}], "]"}]}], ",", RowBox[{"g", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "13", "]"}], "]"}]}], ",", RowBox[{"h", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "14", "]"}], "]"}]}], ",", RowBox[{"i", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "15", "]"}], "]"}]}]}], "}"}]}]}], " ", ";"}]}], "Input", CellChangeTimes->{{3.739551958905466*^9, 3.739551974707697*^9}, 3.739552027625162*^9, 3.7395526262634473`*^9, 3.739553340940208*^9},ExpressionUUID->"6ade1d3d-2493-4682-8bdf-\ 5e677dd90821"], Cell["\<\ Create a grid search of parameters applied to the analytical solution of the \ steady states, with infinite, negative and zero-solutions being discarded. \ Growth rates were fixed for practicality. Varying these could give a much \ larger set of parameters - though it is somewhat arbitrary to do so. The \ subset of steady states which were stable were selected (largest real part of \ the eigenvalues of the Jacobian less than zero). \ \>", "Text", CellChangeTimes->{{3.7395526400658517`*^9, 3.7395529023654194`*^9}, { 3.7395532353644667`*^9, 3.739553237628244*^9}, {3.7395535477022276`*^9, 3.7395535686993303`*^9}, {3.7395550606914597`*^9, 3.739555061834847*^9}},ExpressionUUID->"c1b23d94-7a8e-4921-9b51-\ 9f585fecfba5"], Cell[BoxData[{ RowBox[{ RowBox[{"possibleSS", "=", " ", RowBox[{"Select", "[", RowBox[{ RowBox[{"Flatten", "[", RowBox[{ RowBox[{"ParallelTable", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Flatten", "[", RowBox[{"{", RowBox[{"symbolicSS3", ",", RowBox[{"{", RowBox[{ "mu1", ",", "mu2", ",", "mu3", ",", "a", ",", "b", ",", "c", ",", "d", ",", "e", ",", "f", ",", "g", ",", "h", ",", "i"}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"mu1", ",", "0.9", ",", "0.9", ",", "0.1"}], "}"}], ",", RowBox[{"{", RowBox[{"mu2", ",", "1", ",", "1", ",", "0.1"}], "}"}], ",", RowBox[{"{", RowBox[{"mu3", ",", "1", ",", "1", ",", "0.1"}], "}"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "2"}], ",", "0", ",", "0.5"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", RowBox[{"-", "1"}], ",", "1", ",", "0.5"}], "}"}], ",", RowBox[{"{", RowBox[{"c", ",", RowBox[{"-", "1"}], ",", "1", ",", "0.5"}], "}"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "1"}], ",", RowBox[{"-", "1"}], ",", "0.5"}], "}"}], ",", RowBox[{"{", RowBox[{"e", ",", RowBox[{"-", "2"}], ",", "0", ",", "0.5"}], "}"}], ",", RowBox[{"{", RowBox[{"f", ",", RowBox[{"-", "1"}], ",", "1", ",", "0.5"}], "}"}], ",", RowBox[{"{", RowBox[{"g", ",", RowBox[{"-", "1"}], ",", "1", ",", "0.5"}], "}"}], ",", RowBox[{"{", RowBox[{"h", ",", RowBox[{"-", "1"}], ",", "1", ",", "0.5"}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"-", "2"}], ",", "0", ",", "0.5"}], "}"}]}], "\[IndentingNewLine]", "]"}], ",", "11"}], "]"}], ",", " ", RowBox[{ RowBox[{"And", "[", RowBox[{ RowBox[{"FreeQ", "[", RowBox[{"#", ",", " ", "ComplexInfinity"}], "]"}], ",", RowBox[{ RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], ">", "0.0001"}], ",", RowBox[{ RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}], ">", "0.0001"}], ",", RowBox[{ RowBox[{"#", "[", RowBox[{"[", "3", "]"}], "]"}], ">", "0.0001"}]}], "]"}], "&"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"parameterSets", " ", "=", " ", "possibleSS"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"parameterSets", " ", "=", " ", RowBox[{"Select", "[", RowBox[{"possibleSS", ",", RowBox[{ RowBox[{ RowBox[{"Max", "[", RowBox[{"Re", "[", RowBox[{"Eigenvalues", "[", RowBox[{"jacobianVal", "[", RowBox[{"#", ",", "#"}], "]"}], "]"}], "]"}], "]"}], "<", "0"}], " ", "&"}]}], " ", "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.739552764295532*^9, 3.7395527657477846`*^9}, 3.7395533120414467`*^9},ExpressionUUID->"25c59b43-9023-4150-942a-\ b8b3a709772c"] }, Open ]], Cell[CellGroupData[{ Cell["Find which systems have alternative stable steady states", "Subsection", CellChangeTimes->{{3.7395533847897525`*^9, 3.7395534138315372`*^9}},ExpressionUUID->"dab123a3-228a-4dc6-b99f-\ e731b3ece703"], Cell["\<\ Evaluate other steady states for each of the above systems, removing invalid \ solutions.\ \>", "Text", CellChangeTimes->{{3.739553361667959*^9, 3.739553365561194*^9}, { 3.739553457021738*^9, 3.73955347583666*^9}, {3.7395548439982624`*^9, 3.7395548523498397`*^9}, {3.739554915398328*^9, 3.739554920209385*^9}, { 3.739555080401629*^9, 3.739555082460761*^9}},ExpressionUUID->"cfd55df0-cc59-4869-b091-\ 771a33c7b549"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"ssOthers", "[", "q_", "]"}], " ", ":=", " ", RowBox[{"symbolicSSall", " ", "/.", " ", RowBox[{"{", " ", RowBox[{ RowBox[{"mu1", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "4", "]"}], "]"}]}], ",", RowBox[{"mu2", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "5", "]"}], "]"}]}], ",", RowBox[{"mu3", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "6", "]"}], "]"}]}], ",", RowBox[{"a", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "7", "]"}], "]"}]}], ",", RowBox[{"b", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "8", "]"}], "]"}]}], ",", RowBox[{"c", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "9", "]"}], "]"}]}], ",", RowBox[{"d", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "10", "]"}], "]"}]}], ",", RowBox[{"e", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "11", "]"}], "]"}]}], ",", RowBox[{"f", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "12", "]"}], "]"}]}], ",", RowBox[{"g", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "13", "]"}], "]"}]}], ",", RowBox[{"h", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "14", "]"}], "]"}]}], ",", RowBox[{"i", " ", "\[Rule]", " ", RowBox[{"q", "[", RowBox[{"[", "15", "]"}], "]"}]}]}], "}"}]}]}], " ", ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ssOthersVals", " ", "=", " ", RowBox[{"Map", "[", RowBox[{"ssOthers", ",", "parameterSets"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"maxEvals", " ", "=", " ", RowBox[{"ParallelTable", "[", RowBox[{ RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"Max", "[", RowBox[{"Re", "[", RowBox[{"Eigenvalues", "[", RowBox[{"jacobianVal", "[", RowBox[{"#", ",", RowBox[{"parameterSets", "[", RowBox[{"[", "id", "]"}], "]"}]}], "]"}], "]"}], "]"}], "]"}], " ", "&"}], ",", " ", RowBox[{"ssOthersVals", "[", RowBox[{"[", "id", "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"id", ",", "1", ",", RowBox[{"Length", "[", "parameterSets", "]"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"otherSS", " ", "=", " ", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"Drop", "[", RowBox[{"#", ",", RowBox[{"{", "4", "}"}]}], "]"}], "&"}], ",", "maxEvals"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"otherSS", " ", "=", " ", RowBox[{"Select", "[", RowBox[{"otherSS", ",", RowBox[{ RowBox[{"And", "[", RowBox[{ RowBox[{"FreeQ", "[", RowBox[{"#", ",", " ", "ComplexInfinity"}], "]"}], ",", RowBox[{"FreeQ", "[", RowBox[{"#", ",", " ", "Indeterminate"}], "]"}]}], "]"}], " ", "&"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.7375535145017967`*^9, 3.737553540477686*^9}, { 3.7375535865685916`*^9, 3.7375535869482517`*^9}, {3.737553721868193*^9, 3.737553724158305*^9}, {3.737554803426216*^9, 3.7375549096348124`*^9}, { 3.737554972758435*^9, 3.737554974993559*^9}, {3.737555104765768*^9, 3.737555110977977*^9}, {3.737555174586587*^9, 3.7375551808476963`*^9}, 3.737787503921121*^9, {3.7395532605254683`*^9, 3.7395532778179283`*^9}, { 3.739553323599874*^9, 3.7395533237575054`*^9}, {3.7395535133622417`*^9, 3.739553513599411*^9}},ExpressionUUID->"7483d710-dcf4-492b-bcc4-\ feac27c33e91"], Cell["\<\ Here we keep track of which states from the initial analysis have these \ steady states, storing their eigenvalues, parameters and actual steady states.\ \>", "Text", CellChangeTimes->{{3.7395549437862635`*^9, 3.739555012970065*^9}, { 3.7396007899549613`*^9, 3.739600807616044*^9}, {3.7396008426107826`*^9, 3.739600865183666*^9}, {3.7396009232034864`*^9, 3.7396009392164063`*^9}},ExpressionUUID->"a17f8a73-e3e6-4032-8fd8-\ 23522d94154d"], Cell[BoxData[{ RowBox[{ RowBox[{"altSS", " ", "=", " ", RowBox[{"Position", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{"Min", ",", "otherSS", ",", "1"}], "]"}], ",", RowBox[{"_", "?", RowBox[{"(", RowBox[{ RowBox[{"#", "<", "0"}], " ", "&"}], ")"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"altSSminEigenvals", " ", "=", " ", RowBox[{"otherSS", "[", RowBox[{"[", RowBox[{"Flatten", "[", "altSS", "]"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"otherSS", " ", "=", " ", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"Drop", "[", RowBox[{"#", ",", RowBox[{"{", "4", "}"}]}], "]"}], "&"}], ",", "maxEvals"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"stablePositions", " ", "=", " ", RowBox[{"Flatten", "[", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"Position", "[", RowBox[{"otherSS", ",", "#"}], "]"}], "&"}], ",", "altSSminEigenvals"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"altSSparams", " ", "=", " ", RowBox[{"parameterSets", "[", RowBox[{"[", "stablePositions", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"altSSeigenvals", " ", "=", " ", RowBox[{"maxEvals", "[", RowBox[{"[", "stablePositions", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"altSSvals", " ", "=", " ", RowBox[{"ssOthersVals", "[", RowBox[{"[", "stablePositions", "]"}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.7375693139721737`*^9, 3.7375693161831255`*^9}, { 3.7375693646733975`*^9, 3.73756960483014*^9}, {3.7376088614069386`*^9, 3.7376089094637237`*^9}, {3.737608943017878*^9, 3.737609009207203*^9}, { 3.737616753343422*^9, 3.737616777648148*^9}, {3.737616833277195*^9, 3.7376169622942457`*^9}, {3.7376173998568387`*^9, 3.737617461959444*^9}, { 3.737617899727111*^9, 3.7376179515896683`*^9}, {3.7376180128502293`*^9, 3.7376180666699924`*^9}, {3.7376181993104773`*^9, 3.7376182007958746`*^9}, {3.737618362799786*^9, 3.7376184901018105`*^9}, 3.737618533749552*^9, {3.737787543660858*^9, 3.737787546567813*^9}, 3.7395535102444286`*^9, 3.739554937949231*^9, 3.739599110024477*^9, 3.7395993445285797`*^9, 3.7396007822352133`*^9, {3.7396010799561615`*^9, 3.7396010892034073`*^9}, {3.7396014458368883`*^9, 3.7396014792841263`*^9}},ExpressionUUID->"c70452f3-7238-4bf6-9394-\ 17a9aa20c3ac"], Cell["Remove alternative steady states that are unstable", "Text", CellChangeTimes->{{3.73960087193629*^9, 3.7396008983364935`*^9}, { 3.7396009527835436`*^9, 3.739600965136102*^9}},ExpressionUUID->"bbb8d14d-029e-455a-90a1-\ be8e0169bc62"], Cell[BoxData[{ RowBox[{ RowBox[{"stableEigenvalPositions", " ", "=", " ", RowBox[{"Table", "[", RowBox[{ RowBox[{"Position", "[", RowBox[{ RowBox[{"altSSeigenvals", "[", RowBox[{"[", "id", "]"}], "]"}], ",", RowBox[{"_", "?", RowBox[{"(", RowBox[{ RowBox[{"#", "<", "0"}], "&"}], ")"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"id", ",", "1", ",", RowBox[{"Length", "[", "altSSeigenvals", "]"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"altSSvalsStable", " ", "=", " ", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"altSSvals", "[", RowBox[{"[", "id", "]"}], "]"}], "[", RowBox[{"[", RowBox[{ RowBox[{"Partition", "[", RowBox[{ RowBox[{"Flatten", "[", "stableEigenvalPositions", "]"}], ",", "2"}], "]"}], "[", RowBox[{"[", "id", "]"}], "]"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"id", ",", "1", ",", RowBox[{"Length", "[", "altSSvals", "]"}]}], "}"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.73761817448643*^9, 3.737618177314307*^9}, { 3.7376183132702417`*^9, 3.737618316341508*^9}, {3.737618541273819*^9, 3.7376185456033835`*^9}, {3.737618648681631*^9, 3.7376186810714254`*^9}, 3.737619105940773*^9, {3.737619158203725*^9, 3.7376191826122026`*^9}, { 3.7376192151264987`*^9, 3.737619367890114*^9}, {3.7376194283787074`*^9, 3.737619496526558*^9}, {3.7376196152245016`*^9, 3.73761964068715*^9}, { 3.7376206391022005`*^9, 3.737620662203603*^9}, 3.737620937099084*^9, { 3.7376210941595984`*^9, 3.7376211663100886`*^9}, {3.7376212147328405`*^9, 3.7376212487417574`*^9}, {3.7377875632979403`*^9, 3.737787567295884*^9}, 3.7396010606135054`*^9, 3.739603413395583*^9, 3.739687281591728*^9, { 3.7396895946830425`*^9, 3.739689597097721*^9}, 3.739691433932271*^9},ExpressionUUID->"f84e59db-57c6-4fce-8adc-\ d3145c3c4f3f"], Cell["\<\ Remove unfeasible solution (i.e. steady states that include negative \ abundances) to get final parameter sets, steady state values and eigenvalues\ \>", "Text", CellChangeTimes->{{3.7396009725333524`*^9, 3.7396010228983345`*^9}, { 3.73960342976554*^9, 3.7396034469288425`*^9}},ExpressionUUID->"6ba45b6a-b1ef-4f20-afa6-\ 0d3c61d9cd07"], Cell[BoxData[{ RowBox[{ RowBox[{"final2ssparams", " ", "=", " ", RowBox[{"altSSparams", "[", RowBox[{"[", RowBox[{"Flatten", "[", RowBox[{"Position", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"AllTrue", "[", RowBox[{ RowBox[{"Flatten", "[", RowBox[{"altSSvalsStable", "[", RowBox[{"[", "id", "]"}], "]"}], "]"}], ",", "NonNegative"}], "]"}], ",", RowBox[{"{", RowBox[{"id", ",", "1", ",", RowBox[{"Length", "[", "altSSvalsStable", "]"}]}], "}"}]}], "]"}], ",", "True"}], "]"}], "]"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"final2ssvals", " ", "=", " ", RowBox[{"altSSvalsStable", "[", RowBox[{"[", RowBox[{"Flatten", "[", RowBox[{"Position", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"AllTrue", "[", RowBox[{ RowBox[{"Flatten", "[", RowBox[{"altSSvalsStable", "[", RowBox[{"[", "id", "]"}], "]"}], "]"}], ",", "NonNegative"}], "]"}], ",", RowBox[{"{", RowBox[{"id", ",", "1", ",", RowBox[{"Length", "[", "altSSvalsStable", "]"}]}], "}"}]}], "]"}], ",", "True"}], "]"}], "]"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"final2sseigenvals", " ", "=", " ", RowBox[{"altSSeigenvals", "[", RowBox[{"[", RowBox[{"Flatten", "[", RowBox[{"Position", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"AllTrue", "[", RowBox[{ RowBox[{"Flatten", "[", RowBox[{"altSSvalsStable", "[", RowBox[{"[", "id", "]"}], "]"}], "]"}], ",", "NonNegative"}], "]"}], ",", RowBox[{"{", RowBox[{"id", ",", "1", ",", RowBox[{"Length", "[", "altSSvalsStable", "]"}]}], "}"}]}], "]"}], ",", "True"}], "]"}], "]"}], "]"}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.7376193553899164`*^9, 3.7376194104483447`*^9}, { 3.7376195119232635`*^9, 3.7376195462438264`*^9}, {3.7376195912745423`*^9, 3.737619591338539*^9}, {3.7376196500967007`*^9, 3.7376197369828854`*^9}, { 3.737620379329285*^9, 3.7376203950351753`*^9}, {3.7376211752892046`*^9, 3.7376211757104087`*^9}, {3.7376212909883504`*^9, 3.7376213450863786`*^9}, {3.7376213786877575`*^9, 3.7376214836693687`*^9}, {3.737621515856797*^9, 3.737621690699973*^9}, 3.739601168016754*^9, {3.7396034526990547`*^9, 3.739603463365903*^9}, 3.739687186499567*^9, {3.7396872226952305`*^9, 3.7396872311595917`*^9}, 3.739687471832822*^9, {3.739691012990034*^9, 3.739691014497116*^9}, { 3.7396914455983944`*^9, 3.739691446811457*^9}, {3.739701480168222*^9, 3.739701488536133*^9}, {3.7397096149958057`*^9, 3.7397096208033857`*^9}},ExpressionUUID->"32735989-544e-42ad-b587-\ bb5f2bd2dbef"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Verify that moving to the alternative steady state is possible given the above\ \>", "Subsection", CellChangeTimes->{{3.7395533847897525`*^9, 3.7395534138315372`*^9}, { 3.7396865194320316`*^9, 3.739686533110755*^9}, {3.739711814878575*^9, 3.7397118177100005`*^9}},ExpressionUUID->"6de909d2-90b6-417e-a19d-\ 9d6dfa4c8022"], Cell["\<\ First we look at the LV model without perturbations, check that behaviour is \ as expected when starting in the stable three coexistent species steady \ state. Solve LV in all cases and ensure {x,y,z} at time t=500 is the same as \ {x0,y0,z0}. Final line gives \[OpenCurlyQuote]True\[CloseCurlyQuote] as \ expected.\ \>", "Text", CellChangeTimes->{{3.739699061242873*^9, 3.7396990678694553`*^9}, { 3.7396992429133253`*^9, 3.7396992827561636`*^9}, {3.739701247022463*^9, 3.739701311881011*^9}, {3.7397016872490687`*^9, 3.739701725306681*^9}, { 3.739711744991624*^9, 3.739711763181003*^9}, {3.7397118884928064`*^9, 3.7397118919815254`*^9}},ExpressionUUID->"8e2f6cfd-cbcf-42e5-b2b2-\ a728bd66343a"], Cell[BoxData[{ RowBox[{ RowBox[{"noPerturb1", "=", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu1", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"x", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"a", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"b", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"c", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}]}]}]}], ";"}], "\n", RowBox[{ RowBox[{"noPerturb2", "=", RowBox[{ RowBox[{ RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu2", "*", RowBox[{"y", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"y", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"d", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"e", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"f", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}]}]}]}], ";"}], "\n", RowBox[{ RowBox[{"noPerturb3", "=", RowBox[{ RowBox[{ RowBox[{"z", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu3", "*", RowBox[{"z", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"z", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"g", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"h", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"i", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}]}]}]}], ";"}], "\n", RowBox[{ RowBox[{"noPerturbSol", " ", "=", " ", RowBox[{"ParametricNDSolve", "[", "\n", RowBox[{ RowBox[{"{", RowBox[{ "noPerturb1", ",", "noPerturb2", ",", " ", "noPerturb3", ",", " ", RowBox[{ RowBox[{"x", "[", "0", "]"}], "\[Equal]", " ", "x0"}], ",", RowBox[{ RowBox[{"y", "[", "0", "]"}], " ", "\[Equal]", " ", "y0"}], ",", " ", RowBox[{ RowBox[{"z", "[", "0", "]"}], "\[Equal]", " ", "z0"}]}], "}"}], ",", "\n", RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], ",", "\n", RowBox[{"{", RowBox[{"t", ",", "0", ",", "500"}], "}"}], ",", "\n", RowBox[{"{", RowBox[{ "x0", ",", " ", "y0", ",", " ", "z0", ",", " ", "mu1", ",", "mu2", ",", "mu3", ",", "a", ",", "b", ",", "c", ",", "d", ",", "e", ",", "f", ",", "g", ",", "h", ",", "i"}], "}"}]}], "\n", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"nSolAll", " ", "=", " ", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"final2ssparams", "[", RowBox[{"[", "id", "]"}], "]"}]}], "]"}], "/.", "noPerturbSol"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"final2ssparams", "[", RowBox[{"[", "id", "]"}], "]"}]}], "]"}], "/.", "noPerturbSol"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"z", "[", "t", "]"}], ",", RowBox[{"final2ssparams", "[", RowBox[{"[", "id", "]"}], "]"}]}], "]"}], "/.", "noPerturbSol"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"id", ",", "1", ",", RowBox[{"Length", "[", "final2ssvals", "]"}]}], "}"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.7397013145353765`*^9, 3.7397013459328575`*^9}, { 3.7397013889619565`*^9, 3.739701430610585*^9}, {3.7397014956369934`*^9, 3.7397015576231394`*^9}, 3.739701588601241*^9, {3.7397016251641593`*^9, 3.739701665718051*^9}, 3.739706771841832*^9, {3.739706807707802*^9, 3.739706814495737*^9}, {3.7397068658448954`*^9, 3.7397068764727345`*^9}, { 3.739706916181821*^9, 3.73970706509799*^9}, {3.7397071757917447`*^9, 3.739707182637514*^9}, {3.739709756152844*^9, 3.739709799232336*^9}, { 3.739709908979848*^9, 3.7397099099791613`*^9}},ExpressionUUID->"8b5c64ea-4afc-4e94-a9dc-\ 6f399735ce25"], Cell[BoxData[{ RowBox[{ RowBox[{"endpoints", " ", "=", " ", RowBox[{"Table", "[", RowBox[{ RowBox[{"Head", "[", RowBox[{"Thread", "[", RowBox[{ RowBox[{"nSolAll", "[", RowBox[{"[", "id", "]"}], "]"}], "[", RowBox[{"t", "=", "500"}], "]"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"id", ",", "1", ",", RowBox[{"Length", "[", "nSolAll", "]"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"endpoints", " ", "\[Equal]", " ", RowBox[{"final2ssvals", "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.739707111664015*^9, 3.7397071410483027`*^9}, { 3.7397090594133205`*^9, 3.7397090827792788`*^9}, {3.739709841096711*^9, 3.739709859171306*^9}, {3.73970989802706*^9, 3.739709911863727*^9}, 3.73970996146354*^9, {3.7397116818691244`*^9, 3.739711739807476*^9}, { 3.739711783982401*^9, 3.739711785133358*^9}},ExpressionUUID->"8f3e2965-0d98-486d-8bbf-\ 4d44e9eccc4e"], Cell[TextData[{ "Now we look to see whether a perturbation can be found to move to the \ alternative, lower diversity state. First we setup the perturbed LV system \ and then substitute parameters including ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["\[CurlyEpsilon]", "i"], "=", RowBox[{"K", "(", RowBox[{ SubscriptBox[ SuperscriptBox["x", "altSS"], "i"], "-", SubscriptBox[ SuperscriptBox["x", "SS"], "i"]}], ")"}]}], TraditionalForm]], FormatType->"TraditionalForm",ExpressionUUID-> "cf000945-f2b0-4eca-ad55-bfacec17b6a6"], ", varying k to get the desired state change." }], "Text", CellChangeTimes->{{3.7397118103090343`*^9, 3.739711832269116*^9}, { 3.7397118714684253`*^9, 3.7397119484934363`*^9}, {3.7397119842652764`*^9, 3.7397119962491627`*^9}, {3.7397121461560726`*^9, 3.739712347738663*^9}, { 3.7397130498920193`*^9, 3.739713116673173*^9}},ExpressionUUID->"5003f8c4-c8a4-4f46-bae1-\ 01397e471ce4"], Cell[BoxData[{ RowBox[{"Clear", "[", "t", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"perturb1", "=", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu1", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"x", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"a", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"b", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"c", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"x", "[", "t", "]"}], "*", "eps1", " ", "*", " ", RowBox[{"(", RowBox[{ RowBox[{"UnitStep", "[", RowBox[{"t", "-", "1.5"}], "]"}], "-", RowBox[{"UnitStep", "[", RowBox[{"t", "-", "2.5"}], "]"}]}], ")"}]}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"perturb2", "=", RowBox[{ RowBox[{ RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu2", "*", RowBox[{"y", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"y", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"d", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"e", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"f", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"y", "[", "t", "]"}], "*", "eps2", " ", "*", " ", RowBox[{"(", RowBox[{ RowBox[{"UnitStep", "[", RowBox[{"t", "-", "1.5"}], "]"}], "-", RowBox[{"UnitStep", "[", RowBox[{"t", "-", "2.5"}], "]"}]}], ")"}]}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"perturb3", "=", RowBox[{ RowBox[{ RowBox[{"z", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu3", "*", RowBox[{"z", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"z", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"g", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"h", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"i", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"z", "[", "t", "]"}], "*", "eps3", " ", "*", " ", RowBox[{"(", RowBox[{ RowBox[{"UnitStep", "[", RowBox[{"t", "-", "1.5"}], "]"}], "-", RowBox[{"UnitStep", "[", RowBox[{"t", "-", "2.5"}], "]"}]}], ")"}]}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"perturbSol", StyleBox[" ", FontSize->12], StyleBox["=", FontSize->12], StyleBox[" ", FontSize->12], RowBox[{"ParametricNDSolve", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"perturb1", ",", "perturb2", ",", " ", "perturb3", ",", " ", RowBox[{ RowBox[{"x", "[", "0", "]"}], "\[Equal]", " ", "x0"}], ",", RowBox[{ RowBox[{"y", "[", "0", "]"}], " ", "\[Equal]", "y0"}], ",", " ", RowBox[{ RowBox[{"z", "[", "0", "]"}], "\[Equal]", " ", "z0"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"t", ",", "0", ",", "500"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ "x0", ",", " ", "y0", ",", " ", "z0", ",", " ", "mu1", ",", "mu2", ",", "mu3", ",", "a", ",", "b", ",", "c", ",", "d", ",", "e", ",", "f", ",", "g", ",", "h", ",", "i", ",", "eps1", ",", "eps2", ",", "eps3"}], "}"}]}], "\[IndentingNewLine]", "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.73971337272474*^9, 3.7397133785451794`*^9}, 3.7397134308883686`*^9, {3.7397134681237164`*^9, 3.7397134838088636`*^9}},ExpressionUUID->"57e356aa-06c6-40af-87f1-\ 47b234437d2e"], Cell["\<\ Here we create a function that, for given index id and k, checks whether, \ starting at the 3 - species coexistent point, the id\[CloseCurlyQuote]th \ parameter set reaches the alternative steady state for the given k \ (considering \[OpenCurlyQuote]reached\[CloseCurlyQuote] as being within 0.001 \ of that state in each abundance, due to small numerical errors)\ \>", "Text", CellChangeTimes->{{3.739767464029665*^9, 3.7397675641979594`*^9}, { 3.739768838055997*^9, 3.739768887121994*^9}, {3.739768933602141*^9, 3.7397689339266605`*^9}, {3.739768979262111*^9, 3.739768990933855*^9}},ExpressionUUID->"96b05146-be66-40c6-b415-\ 4080e0bcfa3a"], Cell[BoxData[ RowBox[{ RowBox[{"findk", "[", RowBox[{"id_", ",", "k_"}], "]"}], ":=", " ", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "reached", ",", "eps1", ",", "eps2", ",", "eps3", ",", "tempSol"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Clear", "[", "t", "]"}], ";", "\[IndentingNewLine]", RowBox[{"eps1", " ", "=", " ", RowBox[{"k", "*", RowBox[{"(", RowBox[{ RowBox[{"final2ssvals", "[", RowBox[{"[", RowBox[{"id", ",", "1", ",", "1"}], "]"}], "]"}], "-", RowBox[{"final2ssvals", "[", RowBox[{"[", RowBox[{"id", ",", "2", ",", "1"}], "]"}], "]"}]}], ")"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"eps2", " ", "=", " ", RowBox[{"k", "*", RowBox[{"(", RowBox[{ RowBox[{"final2ssvals", "[", RowBox[{"[", RowBox[{"id", ",", "1", ",", "2"}], "]"}], "]"}], "-", RowBox[{"final2ssvals", "[", RowBox[{"[", RowBox[{"id", ",", "2", ",", "2"}], "]"}], "]"}]}], ")"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"eps3", " ", "=", " ", RowBox[{"k", "*", RowBox[{"(", RowBox[{ RowBox[{"final2ssvals", "[", RowBox[{"[", RowBox[{"id", ",", "1", ",", "3"}], "]"}], "]"}], "-", RowBox[{"final2ssvals", "[", RowBox[{"[", RowBox[{"id", ",", "2", ",", "3"}], "]"}], "]"}]}], ")"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"tempSol", "=", RowBox[{"{", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"final2ssparams", "[", RowBox[{"[", "id", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"eps1", ",", "eps2", ",", "eps3"}], "}"}]}], "]"}]}], "]"}], "/.", "perturbSol"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"final2ssparams", "[", RowBox[{"[", "id", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"eps1", ",", "eps2", ",", "eps3"}], "}"}]}], "]"}]}], "]"}], "/.", "perturbSol"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"z", "[", "t", "]"}], ",", RowBox[{"Join", "[", RowBox[{ RowBox[{"final2ssparams", "[", RowBox[{"[", "id", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"eps1", ",", "eps2", ",", "eps3"}], "}"}]}], "]"}]}], "]"}], "/.", "perturbSol"}], "]"}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"reached", "=", RowBox[{"AllTrue", "[", RowBox[{ RowBox[{"Abs", "[", RowBox[{ RowBox[{"Head", "[", RowBox[{"Thread", "[", RowBox[{"tempSol", "[", RowBox[{"t", "=", "500"}], "]"}], "]"}], "]"}], "-", RowBox[{"final2ssvals", "[", RowBox[{"[", RowBox[{"id", ",", "1"}], "]"}], "]"}]}], "]"}], ",", RowBox[{ RowBox[{"#", "<", "0.001"}], " ", "&"}]}], "]"}]}], ";", "\[IndentingNewLine]", "reached"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.7397123572030396`*^9, 3.739712362231536*^9}, { 3.739712393927934*^9, 3.739712406627985*^9}, {3.7397125322953596`*^9, 3.7397125741533337`*^9}, {3.73971261712333*^9, 3.7397126799933243`*^9}, { 3.739712804894273*^9, 3.7397128279502745`*^9}, {3.739712970856574*^9, 3.739713012036192*^9}, {3.739722390761407*^9, 3.739722497389151*^9}, { 3.73972255276175*^9, 3.7397226297752714`*^9}, 3.739722766898138*^9, { 3.7397227974681106`*^9, 3.7397228100434666`*^9}, {3.739722870634245*^9, 3.739722875666787*^9}, {3.7397229206451187`*^9, 3.7397229378903666`*^9}, { 3.7397229834779863`*^9, 3.739723008990856*^9}, {3.739723041468251*^9, 3.7397230688817153`*^9}, {3.739723136142826*^9, 3.739723202533063*^9}, 3.7397232771807804`*^9, {3.7397234120896015`*^9, 3.739723436287252*^9}, { 3.739723470330415*^9, 3.739723478251266*^9}, {3.7397235271376696`*^9, 3.7397235687887335`*^9}, {3.7397236025167403`*^9, 3.739723620549244*^9}, { 3.73972368406956*^9, 3.73972373036252*^9}, {3.7397257775303087`*^9, 3.7397257790281067`*^9}, {3.7397258190931263`*^9, 3.739725826300621*^9}, { 3.7397260413386793`*^9, 3.73972611889091*^9}, 3.7397643931390038`*^9, { 3.7397672064363213`*^9, 3.739767206552349*^9}, {3.7397673255097914`*^9, 3.73976732704379*^9}, {3.739767363080225*^9, 3.7397673641021123`*^9}, { 3.7397674397340055`*^9, 3.739767449384986*^9}, {3.7397675761054487`*^9, 3.7397676096063595`*^9}, 3.739767675218025*^9, {3.739767921014098*^9, 3.73976792448705*^9}, {3.7397680763811913`*^9, 3.739768088454279*^9}, { 3.7397681767412567`*^9, 3.739768243781185*^9}, {3.739768473311839*^9, 3.7397685483840156`*^9}, {3.739768617491725*^9, 3.739768618001836*^9}, { 3.7397687831747236`*^9, 3.7397688214418716`*^9}, {3.7397692973920183`*^9, 3.7397692990256033`*^9}},ExpressionUUID->"782cd676-dc1c-418d-8d82-\ b86cda2e818f"], Cell["\<\ Then apply function over all parameter sets, finding the smallest such K \ (minimum 0.5, to the closest 0.1 for computational reasons). All such K are \ saved in vector epsk and the length of this vector checked to see a \ successful K was found for every parameter set (it is).\ \>", "Text", CellChangeTimes->{{3.739768891593687*^9, 3.739768963392037*^9}, 3.7397690004523835`*^9, {3.739769252220373*^9, 3.7397692779061184`*^9}, { 3.7397693317939005`*^9, 3.73976933251678*^9}, {3.7397695220802107`*^9, 3.739769546752486*^9}},ExpressionUUID->"161c82b9-f5c7-4460-a006-\ 112de32c48a2"], Cell[BoxData[{ RowBox[{ RowBox[{"epsk", "=", RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"For", "[", RowBox[{ RowBox[{"id", "=", "1"}], ",", RowBox[{"id", "<", RowBox[{ RowBox[{"Length", "[", "final2ssparams", "]"}], "+", "1"}]}], ",", RowBox[{"id", "++"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"k", "=", "0.5"}], ";", "\[IndentingNewLine]", RowBox[{"While", "[", RowBox[{ RowBox[{ RowBox[{"findk", "[", RowBox[{"id", ",", "k"}], "]"}], "\[Equal]", "False"}], ",", "\[IndentingNewLine]", RowBox[{"k", "=", RowBox[{"k", "+", "0.1"}]}]}], "\[IndentingNewLine]", "]"}], ";", "\[IndentingNewLine]", RowBox[{"epsk", "=", RowBox[{"Append", "[", RowBox[{"epsk", ",", "k"}], "]"}]}], ";"}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", RowBox[{"Length", "[", "epsk", "]"}]}], "Input", CellChangeTimes->{{3.7397685829522014`*^9, 3.739768585955805*^9}, { 3.739768811264213*^9, 3.7397688302466683`*^9}, {3.7397690256052446`*^9, 3.739769078835209*^9}, {3.7397691147821913`*^9, 3.7397691445180373`*^9}, { 3.739769216852501*^9, 3.73976924706242*^9}, {3.739769303662314*^9, 3.739769369814768*^9}, {3.739769402082526*^9, 3.7397694339560084`*^9}, { 3.739769503310636*^9, 3.739769513106655*^9}},ExpressionUUID->"cdabd1f0-2c9e-46a1-a2a1-\ 6110b11c540b"], Cell[CellGroupData[{ Cell[BoxData["epsk"], "Input", CellChangeTimes->{{3.7397704170852156`*^9, 3.739770417799758*^9}},ExpressionUUID->"02fc0e87-56ce-4f2f-99e8-\ fc2098acd6d8"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1.0999999999999999`", ",", "0.9999999999999999`", ",", "0.8999999999999999`", ",", "0.7999999999999999`", ",", "0.7`", ",", "1.0999999999999999`", ",", "1.2`", ",", "0.9999999999999999`", ",", "0.8999999999999999`", ",", "0.8999999999999999`", ",", "0.8999999999999999`", ",", "0.7999999999999999`", ",", "0.7999999999999999`", ",", "1.0999999999999999`", ",", "0.9999999999999999`", ",", "0.8999999999999999`", ",", "0.7`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.8999999999999999`", ",", "0.8999999999999999`", ",", "1.0999999999999999`", ",", "1.2`", ",", "1.0999999999999999`", ",", "0.8999999999999999`", ",", "0.8999999999999999`", ",", "0.9999999999999999`", ",", "0.8999999999999999`", ",", "0.7999999999999999`", ",", "0.7999999999999999`", ",", "1.0999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.8999999999999999`", ",", "0.8999999999999999`", ",", "0.8999999999999999`", ",", "0.7999999999999999`", ",", "1.0999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.8999999999999999`", ",", "0.7`", ",", "0.7999999999999999`", ",", "0.7999999999999999`", ",", "1.0999999999999999`", ",", "1.0999999999999999`", ",", "1.0999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "1.0999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.8999999999999999`", ",", "0.8999999999999999`", ",", "1.0999999999999999`", ",", "1.0999999999999999`", ",", "0.9999999999999999`", ",", "1.0999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.8999999999999999`", ",", "0.8999999999999999`", ",", "0.8999999999999999`", ",", "1.0999999999999999`"}], "}"}]], "Output", CellChangeTimes->{ 3.7397704183763924`*^9},ExpressionUUID->"6318105e-e0fb-4c85-9767-\ 4a66e6840f3b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Plotting functions", "Subsection", CellChangeTimes->{{3.7397695976526175`*^9, 3.7397696094124455`*^9}},ExpressionUUID->"f8f3e31d-f925-48cf-8614-\ 7bef4b155503"], Cell["\<\ All necessary analysis is now done. Below are some functions used for manual \ plotting for given eps and parameter set (in paramTest)\ \>", "Text", CellChangeTimes->{{3.7397696128526735`*^9, 3.739769663902646*^9}, { 3.7397697253925467`*^9, 3.739769726022929*^9}},ExpressionUUID->"ea384e2a-ee66-41e8-9402-\ bcc0d86ea3ca"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"paramTest", " ", "=", " ", RowBox[{"Join", "[", RowBox[{ RowBox[{"final2ssparams", "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"2", "*", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5"}], ",", "0", ",", RowBox[{"-", "0.5"}]}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"noPerturb1", "=", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu1", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"x", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"a", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"b", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"c", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"noPerturb2", "=", RowBox[{ RowBox[{ RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu2", "*", RowBox[{"y", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"y", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"d", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"e", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"f", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}]}]}]}], ";"}], "\n", RowBox[{ RowBox[{"noPerturb3", "=", RowBox[{ RowBox[{ RowBox[{"z", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu3", "*", RowBox[{"z", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"z", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"g", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"h", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"i", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"noPerturbSol", StyleBox[" ", FontSize->12], StyleBox["=", FontSize->12], StyleBox[" ", FontSize->12], RowBox[{"ParametricNDSolve", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ "noPerturb1", ",", "noPerturb2", ",", " ", "noPerturb3", ",", " ", RowBox[{ RowBox[{"x", "[", "0", "]"}], "\[Equal]", " ", "1"}], ",", RowBox[{ RowBox[{"y", "[", "0", "]"}], " ", "\[Equal]", " ", "1"}], ",", " ", RowBox[{ RowBox[{"z", "[", "0", "]"}], "\[Equal]", " ", "1"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"t", ",", "0", ",", "500"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ "x0", ",", " ", "y0", ",", " ", "z0", ",", " ", "mu1", ",", "mu2", ",", "mu3", ",", "a", ",", "b", ",", "c", ",", "d", ",", "e", ",", "f", ",", "g", ",", "h", ",", "i"}], "}"}]}], "\[IndentingNewLine]", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"nSolTest1", "=", " ", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"paramTest", "[", RowBox[{"[", RowBox[{"1", ";;", "15"}], "]"}], "]"}]}], "]"}], "/.", "noPerturbSol"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"nSolTest2", "=", " ", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"paramTest", "[", RowBox[{"[", RowBox[{"1", ";;", "15"}], "]"}], "]"}]}], "]"}], "/.", "noPerturbSol"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"nSolTest3", "=", " ", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"z", "[", "t", "]"}], ",", RowBox[{"paramTest", "[", RowBox[{"[", RowBox[{"1", ";;", "15"}], "]"}], "]"}]}], "]"}], "/.", "noPerturbSol"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"nSolTest1", "/", RowBox[{"(", RowBox[{"nSolTest1", "+", "nSolTest2", "+", "nSolTest3"}], ")"}]}], ",", RowBox[{"nSolTest2", "/", RowBox[{"(", RowBox[{"nSolTest1", "+", "nSolTest2", "+", "nSolTest3"}], ")"}]}], ",", RowBox[{"nSolTest3", "/", RowBox[{"(", RowBox[{"nSolTest1", "+", "nSolTest2", "+", "nSolTest3"}], ")"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"t", ",", "0", ",", "150"}], "}"}], ",", " ", "\[IndentingNewLine]", RowBox[{"Frame", "\[Rule]", RowBox[{"{", RowBox[{"True", ",", "True", ",", "False", ",", "False"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Text", "[", RowBox[{"Style", "[", RowBox[{ RowBox[{"ToExpression", "[", RowBox[{"\"\\"", ",", "TeXForm", ",", "HoldForm"}], "]"}], ",", "Medium"}], "]"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{"Style", "[", RowBox[{ RowBox[{"ToExpression", "[", RowBox[{ "\"\\"", ",", "TeXForm", ",", "HoldForm"}], "]"}], ",", "Medium"}], "]"}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"Axes", "\[Rule]", "False"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", StyleBox[" ", FontSize->12], StyleBox["\[Rule]", FontSize->12], " ", RowBox[{"{", RowBox[{ RowBox[{"Text", "[", RowBox[{"Style", "[", RowBox[{ RowBox[{"ToExpression", "[", RowBox[{"\"\\"", ",", "TeXForm", ",", "HoldForm"}], "]"}], ",", "Medium"}], "]"}], "]"}], ",", " ", RowBox[{"Text", "[", RowBox[{"Style", "[", RowBox[{ RowBox[{"ToExpression", "[", RowBox[{"\"\\"", ",", "TeXForm", ",", "HoldForm"}], "]"}], ",", "Medium"}], "]"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{"Style", "[", RowBox[{ RowBox[{"ToExpression", "[", RowBox[{"\"\\"", ",", "TeXForm", ",", "HoldForm"}], "]"}], ",", "Medium"}], "]"}], "]"}]}], "}"}]}], ",", " ", "\[IndentingNewLine]", RowBox[{"PlotPoints", "\[Rule]", "200"}], ",", " ", "\[IndentingNewLine]", RowBox[{"ImageSize", "\[Rule]", "500"}], ",", " ", "\[IndentingNewLine]", RowBox[{"PlotRange", " ", "\[Rule]", " ", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}], "Input", CellChangeTimes->{{3.737622192434141*^9, 3.737622204816966*^9}, { 3.737622391240858*^9, 3.7376224001243453`*^9}, {3.737622442020974*^9, 3.7376224649688497`*^9}, {3.7376224961643095`*^9, 3.737622525197775*^9}, { 3.7376225560666285`*^9, 3.73762258306713*^9}, {3.7376226357074137`*^9, 3.737622658738552*^9}, 3.737622690881917*^9, {3.7376227303040247`*^9, 3.7376227324396706`*^9}, {3.7376227809863276`*^9, 3.7376228138996267`*^9}, {3.7376228586960254`*^9, 3.737622877059904*^9}, { 3.737622953226061*^9, 3.7376229843669376`*^9}, {3.7376232615456734`*^9, 3.7376232974188547`*^9}, {3.7376291106197796`*^9, 3.737629198037283*^9}, { 3.737633941836382*^9, 3.737633978181038*^9}, {3.737634025298815*^9, 3.7376340819438257`*^9}, {3.737634123401492*^9, 3.737634128841781*^9}, { 3.7376343145277653`*^9, 3.7376344325235367`*^9}, {3.7376346887661753`*^9, 3.737634690457652*^9}, {3.7376347590781355`*^9, 3.737634782600997*^9}, { 3.7376348358436537`*^9, 3.7376348477290716`*^9}, {3.73763598253024*^9, 3.737635991244541*^9}, {3.737789438459002*^9, 3.737789457934581*^9}, { 3.7377897059901114`*^9, 3.7377898012890224`*^9}, {3.737794088814577*^9, 3.737794187131921*^9}, 3.737794225026474*^9, {3.7377943792132263`*^9, 3.737794401567809*^9}, {3.7396990550027328`*^9, 3.739699056320325*^9}, { 3.73976958971064*^9, 3.739769590872393*^9}},ExpressionUUID->"a0150a69-2ed7-4bcc-9842-\ 2d0b131883be"], Cell[BoxData[ TemplateBox[{GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwc13c8Vf8bAHAhs9AgDUnJ3goR57GvERf3cq9KX3uGjIZZyCgVJSMjFNJO UpTRsis74dImEYko4fec319e75d7zvmc5/M8z+c5Ei4Btu7sbGxsgVxsbORf 6aIazU7zUr019daBdHo3YTZXucJbPYGQDY9SCt7bTbQmrjmioZ5BRNX0jR10 7iZW2oCCmHoJEf7g+Lclv25C6UFPvJD6Q6LsoSX9UUw3wWBwchxaX0WsfVos 8SGhmzgxrxrdvvSE6I36pTSZ3E2M5tfrmHk8JVgVVy+/SO8m9IYldvCpNxBx RaHR+0u7ic5HWkHaxY3EyYkNDm9udRNep6zv+qxvJmy4E84plnUTqYqRCi1L rQT1nU/2vapuYmqX32oTj3aC/5B5w3BzN2FyvIGPW/0t0Vz/cuPRkW5C6FuH 7OWxt4Sl9MO08e/dRL/NIEWzuJfYdbjmjf1ENxG4bSbec30foRgz37T8dzeR Vb+Vo3FpgHjTPm8xyN5DHOaqjTTy+ED4fqSPlG/oIfqrjM4IPf9A9FZy9iaI 9RAQ0JwzIP6RUF0KvWS7pYfg7+1+HPLuI5E++tG5bXsPkV869ueq5WdCKWuE J0ilh2i23HB4ufowMdfy+Mchox5i49jbussZw4SX5ub7vKY9hN/pi/za/4aJ Xz6HOi+Z9RACzUIF/i9HiKQR4+elVj2ErSl361uHUeJEtH9YFAPXoz8tcT1i nFg1xRCU8MX1bhz2kP70k3h0zU9V6EwPsfm7cXKI8BTR4pA0IHiuh2iounrv qekU8cL3hN2K1B5C1NHl396bU8SR6H3j82k9RFUmKzUl9BexqZd662FOD7Ek 3PXkD/cMkXDBnXbnRg+RKPR0davCHKGZYhq41NBDNDU6Dz3fO0esehPsnNnU Q/CdYL/5+NQccXd47YJySw9x5qeh8Y2ROUI1bcp27+se4nxH/ZFTV/8Q9r4y hle6eojstNYByqZ54mXcx6DF9z3EbdHe4pf8i4TB94yOlX96CJ+UI7kHZpbB OV2H4RLpt4T6qQ9lrApuODh5eOBWzFuiSq05nJhZCVfUdjEvfH9LyM8eEQn/ vAp+b2qOj7fvJRgKzZTGFcIQsfzGHu7uXsK+7+VjBylRuL0tWO6H4ztiaNX7 wlS+jXCW10Dx9OA7oiG/0lVXcTOYCckVnD3UR+QOMFrNzmyBemuLVb7zfQRR JMud/k8CHjm9N0yI7idS1/cpbTy9Ddi0pE8rcw8Q1zqyUmYWJeHO5yaBS2ED hA61i6W/fDscfnOZeihigHj9SkD+LP92OH3FI840aoCYbox9KSW6HUbfz1ZP nhgg9GsP/nVQ3Q63VMOcNJIGiL4b+m5VrtshqcMk+kzGAMF/8ptmdON22KF3 KdXt/gDhr7lriOe8FNS0NkfHDQ8Qv7hn7mpmSkGrEmcP77cB4mjv3RiPPCl4 kPR86szoAHHimIzUi+tS4OWmGnl+fIBIe7zuYPRzKdCrtXme/GuAqCJ+/52Z loJ5qYLjxlgHXJT7Ip8cpCGx0EDnuTCLOC0aMLLKSRoqXV5v27KOhfUlVwVu 0iB3LLo2XJRFrD9VuD8vUBpWK1AElDeyCIXW1KvMJGmQLFKYP7mFRdhSA9Xa qqRhVvTF5Wk5FpHLULSqFpMBk3G/2+16LGKHR3vIiW0ysJLjbOAEwSJag0Oz jWVlIM+gh3OFPov4d7Z65NUOGTjpXlWob8gi9r3cEztoIQNire9v5JmyiA1q /o+WjsnAc60f98WpLCKD/85Wgx4ZiDpR8FLnPxahtN7OjGtABgbX3jRXd2YR 9VKzAc0fZMDocNolWRcW8VufqLYdlwHnBY9Lq91YhP3RNw6unLJwU31UuMeT Raz9MpEcpyYLd9Um+rYGsIjUGpXZ+rOy0LKKp6wjgkX0micu47koC4lTNaPl kSxi89shfrNsWTCnqJRfjGIRNyfObmkpkYV90qp/bI/j87eMm72pk4Vlm5Ut nsSyiL8xpTlvp2Thhs8Mn/kpFgGCy0pE/8iC8YzUHuHTLCIhm3GPuSQLG1Ve ig+h15Zz1/fzy8GnMdXD/mfw/b64TwxJysGDxdvfwlNYhKvpVoMRezlQ3Oe8 wjadRVzvPGYpu18OVi4aOHNlsIjJA+32Pq5ysPDiFKUSHXX0uO9YgBy8zfjy ekMWi8gsHUybTJQDl11TNa3ZuB/82cNzVXIwOR6+ZyyfRexsW3OGV1welJIF gzZeZxFns+zGhiTlYaNvdlgWesTlgkWFnDzQWj+Yi9xgETkzq/lcNeThaeYV wxU3WQT7xtUJT/bIQ3eQeO63WyyizV3oRECEPAyLT8v43GMRcsrU98Yx8hCk UtHShY6dO0dsSpQHySeG2nplLELjtOBi4wV56Gd/Eb7yPubTXYHwrTfkAdrU MnPLWYTP/IrQ7nfykL5XNinuIYt48cKy68aQPGiGLggOoMXOJqvHfJGHlccI L7VH+PwtK6aUfspDWuaFs/1oTRP+gEQeBeBplaoWr2IRKYIWr50EFGCcR7jv IHq095TizrUKcIA7sqUKnefLN/ZBXAFcMghFm8csgjOV11tHUwE+earNBjxh EU6OZo2rdBUg1ur8s3L0w21J0iMGCnD3Raj7HNqngudrmpUCRJRZqEdUs4j2 fm7XH+4KsF+57U9oDcajyPTZC18F0Hn47fQ9dJx/gkT2IQV4ZZQz9x2ttYz7 vWmkAnTtrnXdX4vrkeLaX5CmAI5dJWfV6lhEsf+fy9OXFEA79qyiN/pOxdhH 0wIFOBiYeTQPXWfS6fXjlgIo0FOFlz9lEY1n62/olyuAz8dqLw10W0/lj7Qq BUh/l+jjgf7gkR+i06AAez6HRDxDj96+8PDsKwXYZd955gd66nf83w+dCrB2 wpy6/hnud8LB44nvFYDBx/bdBy1Zop3c/UcBvKreJS6iFSYU38iwKcIKd+aO Lc8xvzQlVkdwKULH8a8XAW3SwJ25dY0ijD4tjIxEWwnO94WuV4TycoHll9D2 Dj/EmsQV4fH9ZcYP0J7DXVcCFNCavyeH0YHKjV+fqSlC7X87nJbQR488lhXZ pQi2g0Hxwi9YxPHa237ehCJ4vbDxkUMnchfeeWKsCDPzcXx66BTri1OClopA pDV4UtFZGYk7XW0V4QOrM8YZXTgUfrSCoQjtUm77DqGvSwc85j2gCJFVajPR 6LIAl8V97orw98OfPWfQjx/S9e/6KsLKz8GeWegXS5Q4jiBFcF++1+AqutV0 d4P9UUUoSfQeuoXuOqfMdz1KEXJuM4kK9MDbrXsW4hTBouKLSzX6s7hICvW0 IqxjNZg/R4978nZeScV4OVXNNqB/3/knPJuhCJTDR3xa0IuzEwzzPEUI3Vd5 5RWaCz5l515VhAwz7auv0QKJPYOT1xXhTUi5H2mRtiYJo3uK4LH240IrWly0 2i3joSKw9kcymtEy/90tGa1WhDXxEFmPVrl2ZVT3hSJ4Pv3i9xStNZmumNqs CL2G0jKP0fpapwI/tynCVv3aO/fR5scj72u+VYS3Y56cN9C2jYG/T7EU4VRY v1QB2lHIbdfgJ0X4Kta1Lh3twnCIUB1VhG6+Fb1JaJ9889q4SUU4H6rrFYEO HtFl7/2N9zu/tekgOkJF1Vh+QRHGM0Ln96PjjkomRnEoQV/V5JIlOo2HX2C7 kBL0VFFipNE51EXqUREliPl+fdkadFHmzwstm5RA9Yqx/QLmT4VM7/ogWSUw Pr8/5jX67nPLDyXKSrDSgdFJ5t91p6fXWDuVQFbClzsHnZd2XdPMQAkU879s dEdnKosvRVGU4Fhz54Ip+nzzhfpyKyWQ+PL1pSw6ni2SvmWvEkj+S+Qfxfo4 nv1zk72zErCdyjvViA7T8Ph82lMJwuS/ThWh/f2sg2eDlSB8VjRmP9q+VyL1 dbISqL/wuVuL9UgNTmdwXlCCgM/+Zy+izQX4t2hnKYG3VN1eH7Se0fTtoiIl GJxwaBBCS92tb42oUYLFgZpZKvaH3wm+PPKTSqD1fNDrMvabya3v3/z3WwlE HF5muKFHq2kZ6f+U4AXT95kMevCXrhQ7rzLkH1ETuI39rP6AkNE7CWWo9mWk 38R+l675IDrBThkOnT62OYzsrx2yptVMZSjbkeijjD51ME/g1wFlKLbfU/up Es+nKwm5Tn7K0MelHW+G9hB0fLzzpDJ40hj5vGS/Hl78/alCGQ4LX3u87wGL MKrdu+bOE2UIqxVh50XbZjxSDnumDK5l1yLK8XzwMw3yEnqtDM/lvgnxovNL vrzb/UUZMkKfNl7D84Vzh8dgM68KbKavW/n8Dos4OG35dJuWCsxCyVXPUhYR 8l+4Na+OCjxPaaqZv4b70VrK+qGrAqPcj7aeQyde5fpbaagC/KfLmu+XYH+g 1alRrVWgyKL49nQRi+gpV78a4aECz6pNnOiFGP/QDQndaSoQvaC3LuMS5l/+ 1oQ/GSpwgF25jQ/9t0UuQSxbBbTVk1oj8Xyu2KqT4F6gAh2jU+edM/H8b9ub MHML1zPwyX8Lnvdi8rkJwg0qsOzoomREKs5P78UT6X9UoCfibuC9BBZRabk9 qXu/KjzkkzxtEITvn16g/uI/VbC4mdSQdQjX/15ssMxVFYKOLDs7GYj5FCKi nuKtCuf4Wx7n4Pwznc3NMg9VhTUnDG5N+GG9f/+mUpesCpEc4eHHcV66lnS7 9/pjVbCJKFGw3YfzWL2mzPH1avBFSNmz14hFlOaFOIS3qwGt0U48bA2LuGAp sbA6Sx1C649md/UNEEM53QTdbgdcEeB79v7qAMHx/M+cuthOYBh/renyGSD2 mlIMXD/thN8OL+nx6gOEiH+ejG6OBqiKXH9uxD5AlPq4nbzvpgkM0bJ0vrZ+ Io9XLbpLXAu8lisLp17tJxq55HhN3mrBFh4NVe/IfqLpXSovLW8XWBKllgv2 /YSi9bKSFQxtCEoMLRTU7Ce8L72vcpbQgenH6Y71ov0Ed2KDrzNLB14enHY9 x9ZPaLxquWnwXgeOh1VraKE9VreNb/ukA4dN/Y0/LPURL3J6A76O6EDBrnCR HeiYe9+Cfad1QCD3R/zAQh/xr48/IpR/N8hEpeVp4ffGpCI1OWnXbjhWIXtB 7Hcf0dfZe/Pexd3gKujQkDXWR/zXW3GgPXM3OPYr7bNADw+krf6ZvRuMTHw1 Fr73EdNfqEdVCnfDQv98lTNacK7R8M7t3fCp+D2H0mgfYbSpsu9mw26oPdd+ rnO4j7jjlsVz7c9uiBjZ6Wb7qY/Q8D7yuOHfbpBonMlagX5ykO4/vLQb9pyz XtvwsY9oPryqS4pLF3J0H/TsRn9OTLpctFoXLMMTUuU/9BEbbh3TuCKvC1Lr 1d8JD/URcTNMt7z9ujDqGxkt1t9HpInefJr4ny7Yruuy+tzXR1zVWdwc7KoL j69vZd5AvzxR+M7UWxf4DZI3a6O5BL5b/QzRhfKxdl/Hd31EglTELqNkXWix k+ErfttHnHLIExit0oX23qfbvbv6iEthk75d1bpQ4PDCRBN9PdegqaZOF/wG PxQsR7d8+hp7oV4XjIVsua509hErApX/7O7QhesihgnvO/qIs4l1n85904VK CyNXj/Y+IrXy46Odonqw5OdIzX3dR8xlCyQ6bdQDF43QdQHo/6K0HRI268Fh s1sS+mgVw/MzvZJ6wP3NfOnLqz7idau+WoSqHpTzrRlUQ/O9z7/xzFwPuhNP bXnXgvHhOpBnHakH+1qC/R2a+oixkVMHjx7Xg+CPGXGqaLuWit0FsXrg3BY7 wI/emiLQP5WkB/s1E22eNvYRdetr1qWn68GCtIi1MnpBQSx14I4eHDPXPruu oY84bNcf6/1RD/7efvlS9GUfYT9kejH2ix6s+bovcf5FH6HpW16cO6IHt8a+ JA6i52LONLX/0ANiMdewCH2sjBDUntcDdznHvJ3oiFVXL/GtJUAzJn/Q+Xkf sS9X6KbkOgIuCrwMo6B1ZSOr9TYQsOa4GE0ZvQj274O2EBB3Urtm4VkfER3I I9WvQIDk9l7/XHTMG797N4wJmNZS0Bx52ke47H337CWFAMgZz+9AGw4bdw1Z EJBdvMm0Gs25tHl2jS0Bn9efoVxAn1Rq3x3hRADVctdmA3TimZ2NlkcI2Jba ynOjro/wWl/4ziOMgEIVdvUstFmRwPfjkQS8XGzOTEDzVQ+vfBBLgOqJIRF3 dPJYlp1YCgEpyRf7t6LPWSwOjl8joPEOhJfWYnxmBi913CBAYj7CLAftkl9r //A2AUJrOs3PoTVmjr8+Xo7rMcn/GooezOOoWVNHwCBX4gljNMXs87G5ZwT8 5Ng3vAtd9uvFTtZLAp5w/4xWQsdT4m8VtxCwrE7VTBStNMWTu+stAb7ab7V/ 1PQRmTnfGJv7MN7lETs/o9lNm9dy4Gejv/8plz50T/bp5NaPBDxeXWbXgI40 Fog48IOA7a0DKVfQXyd+aBr9JGB50GGxbDT10ptfMtMEeEWKDJxHS06k+E79 IYDXTXMiBu3RmnTrGTtAWke2rzs6WyKMfycnQMJyngQndNthH++S5QB3h4S7 HNDaEhbbk3kAvil8ZrdABxzWiV3kBZg4dPqzEfpqi/yHQH4ACfbCWT20wOEV uXQBgEulo/fU0YYt//42CAIIpXEwldBHt4wztFcBrA5kqsqiPza/Wiu+Fu9/ NSlUHL1uS01QqjCAaYf5hw1oy9DbbRzrAPQviUSJoCvEzyWPrMfnFWWbC6C/ h0SPOm4E4K7RCeNDb2kOoLzahO8nVt7HhaaL/1dMbAYwUp7z5UCfCqFylokD vHaaV2RD1zaBi6QEwCbRe1sWqrHfblatS98KYN2wwugv2qlpVUT4doBllbGb ZtAXNrP3jUsB9HWdbJ9CNwZPaf4nA2CfNV8xiV5o/HixQxagPLi39QdabXPn LyP8nA1pF1wzjvYMfm7zUAHAbsvFpO/onMb7d3D8BIvXe1VG0W1iV1fmKANk mzlwf0MvD07zFVAFqGMLFxhBfy05xJ6vhuvxZNMcRtcPWGWp7gD457s88yu6 ZJWCyvOdaL4wVdKJJrwNNE2AYsKKg7RX+Nf9X7UAeLiCVpI2u/t8+og2QKpj tzVpuS/5p3l3AwhoezWT5tsQtTVbF6CqYEMk+bzvVnsrsdxB9dyAJ7me1lgt ag0ARLDlnSLXe/OR8LC1AcC1v1ZfyPc5Mz4V+cEQQFd56MgY2n9r29pgY4CS vt0GZHysHG7d4DQFeLlENyLjp5x8yiCdAvCjQDSKjK/QU8930uYAf14ETUyj J2eMAistAAwO2mbOotvltnJb7AEoulx0lNyvsgNLuQNWAJHOjinkfp5PG9jh TwW488hpiNzv4KbKliUbgPwb+e6caNpiukuqHeaHvsA2HrSwl01KuT0AX7Ck oRD6d46StAkD4LF4adFash7b+WveMgF0UlYR68n61an//ncfwMAnY5Ft6A2C Oqb6rpgPCca0Xei/hqKDHW4AQcd/+hLo/qMzIW4eACcv/aw0Rud8vFOY4A0g 61s8Z4sWr5BcfBUA8Eh9bDEAzfZ92cUDhwDyvhg0HEG/Fx+S/xkEkK7j9DIa XZiUxVx7GEBcItslhaz3/QIPHCMAdq7VEi9HLz//3WIsEmBsW82FarJf1Dd+ jIzG/I49pkv2kxKVWKGCGIDjFygq/Wg5zjnf4USAjW22qcuxXynf+LA15CKA ZlOAqhuaNjEn8D0d4NOKVJFAdJi60LxzJj4vTlg2Av3isV6ndTZAyzR3Txra sTU7Vr4A+wm1Y08j2Q/H6Z8/3gQIPfW3WBP78U3Vg23M2wCu+185mqDbQ+Oe tN0B4DTl0KGjNy2WpdWUYb4eZBwPRt8TEDK+9Ahg9uzIpjL0gHJzkc0LgJGi 4nOaeF6wh3xIbXwJ4D2jyG6Gln40F0k0AJh9FM13RAeBtL1iM4Deq3f7o9A8 NnFcvG3Yf3LNhhrQ6kF6nnX9AJtHf3x3wfPsVHmZjPIvAP+pjoeP8Pzz2zP6 IG8awDZPifMN2uqrhKHAbwBRs91Hv6BXiabuH58DWMVSeLsaz9fM8IDzNxYB 1H/l+gegSwwU/knz6UNtf9aMMp7fL9qK3myR0Iecfd+mXtX3EcXerH0pW/Vh JlNJ5Bs6kV14dGmbPpyw2HSAE89/yx1xnENS+pDMuuGsg+7McNmVq6APNd4P pW+gPzqJX1mvpQ/OjP+upeL8sDSWeXi1tT5wdUhyhDXjeehevbuAis/vpR7M QW8Y/MCuYqsP5auNl9WiNd7IndtD14etoFTMifOM370nJYl79SHucs6HVHRv 6PveRU99YDAL+ctb+4i7i9I634/rg7ti2GmRNzg/CT1cel6mD8cubtxqjfOZ WqbwRq1yfeCJ+kI7iubcEqJx84E+SP7hKClAlyqrHkx7pA8nDSauTaOnrG70 udXoA/2inURON85TZy4/WN6sDyub/nRM9uDv+RJ9TT+g+bfcuYvz4xQn822z oAHcLl6YPInzaeBntdHLIQYgNx0UkTCO+/tLwjj3LTaks44+z/71ER0daT8m 1A3BViNcY5y/n0jMJTqFMg0hTUUxl0esnwjY5c+VMGMICx+rLAwV+wmDuq6Q FkcjcFAJ1avV6yeUD1PltWqMIP5mvX+QdT+xZ8Fa5e8GY7gksiOD6tRPOAQk BJ6KNoaWX7QbBw72E+fLDJYCWMZQq6neohnWT4xIrumJ3GUCm7i3Tx0/2U/I xmwcYeaawFJuo9f2lH7iY1nurdd5JqC6UemdGTrnk3iwYb4JHFZfUPFHCxlL LipcMQG/o43pFeg5bsW1bKUmUCNapG2S2k/Un9GD4nITmHnD8f6/8/2ES5Zz 5lSLCYRovIiPTcP73S2hnP5rApzZp+sjM/sJ9qcipuL/THDe9Dieh/ZsP2l8 f8EEGhpLNtWi1aZcDfrZTGHikcO/JXSj+pbd8tymIOumxDie1U9MV2Qqt6wx hZyDb6PDL/UTltVJIvyKpnBlMjJpb04/UfZqbu1lJVPQkX515ih63aDnGnUV U5iMORRyEf1x0Vhor7opvBJ8MvIafRTY+W7sMsV52Psg5PYTV5+HLZibmIKA 57Vhsbx+Yr7J9/OpA6bAH/P6yrPL/cQm5fnYdc6m8OjjRGQ/Wi/t1LarLqZw 8MspnWl0jFOpS7W7KQxdU3bent9P8P36+n7C1xS0Ut3s49EbNrmwaEdNwa9m 7XeDgn5Cy5/RsznVFJy3XOkoLuwnHDuHQ2+cN4VvH7gknqAjtI4Ia6WZAseI rl07uo49nWaTYQpFj1Vd59GmGZ0dsbmmMGsap2p1pZ+wr7N6M1JqCuzBQad+ oENWGzeWPTOFhSQvgw1F/URfvEC15Au8fi5wSA6tP//2XvpLUzBRsHXTQQt8 9skOazQFqY93tu9Dlz5I8Td4bQox0dYJOehBxsDajnemsKqlp0m0uJ8wuxzs /HMS1+tW6b2EvrtG1951yhRGx9bwrSzpJ0QSuSy6f5nCu7+vz29Afw7M2lH5 2xTaMo/s34mOMqjlPvHPFHZ48/Z6o8u/8N0W4qEAy+2T+2v0ZoXCv8riFJBt /o89/lo/oXKcIfN0CwUaRX1yU9GGXQL2tlspUEtzFMtFe0WE3wvZTgHXtStb 76PvtdK8KuUpsFL+1JchtNFB7h4DLQrsVbAXVC/FeD2t5ujaRYFRYcN/u9Fe wiGq7joUmH2f/NoEfab6fXKCHgVyL9K2OaJ7VlYZthpR4F9zzNlotPdtv3t0 Gwq8fdh66CU6gn3b0FdbCqwemn/4Cn3W/t2KozQKRDYsfOpGly0ae11yoEC4 Tcb4F/Q/K3Hxof0U+BI50cB5HeN/pdsy8AAF+j/G6K5Ab5k9HbbMmQJ3prZl rUEbX57r3uZGgZvxN9m3os9OtCd7+VCgqqTosi463zCx6o8vBTJOh5gYoe9n 6OEXIQVy2JI7zdG9xA3DW4EUaMq/n++AlkiJ+/vzMAUWlD5wB6LLVTS9wmMp IPUkdVUOmj9N+vvPOApIGpW15KNdZtf5e8VT4MDTzwFFaKGauWB6EgU623IO 30YftKiKVj5HgehH26Nq0S9uX2cvTqGA9IHCpOfoTauzT246T4EId9/oBnRz b/hp3osUMKtfkn2DlvLQzfh0iQLWlovhLHRkk+IGxxwKqLhd73uP7lLYnNuW S4F5Y9a2z+iYX4uF1fkUCMiZDh1Fv7Of2L6jkAK3bgxHjaNVqoauXb+C71cZ FTSJHjpedzujmAK8vBXrf6M1Pt9VFbhGAa/Pbq/myHiaFpTHlVJg3XSX7zx6 t0BM1aGbFHj2Rdib7UY/kZltWG9RRgGNxGF3XvTEorrZs/sUYIvwC+RHm7hI tmo9oICQ4Lj7SvS0zPKO7Y8o8ISyuGoV2iJ5hpZTSQHtU7mNq9GFE1/ern5M gVf5dJ+1aJuKetZSNQXEYhUD1qGvrX/43+FaCnz+trdDFM0WWfJprA5/v7du ywa0w/sMD9dnFPCWcnHciL5tmPjt3XMKWGZQojehl5cc9aO+pMDaf2HnxND7 +Lwn6usp4FTIdnoz+v5BZpBuI+ar0IdD4mi+drOZ+00U6F6SNNqCdt6hfVSu hQKe77qWSaAfZcjN57dSYOvY3HXSgvMbota9psChhCxiK9rDiX/Z2TcUePm3 ppZ09dP5WM52CqRfPCS/Db12+xhXeAfGu6QyhrRv4kDSz078ffTll6SffW9d 4dVNASN/+WnS662rzw32UCDmmbuAJDqw7NZqei/2g1b7taQbhPMutryjwLc+ Li7Sm4+dFTXop0CsXtQn8vrQgajsRwMUqDR5eZN0KxGwWXmQAv8ZfnYmLXnl QEHREAWs4j6xkw7nokpu+kCBg8yWc+T6z9b8Rzn9kQKHI6P4SRcePuT39xMF fkZMBZPvX6EUk+L9hQIVCspNZLyav54v7/1KgavOu/lJD+Zd6TUdocD1SQlt Mr4/7cv/VXyjQN3tYToZf9GGbqOLY/g+K9Rp5H4pRH/14vxBgSv0Rg1yPwnN 2eTgCXz+1v1c5H57lIh220xRYObSVT8yP8IOyP6p+0UBiZ8eHCLoM+u0xVRm sD+IUxLIfCpP2OsuMEeB/Xvj7cn8ayT8kiL/UMB9za8CQXT/bMStsb8UOP8n t4/MV3avvJnmBQpkFr9aw4cW2XJnvfYSxk/UZS0PWra3VreUzQySBGnsXGgq 5cPJBA4zoH8MKF6GdmObKv3NaQaL3qX7lrB+jjxif+3OZQYPXx1gW0DnyUiK GPGagfkJFyGy3sZ4PIvZBM3gCUe2HVmvbE+PNAcImYFBT/phsp7XHEv8MbjK DFQ1rBKG0drfSjWq15oB/5xA0Ad0YtNY/bENZqAzf/9gFzrnxMLoyEYz2HHX c6kNfWeXgCBDzAwulwhHv0L3lCo7aGwxg/zKaEo9WvJU0PDUdjNInz/K+RCt ZRDL7yJtBvNZX7nuoy3+XlBul8H/16XOkv0tyOfBkTvyZuB489mVYnSd+Ry3 n6oZKMlHylxE7+ePkvmy2wwS/OpH/cl+dyX8ZLCeGbxfSnL3Rg9oH/u4DMzA VZCr1RXt6BOSs9kQ7ydut4+Btm/yEWKYmUFi4KHTgKYmOMw1082gLd9AcSVa UJxOZzqYwbWGYi8u9OsK27JhhhnEeh9KWcLzZM/XPX6c+8zgX4F70U+0ubHR e10XM/gS//dLF9qIQ7Xxrr8ZhJ/Z25KB5shW2k4EmkHTWv2Oc+hnagoxrw6Z gcIOnfoEtL6L9O7REDMYrM8MPYLWeyp2d1u4GbzplP9FR2tG82WmJ5iBzNOK YEG03Pwnz4h8M+DucugLwfNWqXDjhskCM2hx/Gfmi1Yzs2t1vWIG8Zpu153R 2hnPVCyKzWBixRVdK7S5esGf9TfNoOLz+9tSaB9fp9MPH5pBzdnwF104D1zv 77099doMUhYlF7ajb8cIOXu0mUHySuUMcr4ok6Ws6Ws3A/nw7dsE0VVHHh55 2mUG16OWhOZwPmlekw4pfWZwsDrUuAk9amHXofjVDEzGy9Z7o2WfvJrxWjCD rVwP7uXhvNNrMPV+fhHz52njiZQiMt9EWs+ymcOC+SODGPRIz4HCcg5zYAru zXBHF//8acXGZw5C/y07I4+WlBa5liFiDqq1zuXlV7E/nXdyrFc2B95SLsoT nM/Wek3UbHMxBwdHa9krOA+qfEnrUa8zh27981RtnEc9Uq01/DZZwFEjAwEv nIcTZQzag45bwGp33kcNOG/3pzyqes2ygPobd70sz+B8+dljaM7AEuaLqAH6 Cf1EsIecpUWxJdhpd9c4nugnFisPcf9i3wMTmeUW/8JxPpybXPDy3AOeD3Xk fQ5jvvJMG+x4uQdEVOX2JhzC/mWyok1awgo48wwviOL3RXLgvsxvcVaw3+fE p2ov7N++KnfYPlrBBYW095Lu2D+yjxqlfbKCspZ1VBH0pea6d9JfrGBj/ulG bnSjrA2n9YgVyIubd426YXxGDjFzf1gB3+Qeh3voQbf7HNrzVjAT2boC0FQn DUbwWmvQSowGN1c8r212L/tqYg1F/zHWNTr3E6e6r2oGUaxh2YIq9xM0i7nS f9HMGpJqfizdQce5DPaJ7LEGtYtrVmSiO4KPl5vaWcPGlnXnvNAB6S88Sw9Y Q8DyEOBHX+u3fO131BpiXtXbOfzXT2z02J/9q9QaUrx32fMdwH76Z0nK/YY1 dAs7yS9DW54pLOu5aQ2nA6145vB7LKJ8uKnyjjX41Ke8+4IeZA+ai35gDexc 5989RedfjqeveGoNiVaa1uFoqXd3BLf3WsNO/3MC0/v7iRo/2+z0d9bwJ/fY wHe0A9uMFE+/NXxdJ1n2CZ0ora33nWUNs+GPQjrR30Jf+N37ZA2vl7rs76Nv rn7XpDthDcqPks+GoNdLLTOQ56CC9OPgpn/7+oknQ5Srv0i/vTc1jXbKSuF6 wkmFbdJs28fRhSu2tFhyUUEsueUqCy33S4/mz0sFgwShVbVo7boIj3uCVMih pGXHoh0d505pbqJCi1lFwBr0vzUwvoR+0rqmcgU671WCdaMYFeZe7+fnQn+E dWuZ4lRI31HWPLcX61taIzdsKxWiK7XKB9Fh08F3qmWo0EDkqd5EXzo70Wm4 kwobn/S07kEPWne9X0TrZyWlUNDbVlWOV2pQ4Wvw0F5D9M0LMdwqWlT48juA dxe6OlNYZ5MOFdy4uesk0e8LdQqngQrKn7ZdWnDE+D9MCCyypMJqxYC/5Wif o36R/+3B9WXtv3vXkTw/bE5ttKLCkG/DwZtorScbrqZaUyG/g2vpCtrs6a23 kbZUoOZxh19A+7V06tkzqPC7/drbYPT9IfGV3G5UmDSVEtVG27ek+dSgLcYs WjTQcxW8jaHuVLjYEHhSHa139lfMZw8q7FhdJqCIbtzdMPfUG68/MRKyBT2Q 5f85IoAKIaLtZ3nQUSc/6e8IpEKS6o57y9EShxiXv6PrdaP62NEeFANHxyAq nNn8VH+BifPHb+E2zVAqjCe+dZlCc9GqH0+F4fN2/Rpnoa8Rauuvh1NBI1ow qh9tIV9y2DmCCpLBf9e+Q6ewp6q2RVLB1E7DoQu98Z5bya3jmC9hGxVb0CoC Ky54xVNBfVZdrArd8ef4pHgCFUqNw9Y/Qod+mdnzFt15M3hTBbrqyRCPSRIV an4f0ShDG/nej9qWTIXYznNV19HMRkefwVTM11jTZbnk/baZuBWdp8I1HlPj bLR5tKqT3wUq+EkvT81Ca2vw2P5No4Kg5n0iHb3p6oNdIplUuNSc8uccOm0p X52FVjQhws+iV+5NVryahfHxzOQ8g15c5Sqhlk2FvwWgdAr9PlqI1yoP819i GysOzeifZxe+TIUVs++zY9HtGsP/+tFS0TtdYtDPxqsnvQvwfjczlx9HX93r 23vyKhX4ri0rCSfX89C+w7II471buTAMfXG1QeuaYiponxu6egwd3yRaV1CC 9Xi0pu4I2lOzvqT6OhVSTyjbhpDrOX+vIO4GFaq0FJOCyfX8yMm2uEkF58dZ DUFoSlHwuXe3qBAu+8DxELqO7UBS/m0qiIseuBOI3rXPPNbzDtZv70F+0nJr JI7M3KVCfPedd/7oQv8Vh57cw3gLD1qQ3tg86xNbRgUeRc+XB8n4bf/kZn6f Cs/zKCakV5x47bSqHOv7e/RrP3TcQCWjF22YzudEekGzyPbyAyoQ4l+nfdE/ foSbKD6k4vxwUou0h7knTKML2Y2/+KCHimy1Hz/CfBGxyCLNWKa3I6aSCidT L9JIt+2TVTKrosK7aYl1pCmP1soIPaaC5bPx997op2vYtr5FHw//fY+0dsD3 jXlPqLCpcNcp0mXNPcLu1VRofljuTVpO6pmgQg32Az13KukrJ27x/kL/q6Do kd7EyuSoqsX+lL1PnXSaVtzC8Toq3BHOUya9Ii1g1vQp5psa3///Hzfh+FPg GRVUFnJ1Sf8zN/nejb4ca29NOrRY9UvOcyqMtat4kU7hrUqyf0GFzFOtJ0lf 9zNQEnqJ+XYxs5T0yzfNHU1o3+TznaTfq9kdia2nwgW+Rxzk+89f7N+o24D1 ep1Lm7TIH9e63+iB5RGHSavuG3O720iF5Y+EK0lb1obw+jRRQWtv+zIy/p5b F25ta8Z8T7pJJR1z8qQtC90+eLWIdM7Iytn0FiqYTz9kI/fzoUV6NrWVCqNu n5xJd9zeDHyvqAAtkk2kx1aVfH6Ofvf0mAaZH1t7HypqvqHCymbaNjKfdHWg YxLdJNRTSJqR13j4ehvWh62zTAD6rNu7WrEOKvgrJRuT+Vna4Oz2Fl23KMUi /UJulCe1kwo/1J+Fkfn9Z/KvDWc3FRiak//P/7W02N/V6BbtqCNkfSg95M8+ 0kOFcys5FMn6cYvc9Hn0Lfbb08OloWQ+8eodbu+jwunO3tGj6O9+9RtO91Ph hE5fE1mPXG1WtUYDmA+mtbfJetVJP8DziIXvWyl3KgJdvPXEpbz3VAgcMUwg 6/3pSV6C8YEKSwfEL55AD4ykflr1kQoVNi3XyP6w+k6hwslP2B8ETn8g+0mk zosa369U+NznkZmEzsyzdN0+TIUSodgusv+ULevmHkKXpu8TSUaPNHyh2n6j wtlF3Rtk/6LRuD9pjVEhS+HI+jQynw+ac3NN4fkZeX15Plm/YEZ5g/YP+lVT QObrGkpS5i/Mj6lXUVfQ44+M+eVn8DxzkV9dgr7LqS9IncN8OqeWcBu9M0dz 3aVFjEdZfUkNWipAg+G6RAUno6rGOjLfDHZmKbDZQFqqwOQz9Nyw2sbaZTbg LPfKpoHs7+pK4p85bYCuYunchsY8kVbit4HCNodbn8jzIm+b1yz61o83al+Z 5Pm1tbRuhQ0snQ2uGUGzr9sibydgA0UvlUfGyXpw2ah8dJUN/BYWOzlH9v+/ qzSfrbOBB8WdHwTwvKPLLpnYS9rAxYBpAUCPcGSrrd5uA14F5RsN0RGDGptf o2+eP6Jogi684D9jLG0D7aV/D1iifyywruyUs4Fpj2tsTHR8xxM2YRW8P5+W EnmePwwPq+rUsYHJlb1SN9Dm9iLF53bbgNy9jNe30YMqZakWujbwtWVZeBma 8+s3r+d6NtB0oPlDJZpKZa67r4//bxz62kiuT1Ir5LypDfB+u9c6jF7/ekbR xs4GYqtW/JLBeYWvU8KHl2YDtU8ChRXR/97uKX6K9hf7o6NKzkMfijar2dvA Ml6/i+S8c3WGLriGaQNVP88cM0criVVMdjnZwEfmfs6DaAO/w/cZPjYgfnf5 qgfk/MU3q/XfCVy/x38HqTifqUZnrZKJsYGjMq9/0tFzv3RGJ9DUoD1he9Hx rOPZ0XE2kFQalOGBvnKXbzEvwQZSlv1eFokesN/8nHXGBtQNOtOuo62uGO/Z e8kGog79zuTBeVR1d5qz/X0b+NTqSX+DTrEPVp39YAMrO9bucMV52t3jx+bo tbbA6Zgkp4fzeMPKEJWNJrawIeGZkCzO/89ydb45h9jCv/e7uhfw+0B92+Xa c8W2UD5pXPLXA/tLqpGuV7ctiJwzLWrF75Ou9OlBGocdDF3z5jnp0098SIU8 mZ12IPDG6zrFD98n9DVniasdeDC3O7zB75sCq7nEFel2EJc7U2QdgPNdrYJq fIMd+EpxzeYE4vdmps8zvUY7uJddGF6AXht0zW4WPXO5fKEIPSgpedir2Q4u Fmn+vY0OOrXxsfkrO3jXfaurDn2Jzmcs2GkHJRb/BD6jR78PMzIH7YDppJgu g99bp0SvHL8+YwdrMxlvS9EvnR1uB/22g8a5Gt7baLYb/APas3YgUcy/qwx9 WDdEs2XODvJUHc5WoZ1djH98n7eDI+vK1rSgtW4O71Vkp0HGEeuk7+ivhILm XQEaDPN/3ywXhN/3ng/GH0jTQHDNg2+56M2PuOoDZWhwo37LhgL0Px5Gnrws DdrN35heRVdc/2tVIEeDvwYzl66j5X4Qd5MVaSDh4bXlIXptaHOQqzr+X5D7 2hv0SMzQrBBBA+Ek9huL6JedKm0t6B0uy+OWBWP9ScZciwcaiPyzcuRE76+X ZP7Tp8HCRMUiL7qD16dq2IgG7yksKWH0k5TpiBpzGqjrX56WQ6fk8bL72dNA Q7MrnoY2PNB+WMOBBtdig/Qc0L/Fs76zMWjw6/XHKSZ6X4FM90UmDSqXadse QMtcNb1Wu48GK3Y2jHqjn5aetFrjSoPdq6Jio9BT5cuyqwJosLamh16ELgpt EjwZSAMbvt3XStAMjdQ460M0iHaPmi1F1zzc4v85iAa6G3OSb6NPVxH6Aodp sNmEkvoQLVkXOewcQYOmoibOJjS95Y86bxLGtzk/4xvao8Lmzxu0x52zkd/R RwtKa9JP0aD6atx/4+hLR5hmksk0mA07JfYT/X5bpRNxjgarvvKGzKF9Io4m hV7E9e/SusAV0k+Ee7ZZ7U7H37P6zHjQybYyazkycL8Dkxd40XdkevNSMmnQ prhp30r0dJdm+Y1sGkS+XZxZg45SnB38UECDvRE+uVvQ50Str14rpMGJ4d3b t6LzOUq8A67QwJ9f5vo29PN39tP/rtLgro7FDSk0T3wFr+g1GvgG9p5SQJ8f DN1hdZsGq2tKajXRJeemk6qqaLAr+CunJdox5tuf4Me4/koRsT1ogdBBb8Un GO/tnWpW6MOOjWb51TQoLp2yp6KNtufwxtfheuf6T9DQH6sMk2zqaRDo2OWy D51+S+sPXwMN3Fp4afvRZvmK3i/Q68y7DJzQd0+uM9NsosGl63Lr/0NHU7/z iLXSwOzM2DVX9Kav5xNH2mkQH6NP90G39SbMFXTQoD6Db4svOq4lwmtvJw1M Cg+NkP5+14PyuosGPW0bgw6iq8K1ecrf0gBkJ70C0Q6rPiZEs2jAobjhSyia j/PtrNYgDa5/5Tl1GF3zu8VzCv294bLCEbTUwANT9/c0WPzR6HOU3J/iJG6L TzRQoYq1hJHx3K2aIPIN88staFM0ud7LOReG0HYXPxaTLlrGk39tlAZX4i8r HUc/qh98pD1GA1l3Do0T6EFq8qjTBA1uqZ2RjEV73Z/9LT2J+3cyMov0T2FX jp/oCcFn/HFozv5dm2KnaPDopMUIaTn34T0lMzRgrgs7EY8ub7B1DPxNA21j qQ+kdeVqPHbN0uCYhJJeApo6kRbdMkeDq/m0SdJ9NmzJaX8wvyRCjRPRruW+ mfv/0mDZipkM0oePGdybmKdBeZ/IziQ028Ct6kf/aJCYUxVNOklvffOJBRp8 jH3aQDqHY/LjmiUa3Iz6Z32KjJ/H3okB9HiAWgrpO43180VsdDA0ePOK9LMz uWu12OnQZKyvfxptOckjsYyDDs9pokdId9uGKDajvdgcr5N2ejC06wInHS5r cveTHllnYbJvOR0svm3hTUYHhVXYbueiA43z2g7S8wMSB36gLx/J3U9aoHDu yHEeOqRsfVtCOpPTLc6Mlw4cWmJNpCU836Ss5qODlXP3MOnrTdq5/WjHM2yc Z9A7FIpLr/LTgf/GZTHSNWdXVRxcQQfT0vs7SJv+jHimsZIOfw7rmpFusxt5 vYRm49DbS9qxwq6/UYAOlN0VPqQ/i9YOpwrS4dGqkiOkD4bLTTsK0WFH0KoY 0r9ZF9kkV9Gh2PJ3EunjsGzlOHrmnP050heW926PXkOHZyvOnCdd3Hxbb5Uw HfoOPDlNWkVxg0UfevmdC3GkK8+ddLgiQocwtrEw0gZTk65+6+ggaVjvT7qV ti9wpygdht23/Ufa/mFDxCL6jgOnNen369WTGtbTwY3bR4e0T0TexZQNdBh3 pW8n/WuQt5C5Ede/r2EF6c1mq5nCm+jQanT5FxlP8/sbhNrRfOnUXtKHxbY1 JIvRwXn1QBXpwgT5KMpm3M8Ig2zSr3+q7+QUp8PY5bhjpP/u3T1Wi657eoVO 2lZlj6OmBB3Y5yO4SUddoq/6hY4f1GKR+XGd06nx9lY6OB3rvkua/Z2/hpQk HXYeLLchXXYiZbWwNB1+H94aRubj4PfMpjb0Eb0FPdJ89gXHk2XocH+8dhlp F7myHxxydMjIZjtB5vuqzs7mKQU6ZDolepD1slt34MRtRToknnm8gbRXyWct HyU6FHWxWsl6qwufKf6gTIdyw19ypAMl18W2qdGh/XXY65Nk/ZwV105WpwPn NyKIdOOc9E/THXT4ZjG/hvSWV1oHanfSYU0cw4as/zehjjq3tfD64Zf3Y8j4 DLlMee+iw+lD9qakpcx9S7dr0+FUyOdest9EbY5Yl6tDh7yofzNkP1JqyP11 Wo8ORq92ipL9ylG1+LopQYfdFi3ZUej47NvOHECHDcHuYqQHA2rfhOnToY1x Y0Mk+qzohxveRnRILk5fIPvhuLekm6k5HUbyyt3Jfnp08YnvEtrgw5pXZL9l v0APfmhBBx56lhppkSfxMdJ76LBpx4a5YLSewLd8birmYwL/wUPk/ctusRro dIjW9Fki+7uoqcmXaHs6RKmdNyNd2D84pumA+z82nkqeDxWcQv9KGHT4uGAo 5o0esg/akLgX95sWs9mDrId5DQeKMx0aTy5vPUCeD+feOLG5kPXz5g95HhlJ enk8QmcNvdtOmrEnK1TGjQ6s/IdHyfPsxOX5CzyedBD+dpuXie4wrGtr9KMD d/LedzbokGQzc7OjdMjl3q5hgO5KYfwQOkaHfDn/dfpk/7joeb4X3drT+psg z5Pck32e4XSoj3lzR5e8/s5Tn/goOlxS4+ffhQ7u2HX6eRwd+nXdPJXJ/iYq 16qbSocX4UO1G8jnb9oVuPw8HcTYt3msR6tJUNa+Qo90FvCJoqdkPfbtS6OD xmp7K2Hyep3CsbAMOjzhrKoTJO20YeWjXMyvDUdtOdGHrvJZqV2nw8X8tWpj OM+E3K3IGUNzjbU/GUUffuLyvfgGHa7ZSpmQ81JYV1XixlvYnzwzaV/RcZy+ zznv0iHdt/q/9+h0txattw/oUFY+otFFzo+SydsintJhQP7+hyo0V9HKPy97 sR//PucVh16VffMp8NsDdXX8P3JeLZWxv/1mtz2w/tmc9kX35ekb8Praw/mB 6OC3OE+f4Gv6JZtrDw1pXAXK6KdO5y1nWuxBVf/L6Dmc78+aezR1/bGHkw/O Vv7C74l2+R7XbHkHKDbdPL4HfXMmoWiFowMojAt7Vvr3Ewvl3ZzuyQ7AGhp/ KYEe3ufO7/XYAUZfXOW6jN8nTjlLO6O/OYB/SEmCHNqifWdU5EYGPGCeSanC 75ln935JaG1iwLsBoxWVaK3z915Ooa9nDiQ+REvaKa702syAzJu34srR/7ok c2wlGBBSPRB/G32zd02VtDQDvpkrPyhEC7z/OdOuxoBlxVxVp9HtP24dlDJn wMcd1/z+Q28iPt6aRK9abrf8ANrrnMiPKgsG9IivvLwfzaYS7W+9hwEcv+50 O6JVDlEDjlIZMAEPrOnolF9Tgc32DMj3bj5sjrae0wzxd2XA1r8T53aiL1H8 yrXcGPBm/IT5DvTXzPxpdncGVDhu41JHR+3iDc3wYMCnH2nHVdC3w/pC67wZ UCq9M0aeXP9CxJHVgQzYvjr8kQT61bJnYRURDIiIKP4pgD4aEc8fGckAquWl zpXorbPmOYZRDBCTSq9YgT481lndFs0AXoPiaD705rdf2L7HMEBEUm4zFzrw Jm+CeBIDzDhbkhd8+4nVDjYXEi8ycP/alMfRT9qFJa3TGXAx4LHaGNrDsq9c OIMB3fo3Nb6jq/Rdewoz0Wb5+t/Qrgqh66uzGfBH7o3rF3T5sqzLPwsYkGuu 9o6Ftr/5/objbQbcqXNKeIMuVDIYXnOHAcaWJZWv0RN3r2x9hX7NaB97hU58 4JFF3GPAwStN9FbyeTVj8ZLlDCh8SVFrQm9un3P+UckAzpAA4eforzNCojEv GTCyvS32IVrtaJCdTj0DOn0lOirQ0X87z06j9R7YSJAWXUpf7tnIgK+fbJ6V o815xH5ZtDBA6c9rgTL07Q2yr4XbGZDzI7P9JvoIoR9XOsAAHUe7hUL0JdX1 +4JYDJjOf+lI+sm2n+o6g5h/ZbsqC9BsPAWfWocYsMJP6lg++lQbm+HkRwbM Zq9YnofOca5bpvmNAbJaQ5ZZ6Bq7zHdL6NO77asy0R+MA+81jjKA0tciQ1pK bouz4xgD6MJlPBnoO1PRdZETDHCZcutKQz+LJaJfzDCAdkYzOwX9OXSdw5nf DPiuclyUNLfXhJL9LAPGdF6kn0NbWl4eHJ5jwL3Huuln0d1rl3T5/zFgqHky Pxk9UlTzz4adCaJ+cl8S0QKNumFDAkwIdSmQjkF3Pi37d0mQCdUvzjafQGc+ lo62F2JCWZONP2mJO6viXq1iQsdbh0fH0TvSv5x5vJYJAs377aPRjm5nCjI2 MCFLWbwqAi3uxC5pt5EJN3ktfUh/djhSLLCJCSKz5htJH7RwvnFSjAmrZWqi w9HH1XY+CN7ChMaSYNswdDEbq9FaigmCpt82H0X7/rWx4JdmgvaVTQNH0CrT 9a/q0ftiN18iXTl8t0NXlgl3vyeLkm59HTcgr8CEIgkB8cPo1MY/TsOkXe58 DCXz95n/h0JFJnw7IFZCeugB4+t6ZSYE3XBSIz2VozDJrcaECxaBtiHoh+kF Qc/Rn9QPbSIdkSIyE6XOhBYh3eFg9PI4tr8zO5hw4sWOaNKivl0cnzWZ8LA3 91EQWm9XxLo6XSa8GZC0OYR23n9i9IgeEx63JcqQjjsRX61MMEHe6yYb6eam FNfLwITJ66r3A8n1OhbdiTJkwp4CJQnSx6Kux2gYMeFaR9JiAJl/hXfoP9Aq fwsHSH8crZzfb4Lxpgtkkz4Y/tpU14wJ7m+ebyGdcrlzwwxaO4qXk3TZ897x m+b4fmX8I/7oOf5PFzZZMoGt2KiM9EaVEY8udOb7sEzSerTxXcl7mGCX5RdN Oi5ndmjeCvMp8oQ16ZK6f2X3rZnAsf2qFunmz8vifalM+GdwYitpIcUVCv02 TIjv8547SK6/esvRKhoT5vTHb5Ku/bDdIoiO13sOZJP+uFx+s5w95suv2NOk Zax2vshyYEKq1rwfaYsg7QwbBhOk/JudSPunEz68TCbwcdjYkC4fNBM65siE DYaxWqTfslt/UtnLBC8fJUXSf6VoFSNo+2/ntpIWs2Am5e9jwu/IElHSEOC0 j7GfCY5fQwRJu15wVRZyIuMxy0U6/qEXeyP6qZzKkh+6tP9gd/QBJozEiM2R bl0Kuqb5HxO2ldT+JD2x7Wj4BDqGLjJGejUl0qrEGevTUmKY9E6/GIkDLkxY oLz/SJqRkjAt4soEPT67IdJ5vamX4t1wvzts+0h/3pIDv92ZEJe2uZe0nHfx V3dPJvTol//fgffuJnd7MaG+edUA6QvdDw6c8cZ6G2geJF3xp0rN2IcJo+I7 //+8XrG65QtofVvqV9Lz+i97y32ZMKi66Tvp6W6gRPgxIZ217v/vM+b95KHh QSbIsT7Okv6yoCnN788El4GI/8djMPV+egdaOOEL9//jv12Z61IAE4SSNq0i 3VZ5PdQ5kAnSZyU2kn72oYA2eYgJQ9Q0VdKPQ8VePAxiwlaPZXr/30/eLPXo YIy3oo4F6SLVlNUCoUygx67xIp33kj+mGz3ide8I6XRmws+cw7j/dzckkk48 EdUm/78O7Tyeqi2KA3iGlEpJRImiIgpJUoqWiij1SqTLPde5NxV6MmUumSOz kEiReQpJSuYnUVGZKhkLpUGUkMTby5/fz+3cc85ea//Wvj65kPoJHc5Ge4lM 7v5J7OcnWo52y3TMK3FlwBH+7Ffos6/+DdVzZ8DzH4p/0OanPv0VvMAAiXzJ pdjPzN8nrd8QRyi8lkUfljLVP+PBgHViScbo/UVtjxQvMaC/o8AWDXoGG8eI Fy29cgWtbKe3wM+LAQ1OYZVo4Sq1utu+DODj6VfF/SlgVKhm5ceAVwIbjNB8 g4rpyv4MCBpQckSPC8r4V15mgEBBcDG6nRbe13WF3O++vTbmRfNoWGFqEAO2 /Wq2Qj8PWLjWOpgBNlHj4ejyfG7uqRAG7Hb27UYnzRmpWBHBgEpGlh/mUVzU v0q9xHXywgXoyA2fbmZEMuC3mUbnbH4d6b6oFsWAKy7P1TDvLBIbdhpdI9d/ a/qFVoSs4vAEBmjsU4jG/Kx/V/3qwE0GUH8y69Dmzu++8N4i67Gpbgodf2fR GtdEBpj99/E05vF8CZsAdjIDpA5m78E87/2twtiSyQC5+hlRnA8XovUdvhI/ yrcxQospnwpJy2LAerULV9GHLWKqVuYwoGXQcqkrcUnbhBxPHgMGzoQJ47yJ KiybbL7HAKtX5Wo4n5T+aRMOLSL7XbPFA/3085Ci7n2SbzZetWgu6TUnS4sZ 4PMxyfgi5k2497OUEgYY5P/w9MB6W++/4VhJ1isv7LvnbL680hB9TtZne5y6 P/bTFnq0hzh9PC4e3aHxPSurAfNlz190uaGAmOYLkndZ/tWXib299X6YNzEg W6nJMJB4QVdV2t03DFA2XRWL831l9N0lh/sZEO8QE3OVOChRq1Z0gOR5WN5C PE9MZb+80EtsHMvxQndVDw2e/0T8OOpcNPHtYfma+C8MeDcqcQTPI/L6yS6D IwxQaz6tFE+8kyeq13eaAeLtX0yT8f47Cj8dmCGfl/7uQbefa/ouOMcEbJTD TqcQu7QLTt/gMoHUvf84pOJ+LQhZWcRrAoxFK66mYz/Ql4/1LzCByhPuX7KJ pcvcHmuLmsDorY4pPL8tcGZn8m02gbayf4PriO2abcVUWOT7q9p9RrCe61el 6oSbgK79at215PxbY8b/lrfCBETfD5vheT4/LFI+a8QEQu/tWxtKLGcsk3hy rSmkbZadrCVWnzdV+uSoKbSGrWz9Q1yVYz0u5GsKlPrCBhXye6ZXXert/EJT iBje03OKOJTu7hLqNQW9I+vko4gL3Hdw8y5jwu+BksvVxNaXWp/f0mLC1pdz MweJb7kIFEmfZ4LG628rlpDfT++9NZcOEi9skLuNXhdiY53nyIS3foLygsRZ Sa/W73JmQtmaru1Lie8/jY4xcmNCjYSrwTLixlWSLgGeTLDRTncUJZ6uVNw5 FMyESy9y3FcTs/iPVD1MZUJxb6KvIvE+cck6+zQm1Lvc+I6WU/jauDGd3G+T vokS8eiRgI6EDCZsa3qiuJk4MLZy3CubCZmUUosy8T1ZZcUDBUzobn0oqEq8 QEcovr2USX5/hx3ZSTxs3JN0tYwJp6e47qJbLe9k6JczYZx/w7JdxIkhB+6X VzDBYSKkBa3a6v3qdjUTws9VHtMkps1/zjtbxwQziZK9WsRF3i3n/zQzQSz2 zaAOsS3vCrGaFiZYrxXU20+8yZ96FNzKhCaJb+no24EDXJKvmbD80jVzXeLQ 8IlQaGeCT+Odt3rEFjdXZfr1MIHjMnRXn3hViXnnkm9MeFH4ScqA+PXOTM83 xLH7Ox3RkWXf1iYNMSF9n0s9mr/KyWrLMBParyfZHCMeexIwbviTCZ5B1cWG xC9ac5bG/WbCGGefmjGx98io9jo+CtjxHj9NiXvc2q52ExfZuasxiTV4H/TG zaOgW2CjO3piufvFpfwUrC64zUUR2+ziKppeSIG90egCFjHzssC6t0speJ0q s4TG9ZOQ4Q6VoEB18GfnSXzetHlH9CQpoJ8biZljPZQGE3hXU9AJZw3QOXty drivoUBrPP8xWtpii53FWgryDmZknCJeXKjZs0eOAs+1+vQZ4k+6xuXjWyko CIqNsSJOmapj5qlScKnHtxZN56v/Ob2NggvvNoyhX4tKbm9To+AcV6zhWeLa gb6Ce+oULH8kvPhf4lRf+1Q7oKDCMNrBmphTGRL85SAFm+Il+W2JJc/PyCfr U3DQUWIzul3Wrt7kEAWDPa3H0UfDDPmeHqZAMMshGQ0scc+MoxR8KjDfYYfX T2U4nDKmoI9P/oQ98Tu1GpNuDgV/NHPZ54n/Nc2JTjtJwYhvsDd62iPqpbU5 BWvWiSejpWvNdaZOURBZqvMBbWE4d8sKS3J/t7dmjlhvWx3+YzYU6Byf1nMi DohS3LfSloJpuuMUesWD5Zd6iQunrbzQu2YGRm3sKQjQiitG+4Rc7gl2pGCG f+8aZ2LBrLriWncKhhsb36NvN+T/CLlAwRv1it9olZFYBaOLFPg7sAVdiI9v t0z+4EFB0vVHu9AJtfxhc7zJ9Z11EWjFzyP1T4hXtuqloSsF2nnDfCj4qnqx BN1nmOUm4UfBhPefXrT8hwOn1QMoaLQ5oeBKXMqnksQVSIHB23O70YfkxTvq iGm97UfRtnZfjhoHURAe1OeALp4J0jgfSsHRspQi9L5VDcJ3oijwjW2TdyN2 2W8weSaagqoqbTV0jv3rbqkY0o+qDnvRwvW9WdHXKCg24TdF9zmOwcU4CvTF 119GiyW5y6jFU1C7OjACrf98zqIR4i2yOfHoe9ILX5snUPAzTikP7ftitbV+ IgWn4hSb0Q8mUwz4kihoUA95h/66Xn57JfGemOwPaMMLW3m2JlNg2C77Ex2Q /vDTN+KxYb9JdGmTZmN6CgV3JVO43DGf5fSui6eR/SgutQR9wrDRo5XYQ8xT BB186Zh5WDoFOQG3xNGjrZQSTyYFTpJrZNEbuD4IlxGL2XttQjM3WUw6ZZH+ ikpWRj/2tn/8OZsC0RT5nejJ3PGslBwKLpaH7UYrvr0Qzsol9eW9vxfN4eV2 ErtDwWhQwn50jNJl0ybiedY6B9FPTRZpBedRwCrPP4ye9ouQ0cmnYDym4yh6 S8HyRXMKSL8JPDVEn+6IH3lIPEfd1RjduCWtVKGQ5MtiCSZ6W2D+5aR7ZD2e 1Zmhb3aXGIjcp+CK/EUOmm/bY4nAYvJ979XN0W3v3xballCwHlpnnRY2pHei jPRXSgIbvXhgQvh5OQVq/VEstNMunp7dleT9X143QWedCXj8m/jFTa0T6K5I gezCKgoWSeQaoYXKI8OtqyloZXcYoHUGRZ1k/yN54vviH/QR32UTw8Rz92jo o01WL3ErqaEgPsxcF33OiM/jUC0F+//pmV1fl2GuOaJPKJj8s3V2/b2D/nr1 EGfn7t2Gjq4a9XOop0AzOmzj7Pszh+dpPKWgcm7DenTG+JdAvmcUuA/XrEaX KnwIuf6cgvbMPiF03/VX0RUvKHjfM/AL+2toa4No4EuyXsZ/vqEnXtRdN3hF 8lXlWT96EV9lQn8TBdKhCS1oFfs7qQvbKDg9V3C233cJZMm2Ese2caeidTJS M2++JvUdK4hDm3TdyFV+S4FznLYf2vtAUJFxB8m7JG1jdHC/v5pUJwXMNZIH 0TGe3g8/E2u8LdREZ913LbvYTYGSteh69Ctpi8fJ70k/G1QP4X5vLzu53/oD qX/z5R503wmz+m19FDxyWdiEngg93lDfT/I+5dA99Jo/+1q/f6Kgo7jSES0f A8YPBym4Fup2Cr1Veddb788krxx+GqJ1z6h0inylIKFbWgVt0yzVv/M7WS8b 96+YX+XZ06OXf5HPGxSOoWXsrjw5NEZBzAmd3ejQbcvjlo1T8GC39EY0q0ph 960JCoRT13Gjp9uYgff/kHqxjHMxb3dzP5Lo52KBu2TEBOZ1xhOd4SxuFriV DPWgBUOaqm15WCBctrQe3SP6+cwULwueumTEoj0VVtxdNp8FDsxVqujKE846 exazQPeM+kmcHxskeVbMX8KCB4/+7keHfwj90kCs5RWwCU2fSwtnLGXB1vej ozh/uHxb222FWTAasskHvSdPxebWShYEr94a7UD839zha1MyLFhWGRCO86+x SUykSJYFjc21tug3t7QirTewIFzr9RH01x1Xg7vkWLAu2kYQvfzcNq/KTSyQ 5vYKwXlq1XbByncLC+LXaF6ywf2Vzq+xSJMFuW/atXBe07pr34sbsWDIx1LP AuevX/WfD8Smbs7i6DXVbJGc4yywvW38Dc8PvTsTdXedYEEGf1g4mqMkkcc0 ZcHb6s6W08SnloteSGCz4KOhqBGeP6z6FixffY4FculdWznEDp4/9KQvs8BH 7bQrnp9WJ/EwmotY0GbcdfoQsVZxvt/ZTyxYLLuexvPksLlFm+hKM2jcZcCW J97+h914TtcMVv5N7hPD+e0//iHHzQxadjbdmovz5E9jYnSmGdg7RJb8JOdz pXkFXpGvzUD354Pr74m1fUXhES8Nq1NDG18Sa7qOR3KvokGy/41KFfEPi9Tz Gqo0zNMXTCwg/jflhAX3YfJ5k3RvMrFKS07eqlPEXPsiYom7mHM/ehJ/muN/ Eh3QT0n2E//93KeK7hhbHJJ7moa0uN/t14h9V9hZaVrQcHbzJRl0C0t1PX2W hjBXrv+iic8PlsUl29HAlSgsdJW4aLrRT96DBlF5vgWhxJsXOgkFEN/V1xkI Ic4RlbjVT5zZkFiNvr357IPESzQ0MZLd0aGceV+We9HA+K9rKJjYonb3ER5f GiqNNrcHEa8KzV/ZEUhDof6BmkBiH4nIvJBoGrpkHwz4ESvu9jIfJDaoW/wU /Ya2XaEdQ0NcikcuelPKYZ8p4nmiWefRbfILjc/G0tC3ZDMvesN232ndeBq0 7/+W9SVuNHA6xJtEAzUZ6u1N7HL+FDdN/Fde0BItHWNY/IjY/GnWP2jnt1uk HG7T8MF0kwR6Df19tDeZBvkx+qEXsYO1xY2KNBp8/40Y8yQWCzD54pZDg0VW t88l4txe33NdxHvppLPoPTvzRrRyyfPKeh5DWw/xTMy/Q8NkZ9RadLVhLu+1 PBpu5K987IH1l5ojWXiXho890QLoypLUI18e0KCpqH7vArGR8Mvmww9peOV1 /Rb6s/Xk8bvEvDdEgtAiUv9QriXkfuLmHLTV5QnLeaU0XOI2EUILGx70WVtB g4ZNurM71ufbcJHpYxoueD4wdsP1emoZ+oB4OP3FfrRqxvvTIrU0+MXPqKG5 T7aIvkB3Z4qhb7wpdt1TR4NAmuw7V+IX/3loyD2jYdq/1hy9LWlcxJ94W6jl cfQND9uh98Sn9q7XRVvs4Ny68ZwGsfyBjWjuPG0uwUYaFrMiRl3w+rhFj8de 0jByyvcK+oazX8KxVzQcsCq4iOYxmnbMJ7aeHrNFv1wyLGPVRMOCmafGaCu/ 5oDOZhqYhhEy6ATbOP2aNhrcoyPrnIl5929oieigwSdXWxJ9nNnhNkb8syJq GTrdLlzKtJOGe9tn5qMP3Jg4t66Lhsh9MqNOxGEjdfzF3TQ8WFH6DL3yhuXu jvc08DC4PNH/FkgMwAcalnzncUaX1b4KTiUWDZQ6h6ZHdrSf66PhSn4uE52q s8CRa4CGz2v4d6I3j2RlyQzSMCTzZMqR2JvP7GgQ8Qlx51/oZvFlE9+JLQu0 htBOOu7aDz/TMJop04N+FH+w5+BXGqLWKD1GLyqY8c8nVnEqLEezagsVRL7R YLjL4AF6zoi4exexO1d3NlpH56uI3XcaTP/bGoW+ZppY2kr8YTgoFP3J1vCk +jDZ39TfAHRQfGk+zwgNAx2KHuiXw8EHY37QUFvzzBItzaf1Y5K4H0bN0Q7i v2LNftKg9GwbjV6uQw1sGCV5M8JvjDaNV/B69IsGo/aP2miPrZsvrhgj9Uhd uwed2LDF1Zn45LSjJnpgRs1OZZyGlL0sNbSt+R529gQNGRG75NGRf/dR/L9p MNu5SRZdFLOfcYaYdWDLOvRknf7RtZM0Of95SaJ9FYy14v/QcLhlozC63oy5 w3iKhuKdfkvQiyPZysv+0nD9uOpC9LGa03IviLm+7JyHjh07KxU0TQN3RSwP unOD3Yr9MzRkxx6cM7sepk5LeeawYbGm4d/zxGdC3PkriHc43p1E51R4crlz sUGd9/QEujIguteKlw1/Zf1+oFuPZlWZzGOD4Z2PI2j6/r2CpvlseJQX8hP9 eWVF0oEFbDgofmkMff5SfUT1Qjb4SJXMfv/0h2YvdQE2fPyxa/Z5ksDy6Q9i 2XtnZp93X8K0UPZiNuRe7eGbrffvq6Ynl7ChxyR9wWy9j8uliAuSf9/8aDFa sbD8azPx4GOJZeimJYaqwUvZEDb1XBQtVu9ROyXEBmlTIWm0lXP95xPL2DCQ 3jy7/qXrhZcUEXeLZMzWx8w709hamA0S6lcU0Gk7Wz51irChvG+LOnpiUFJA fTkb5l8I1kDrxVoqxxAP/50A9NfRadfDomzQSlugi1a5I7ewQowNvfVLZvvL l3leSXwFG0bGZkzQbQsqjjkTc7/hNkO7nTG8obSSvG8cnEFXrrmkkCjOBkfz eBf04ast/3hJssFscd3N2X7UWn2+kzhHtycZPfLdMnbHajY8q1+QiY7Sn+kZ IVbyiylEv5srb8+RYkOQVEA92sLlUtTedeT5xhsm0CmsuZfTiTvVw2bQvfuC XBeuZ8OLi6f4MB9Mll5jNRPf7zkijNbPurPhpCwbqmWkldHKHZ2l3vKkX0au z+bNueqTeQPEJubJTuisjMGkAxvZwNVY6YFe5/jLX2gTG1KYamHo5YsFjt5W YMM5DaEC9OTuXf1Vm9lQUu44gd4mU/16vTIbnDIfcmE+OizSfRpIbNgruBD9 9c2xvKNbSD0Ffkugu+3OuvaqsMF+c94+dE1ynACXGhuUD2VGo0Pm/VYFDbI+ 9le0Ma/j7BouJhDnPmceQWe8S3o8Saz9QtMUXZN3wKhIkw2bspTt0FPGN87L Axue1LxKmM3/jN2FwnvZ4DD18zdaR89/86AuG+YM+5ThvJm+smxjpCEb9k59 tcF5OL5prdY4cYxS/CX0cOMWY6YRGwq5GWHoXiEDH5nj5H1P8OSha+LC35UY k35wWPodHZglEPzBhA2hI/PtZ+ft03nftrLZYEsv9blILM8/dee1NRsux39u xPkv0Ty4L92fDd/iN3fjeYUZ4aL4PIHsz+KiNVdwHh1oTeu7z4bimcZd4Tj/ xpvsDRrJ/tpJKcYQZw63HjnQz4ZRkbMrbhDb9aWVqU6zQZw72v02sd9zMQ8n EQ78k+t/MIPYMO9EQ5YiB9Ztsjx6B/OhM0HRcj8HxNI72guJn8/x/XCBxQHn e2sTHhBbSm6X9XXmwIbW7r1l1vj/AUPKe0I54FjQsRzPr76l62e0wziQEasn gy7WLd+dTZzqmaOKXsX+XukYzoFaXUND9EDE0f8WRHJA2X5jBNr9p0jd1mgO yAz9mo9/7065f/NVQDwHHmUPDqPHduX3bc7ggDVnJqkG95ucqFQ4Me/Qyjvo VBEP6jsxN0ehBG04dLAtN5MD/jxqTeiCWx+fyGdzwFKxk+sxzmPu1dnr7nBA eoujGfr9kxA7sXscMD7VsqyWWP3eaK4zsblkgyQ6ItH0cxvxcFWpHBpc5U5G F3Ggos5zNzpB/rGhUDEHhF7HW6FPhEypLSrhgOBcyQp0nuvJ82eJ71n71aP5 Tj/Nf0rcUfWhGV2kGSsX+IgDXAp+n9BCwyrifGUcsBE0XfoE+7cjzvgUseBr V3F0VR1XVA1xRWDYerRt0otFPuUccCu8tQP9JGSb3nvibPm4vWhJtwQ/rQpS v9CgQ2in07zVicTcXQ7G6AaDs9MzxAdXHmOj/wcrWTl5 "]]}, Annotation[#, "Charting`Private`Tag$104357#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwc22k8lF0UAHDZFWWPEqGy72MJuccMwqAMJlFSUtpLKkmhhGQnS4XIktKi FEVKRFKWkTW0UGRpEaEs75n3U7//z9zn3ufce849z4fkdxxieHNycHDw83Fw sP9Vyq0wbLEtMHtgaHvRxaWV2Ew9FtyjF06SwigcSdtbyZsIsRMGeilkzKjU MeFAKxFyBPUVevmkMKhHqDO0lWg+bAsT1ish54wW7mq610rMBuQpC/Vqics9 zlPCHG2kpdTI1zjvFdl8im+nlUAb8YnccG+v9GvyeucWzs2ibSRe47R6/fwb omNr2Su1qo2Mrd0varWrmZyYC3CXs2ojVsG1C/n02knHe9tyvvNtRPgbSyVz pJ14SfrHn4hqI+8de60N8zpI5edl1ObENnJYcSJst3QXCT/F7WqR3UbSahS4 Xs13E41lYUOGFW3kOO+z0xa7PpE9xnnbHo+1kdd2y47z6A2Qd8ExiSkb28ny kfbnmSkDJLO49WAQs53sv3hpkfHMAOGPuyLjtqWdLH4tnHXw5SBZJmD7cXB3 O2Gs53vTvmmIbH8zuN33TDt5bz4ufzNwlFim1bTvKGgnx5cP7FLq+0UUJ/h5 Pk62E9lhyyg/iTGy0XN/2umZdlL7JKeocv0YkTfcKSe2oINIue2YcS8cI9P9 dO81CzvIk9Se+Lhjv4lU66q9P5d3kHmJd+XTfBNEPTn11GqzDhIhXCn6Rn2K 1O7aGZV0uoPUvdr+ocp9inAdESpZGtJBFoZwFpZFThFJn+sNl0I7SPQvmuWt wSmymvJn+OzFDpLAqjkRmTNNnhoZt8qndZArSW+6rWX+EcXtk6sCHnSQO1Id eS8XzZGi/qK8uv4O8qPJ/+hT4zly++l6pScDHUT7gjQ83DNHMs6/Ccob6iD3 p906c2rnyKXrpo2+PztISVfPotBz8yQw83Ro178O4tlwxCjrNAfQed5uHxLp JHvjTqRvm1gAjZ9W1KmYdBJHo7eXvAU5IaA19mv8uk5i9FEhZp8iJ7irl57/ QzoJr3bDmROOnDCf6cB8aNFJrjeu8oy9zQlZ28STBBw6SfdilsIzby5Y80Gn bLFnJ3GIVr8h28YNF5Ija6+GdBJ9/bPXVo1yg9HpjxKXz3USmZ72VFVuHuh9 M6iTdL6TDKmfu2CgywPy41ffn7nQScLfdO51iOGBv9QyBc34TvJ8UbjGGSte +OOm9Hsis5PoRX663/OID0y+98bol3WSNnUe4/ZGPhj9Yr9prLyT+DcqVzYN 8gH/tajkWxWdpFz8cGPVMn6oVUsIEnvRSSwy54YLzvDDsQ2OCo9fdRLn4uWr j1sJwP7XV/9tae0kf5ik8NA2AbCQ0/r4qa2TpE7v0NvjLwANs2sYXh34vmY3 zbfcFACV8+l97u87iXedkQd18UL47MnVr/ipkxzvdUlZ3LYQ5k4nBgiPdBKp kJOy/D8WwteewGaP0U7yRDE9dwH/IrB68biu4HsnmfPpfzC+dhF8O2x9Xf8X vv9v36au9EVg9/X78tV/cH7+OIF8b0G4M/iLZ+d8JzG+9SDu2hlBUHPxnAzk 6CLd9u1LL6cIgtHOu1cSFnSRlYmya6LrBOHKgyCOYq4uUrDiNvWohhDIaXs7 N/J1kSe6r0+RCSG4YaA477Oki9yoi2HGCC6GjqvffcyEu0iKp5NOj+JioBqV zwuLdBG/mO6vAYzFwFA0Kbkt2kU0h747Prq7GNLv7drxUqKLyIQ8UOepXQzL jzZah0p2kUVS/nzOvYuBs8dwByztIoOWC57+ElwCdWuUde5JdZGsLDFljb1L wPPkO8bB5V0kzqiDMzBkCZy9vuGLpEwXOdN4ted16hK4Y7DrXjnabXZ1ok/t EmgxXvt7fkUXiVSXmXcUFQalC4XEe2UXsYjQ3Bt9SBg8n51KuLWqi5S1xLVT TglD7QcvLuXVXURX7rdFd5gw3LbiLc1Cyz8qkVPLEIYZfcsfUWu6yFwftL56 Iwxqp04XUJW7yDGt69TDHcKQf6aDXoAeCeC5t7RfGCTq9xoKqXSR9yKvI3f9 E4agfW9G3qBLiRNwq4rA1lNfPqupdRGtiw9v39IXgTfizp8C0XltS5c7mYvA ZkVLzXr0pQPdE1muIvBew+fRNvUuIvjYzMtmpwjUek6P5aJDubOafh4Sgb59 9cHf0L5XvG+RcBEYL/2b4KPRRb59rZUaSBABh+clUjloT13VsJgMEdjkv2+s G+1Q992z56EIeKx3yLHS7CIvxR0bQitFYPvU69Mn0KaeD0zU3+J6z3fezkWr TZ6QPNUvArMZG8T/ojnAnC7zSwTGrrp5Kmp1kXcRC4OfzopA3KhFrA26oLml 2GOhKDztG8zajz6zLP3bvKQo+JTIp0WhGV67ZLMURUEqqP5YAVqpUMuJqi0K +1WqjKrQM+NT4X2molB9/OvnTnTTuhfloTaiUDkmdmwUnRt28ddqpij0jar+ nEUHNDqvqd0hClwx/C6LtPH9pGTdfQ6JQuPiczkSaMXtA7ECgaKQmen7QQY9 VXCv+maEKCzQuscrj34zdnKafkkUph0lliugs0xomqNZotBsFrhiJfp4qKBX zB1RmKl9tng5mv62NUWrTBR+Mst+iKJXSma+aaoVBYEB20o+9LiHzwLfd6Kw l4MeOo3rq8vXMRD7JAof7qeuHURn/Py7t3hUFJriRD63oH3XVme6/BUF2ZuJ Z8rR689Gv/vDKwbLw2eXZKNl6pkCqWJi4K+omRKK/iW20mztSjHQ/MYtsRNd s+Wbb5e6GPTHbY8E9OXc+/mn1oqBFUV+Shp96PupbhkrMfBWUdj2E/fPwtBS pIIhBnWOFs+r0FLBi622bRODj0O7ZZLQL0Sy7mb5iwGnlEGdGjrFbW8/9bwY jL7NXv4bz8/+63rS/fFiYKp9aX8JWkK/5uyaW2Jw52CCkCF66HRsSW2JGLje 3L5tDM9nRY3riE+1GATakAc30T6uwy63esRg4Ne9naJo06ziSLshMdghtai6 Es+/yNDpZ6N/xKDp3bzyQfSTU8Iq2sLi0B1pxVeh2kWEMvVniqnisCn1kqYx 5tfngTlt5gZxWHZ4oqUZ8/GR9ivvSXdxMHJTD9uF9nzh1rj2mDjIXa4WD1fq Ive/BGVX5IvDx7w14zmY7+GaNu3bisUhFGqkV6O3nBAVXFApDkOxEU7ZWC94 BHKP0brEge/rcr4kxS7iqv7a+pWgBKRV5Ec4y3cR4eXJYZrSEhBSl6jzHOvN K4Ed1UmrJcAx+6OwCtpoYJpsN8PfW+seH5PFeGerGP49JAGC8a/GvbB+dSy9 sFq9RQL0WdGRL7A+xvG6eCV8kACPa648nGjriZVZU8MS0DAt8NIM62kpq1Tm Jbck5Cn3SN4T6yKp0YNiHgaSUL12t6wv1udNXNaccWnonrvRfgJdZPGYGPzJ lQSj1X9qIvjxvHz8cHrLfUkAWOt8Geu9QcWJaeV6SVgTfP3gQ54uInky/2fl jCTMKAZW1ON90fad98PvbUtheaN67snpTsLselm2aY0UVNvrBX/62kkotB3X B3WkoNc05G7Jl04iWjgXeXKdFLxadzH/Yn8naTht6HbFWQr6BZUm1D93kvXy BVO9Z6Vgz9TrFS492E/4ROnv+iAFZaMbd5u2dJJlfxh3/VKlwdOkWuDA004y 5fEjmSdHGrr/2s7Psu/z2otnku9Kw9PWZ51RTzpJQlq1fWmNNJx30DTPKekk i9YZjPwbl4bDD9XHHxd1kplz0irnHJdBX2vQk5DcTvJB5GN2/MLlIN59xfXC RZzPv89RZuly0Dm7VqkY+wtm71eOfMXlIMFsyewOx/XfHPUoN10OmvY/E9eE Yr9A+7ds4OBySM/3vZkR2EnSjkkmmrYsh6Y1XwtXHugkTp125wauyICT8qTy MbtOUnvtsdc6DVlQjb08c5O7kyiHRJePGcnC8N23Ckc5O0nk9u0SNyxkQVJz LnItB/ZHCgK1oltk4afZ39WV2J+1XXdVHYyUhaq/9XllYx2kP2/yZ8KgLAR0 F3V7fOwgHLf1zwxel4Nkq5vpu550kPRu1zc20SuhoKgz4/meDkJyVfiSZ+Th Yo/etcSydhIv3aW5/KIiJM+/C8oYbiM3WGlxE3OrYNXRmsTKFW3koOHaD/wJ ayBl75232UatJN1Vw+HpCmXYsXl3zjnXdyS+QnuyJkYFDLYv7hyIbiH6TWLR AnJqsOnZC/64ChbJWMO7NStJHXRZ3fbPBFnkkXKHtK+KJsjN1wslezYTw4G5 P32PtOAAb1NwSEMTsXjmLna3XAs++T2QjX7TRBgppVoBL7TA6tA5gcuvm8j+ 9b4+wg1aIG4vU1NS00Su5X/pNP2iBRcZ6d2cz5oIN2VX72sBbTivFxzZfreJ HBi3q1Q00gYvLQr9VEITMTu2LLw1SRt05ZYtv+PeRK5eUwifTtHGfuW15tDm JvK3XjV8xRVt4LtX+lrJtYk8UjAJ987ShijuVVfynZuIZpN7+MRtbRi9++fq Y/smskItPVyiVhvk7QKFlKCJzHyUi3CZ1gbet3FJa9Y0ETdB5YiTMzj/O54T iauaSKmhdkT6vDZYuIb3LFBswn4JIr7w6IDJYSmDPrkmMmyyPeKYqA7EMBgi pdJNpCs5O+KSmg4oDHlY3xRqIo/tVl9o3aoDZ19oaHuMNpJryVl61Z468EKi Xrd2qJFEfFzRe99LB/bUfX2rO9hImH6SenF7dOCVu8gbkb5GMn6Fr8f2mA78 Xnem53tHI9Ee/qb9PEoHSq/k/Fv1spHcuHCn42aZDrQKS9SezmwkcS2q59Iq dGBz4p05o/RGcmJFvkZEpQ4EzXY9+3O5kVgVZZ71rtWB9TUj3SeTG0l/R5z6 yhZcX8mfoxnRjWSl8tHgS0M6IEu/k+sZ2EhSagyVg6V1QTf2ndlL90Yy9Xhc 3FNGF8w33z/UtbmRuN4uWgByupBCZc3/2tRIpJLU3s+v0oWJzVdNlJ0byeXt cjFB2rrAK1EsUmTXSK7O8I6fWa8LTY4lT/TMMB66bc9OH9OFxxT3ySmFRsKx JrFwq78u/M5WGneVbySe0hvT1p3Shbz9juvK5BqJPMdr39lgXZgrMrkfJtNI st8+XX06ShcWLPsgvlaykeT45F4MvK4LJ4J7tRctbCQFGX6bTjXrwlYZb6bn 7wbi6bjoUdo7XTA8sf3S8K8GIsWdLV7argszroGHT/5sIBF7GpvHe3Thk2ra 5NXRBrKLomp3cAjfJ8RYh2uwgax6/QG2c+mBs5tGHL2ngXQHHs8M4tUD+dsm KhzdDSRRS2guXUAPfKWjNpZ0NRDOS8ZlXUv0QGPA30qjo4F82nZJ31kGfx+x qsSwpYFkTNiqrtfXg1Wfu768rGsgzBufIryN9EBih8V09qsGIuTuP3DORA8+ VBVEna1tIIHPc3Oem+vBHsNqLZuXDcT9IoecsYMe5Hx6aD/+HN9H/pGYxm49 OD4iI1NZiuuxk58VTdODaf60VM2bDeTdCnXemSt6sEvlO59PQQOR/GGw5EuG HiyZ+xN5/UYDSY23ky/J0cPvC7G6lfkN5GrbCUv3e3pwz5ZLmJLTQPI8G6Kv 1+qBUtsjmacZDWRApzM56rUeqNlo71uKVubqzzz2Vg+2RIpUHk1vILdyp4vW t+iB7I/xIN2rDeTe0Kq24V492Fl5hfIqrYE89jslS/mjBybaf+qdLjWQv5Zh SiumcXy8CKUhqYGYLo3X5p3RA5FozRRbdMXjPGrHAgqISW2k2yQ2kBdzzbsC hSgwP8B08YhvIFxN3Ye8hSnQ/Olq0GBcA7HIGvB3EKNAI3dGhh+6ljYbuVKa ApFL7pUkxDaQNxHKd6tXUUBXVB6+RmO83fRKbytR4Mpvh79BaAc1s8pkVQqk FP/KXo5ufuvU4qNNgScph8tdoxpIm2jQpKApPm/O+u+3yAaytP8Cxx8zCjhX iIkmol0fJgl8MKfAg3keUTN016aby4vWU+CSsVFt2oUG8uFqK3FxooDnw7s/ d0c0EH+NJ08CmRTYe03fahlauCJDP2czBVrjs5obwhsI9cNutd/bKHBQWz7M DN11yC5vmRcFdjlo3Z4OayBHOXTkqbsoYOUsxVuCzpH/Kxm/nwJh1IM2RmjT +73xpYco4LHlnc7M+QbSSq0S/OhLgcnnfNYv0Lw7ozi1TlLgrXjttDM6Y/zw aWYgBb6O2ybKow3Pu0ydDqKAz4Io5s/QBuKTJ/v9zXkKyNTqMZPQHIZce8Yj KGCsEx+3B51WO9C3PIoCbZcv/wS0rusbD1osBfff4dgy9OvBe517EyhwdG/h ij/nGsiOk5ecEy5RwFLv/mAL+p9AQOPjVAo8i/NofYBWV6O95M+kgJdYzpIA dHWZEmhnU+C061p3T/RWO8GyTbkUEPE9UG2N/tP9Uz/oBgVWLDKz1UPHHGi9 l3eLAup5N4bl0Epzj9Ua7lBgT/rN/MXo5zEZeRNFFIhQMD89fxb3T+6c/IqH FHhntmffGPrX3d1XLUopoNAid2QAHQl2S/eXUaA9ZXt0L1qhWTshsYICX2TU nrWjy7ZLCJVVUqC2zp+nBe08Nh3+uZoCp3qstjWhR872ci58RYHYg/H1jejz YlWndeopsGifs00zWjYnf8q1Ac9X6sX2d+hHlKijwc0UWJmke6wL7fDy8Pf8 dxTYzbKQ/4wecHHZ09hOgYDMp13D6OCva/v/dFHgt2zqtUm01AnZbbK9FPhB bzzCg+97j4+ry/ITBQSmt9pLoG1SB5wP9FPAvclMVwn9WflNY9IAPs9pv5wJ OuDxPdvyIQqcef9RzBEtanvpZd8oBf6mJi/eg77VdRIW/aIAZ1L44nNoi30e ZbrjFJArvC2aie7+RzVwm6TAjlTOZU/RflFKRSF/KbBxIEixBy20QlC9YJYC E3OymvNoM7NW+Skuffjtkk+1wfPS1vD4qhyfPpw+f9b2CPrQtoyl6xfqQ3+w 94Yr6GvBu4WShfVhXsLMbgLNVTU9pbdCH7p2SP55judXfFb2kd1KfSgTy3k+ iV5jaHHUW1EfeHVED2pjfljfihlNVtGHzuMVB/LRMYmKn6f19cE5PPnLLcy3 a2+tM0XX6oPSn92Fv9BFfAe3qJnqAyvjqMNazNd3p0rbtlD1QafOa2UDWnqn ff0zB30QvVXzUQjzXzXDN6LDUR8MxCJ37UCbdqRY/nLWh8eMjmelaA+7z88U 3PXB8Ifxt70XMX8pJ4rP79aHrTVLZ/qx3mjxZKXTg/Xhb2WRjRbWMyA1bjvP 6QN10izpGppxcnjp6TB9WBPVky2G9dBvVD/hTpQ+KCee459HP2l9HSaSpg8p kjzvh7B+WuaNH2ov0oeNS/69kkjF++ejtMbPYn0YShLvy0b7LCND/KX68PXt 0vs6WK8jYy7sNK7QBwtVoX3OlxtI03HZzemv9UGohF/zDtZ39/XWVK8+fWgR ClS4n4X5l/mpwOqrPnRcuFHhkN1A4qYCRFS/4d8fFNWNoGsKbn/8+V0foh+Z qmjg/aIrKBZ05q8+DPvsmKrIayALm3vK0kQMQFu9TnlNYQMpdTuq30QMoCuX I3C2pIE4PRBMf0A1gMAA4eM1eN99X5THnWJpAPs8TtbEPcb7+mlHy1a6Afh5 rN+tUobzy5n5DjMNIP7IrsS9FQ1kdz//Xd6DBlD94M83NbxPJQ9mKK+7agCX /8Tr5uL9zB8mwrkt0wCSL6kuKHyH91N66PvgbAOYL79tWdyK9fvt3pjqGwaw MiVLva69gdzQMBynPzSATY0Bm7ixHzAZbXzm1mAAss8P2z7rx/5j/4JN/hyG 4LIxcxgmG0jB3p3nH+w0hMuHjj9ft7KRrMqiC1zbbQgpKedszmH/c61dNzpq ryHU1Pn31WF/lGqx4JL3YUPIl+Bb77Ya+0fZjJylgYbwR0WhJFy1kexitVed SjSEsGXGceL6+DxjOqfFC0N4doXj20/bRpIhoBv0Ts4I7K/GUCNPNpJXvKoC Vu1GIKtc9uFNbyOp64wXcM5YC6wy2ej96k1EY8OCfEFXY9BJ8jqetaeJ7Ln8 8cl2eRMI7VdMlMR+nS+idt/2HhM4p7uKhPzC/relo7DokinkNa088Fm3mYRO bN6ZsXUdqOh7P+zybybxjz+X6kuZgXDls2e6pc3kuNP7c3s+m8G5RQyfzOlm Ekuf6x29QSBn4TuV6/oswnM0ad9iHQB9eB4ut4dFtG59UvC7BFBNmY3ZeYVF IovvK2v9BlAQa7fOqWaR/fZDDzPGAbL/yF83fskiDl/laYv/ADTajl1vQotI xW8dnQJwuP0t9V8Ni6SeOpRwaw4g3Ouag30di+RT1WeUFpqDYEpq94e3LFLd lNu4Ut4ctsd4yFa2scj8SOpx0Q3mcFt4vOjIAItEeT81zdpoDsdlrsvMoJf1 fuLUZpjD6iu3loUNsohBo2qsvYs5ROheaUr9husrKs+PcDeH/BvFCo+HWaTj 2MeOud3mkKG1nfnlB4vcm1MyGQ42h9DgpKbhSRYxO2G3IOCsOTyT2pPsM8Ui 9T8O1/KHmoPr6NPv/eivHx87rQk3h+BzrczuaRaRqaLv3x5tDm19Rtw1/1gk IvxQenuaOfzhKG4MnWcRT+GS+ar75pAnPLPoHm8L0U2VWG5UbA6Lr1LuLeVr Idwr/QwKH5rD319vxs+gC7R0DiSVmsMTYcVtdvwtZMzhVtfOCnPQuRBb+lmg hYRGZz7keW0O3HvLgmYF8fcLI/at/2QOl3a27RkWbSGBCV/Dyj6bQ/rfnzLr xVqIwzLLbK1+c/ATuXI4Gz2mwtm5dMAcLJKvT28SbyGmNoFWgyNoz/iECokW 0hB+WP7CFM4/erD/pBT+nntz++slVPhwa5NxwYoWcnh/jpqHCBUa/6aWzKO/ t/wI+iVKhTyTrJcusi1kKDtMWUqSCiGtqkkcci3kMxSf9JahwuW/cjMbV7YQ VuASGQ4VKiSWBcx3K7SQovGXnvpUKtD9N4llK7UQzS0iD1/RqDAfsb5sCF1Y tUVgiyUVTmVbTegqt5AbCb+LzlpTYf+PB3Iv0Ne05bmaHKjAeVlq43uVFhK3 PzB3rzsVfgX7akyr4Xr7dYcy/aiwtsPNvk+rhdy8lvFB7TgVJne9pa3QbiFf tixsLTlBhXB+CxYT7db66VljABV4TE+VvELTauIuzQdToUu6Midfp4VI3vgO 26KpsERLUYqh10I27nQzGI6hguUvweTz6Isra9ROxFFBe/Z3YSmaIy1dMjaR CvVDInkrKC3k2wW7kYo0KihHjdd+Rpfvu5kim0eF018jezYbtJA/SpLRN/Op MDCWNBGG1ukPOWtQQIXxPf/yH6Dztmw+4FBIhcer9bsXGbaQWHt+2pn7VLBi Pg/FDxyyQ2vX954KKnzWdP72z6iFXB1u7tvznAq3BXYWKaxtIe356zonKqlw o0pDwgZtt1KiWuglFS5NWt5LQuuLVKetq6fCirEhAyXjFsL/W94yvZ0KGy0W p601aSHhFbWxizup4FxePbUJzRt5oCuoiwqHog9xHkdzyz8+tKOHCieSBsWK 0As2bLys1EcFC1s7HUXTFvL35pkfRd+pULVjcPck+uTxVcaKP6lg2rzosPC6 FjJl/jo06RfGf90hRRX0ZIfEshPjVBhL2RC1GT3Oe9vC9C8VKnsHfR6hR3e8 T6vhoQGFIbTd06yF7NcM6Tfko4GldKGSH3pkeo1WAT8NNA78vByOHorzrb64 iAaNP16E30Z/rRD4sVGEBnFn5wMn0N6Rd9e+EKWBaLfxLV7SQvpdXEL1xGnQ zNcQthTdN3JNWnIpDfg/OFsZoT8uM7J4L0MDgWCnb8fQ2772xNjJ0uCCT3lo KLq36FznUzka2IhqNSSgu60bD15ToEFgeOS+O+jO47vSvJVpoPssnPUJ7UoV 7G9ToUFGSOHHUXSH0H1NazUaOGdEpU+j23Jmq1Q1aVCc1q4oDJhPrKTvP/Ro MHp9duda9OxpJd9gfRr0D3c+pKGVVZ5MCBvSwOTwn3x79JmgDzM6xjSY5T5x 2BNdoOob/MKEBosDZdfvQb9r5eZ2WkeD1zNRz46gVdRVF/kBDTxbLJND0M7t 5THcVBocD24Zj2A/7+wG0Us0XM+XOxOx7OdpfL602hLXUzCdmsx+Xoef9CMr jI9va+9V9Pw5vnQraxos/ORVm41W1bq8st2GBrypNYwb6ODzz5Sm7GhQ4xrL uI++pc24FeFAA/0rRrWP0G3v+zWlN9JgLNn0wxM0R/iJ+wWONEjqK79cgVbT XWhg7ESDN5LvpyvRzJ6rj18702BPdelMNfv5EVrr3Jk02HDmxPVa9vP1Xjwf 3kSDi++Mvtexn9/rbBG4mQZmLrI99egFkQO1gu40KIyyOfwWra4fQE/fQgND nu78BvSmj4KNGh408Fg/ea4RffZiJqNiGw1qO8u5m9C3DXTbHLbj/po7qLLd 8al684cdNAjleDvO/j1n9KaeQztp8DLVbSfbGkZDnhy7aLDigtRJ9vNd+wL7 43bT4L2Dsh57/rMxS3zk99DA1/tWAnt9t9dmDxftpcFRq6oU9vo7+imHqPtp cG1PPJX9flxxtWOsAzTosDBMZL+/ponbca9DNFC0a7vAjs/mryPTvw/T4OGv 2DXs+IXGB50O9aXBp9zze9jxvWsqukDCD/OnvYPBjn/XQE5o7jEamI/d/FyE 5k405Dc4QYNf21dI30Zrmb2+WONPAxLr+Ccf7fZty5JNATTY+MkngL3foUk/ EgZO0SDkaWgu+zx0DYlf5g+iweFrG36xzw9Pcv6KtGAaPPUxF72A1jY3zlI5 SwMrs6dd7PMXlrLthu15zKfWdzt80UXUMbX3YXh+199W2IvuHg29uy+CBirV iZHb0ToWNx9FXaTBqjoFpw3oLT9MjVdE4/mGpcWW7Oddbnx6O4YGdteLnpqw x/8cr26Ip8HU70P1a9AR6aRFOJUGT4aMWqcw/6Y2CRaGpdGgT/KwMzs/d4t2 hs5cxvl4EiLY+WsV7mswmE6Ds/tEhOvQPEdy055dp8GBoS2ZSWg/NV9f/Vwa rC23rgtj15cvZvRbeTSwfSBR4I+uduuYSS7A+qTcEOmOPmuxyPPgXRpsi5Ts WoEem2s36r9HA3b5E0Jvf5wj4nafBjH+CTazWL9A06zKEjOftfRr0nv0/NIj a1aUYb6GDL9IQgcOt43U19BgCYddyjTWz5Hc6y/NX9FAbMfxH/1od8/DGSV1 NEgR9OJoQhu3Cmy8/oYGk6xZu1z0dIXpgwAWDZS5EpPs0McTsk+q9NJg7tur yWis54fWHuQNn6CBcMOiX914f0S2KEnJTNLgvE+/8lN03oFPKkVTNOBq7BVJ R3dnOdu//0eDR8V9k+5o24UmSVqcFqB8rEOqDe+jVe/5FDoWW8DB3vKWMrzP OgKz1qkoW4DErcRNDngf/pZ031ChYgHd/bq8q9GLi8S3O6lZwIkZ033/9FuI 5Zfw0NOaFtCnZrU5H33f/mB9M8UCPn9WfP0P799oWZPNAeYWYL7nxZoUvK+p z9/51btZwH7ZYf40vP+X3b2jtHkL/v6nYO1u9Fh6RNfXrRZg/PUhzQCddcoU OLdbgNtx65Ms7C84DHMWrd2NjpHt4kM/vX00O++oBZSHzabs0mghRldEm0Ki LMDTOlB7AvsVreMb1YwqLOBtp9B+T+yH7Px26t16huu1HvJdhfbx9TeRrbQA 52U2toPy2O8cvEbnrraApdwr9h1Ci+7+ua+pzgLWF/CdPIX91Z9NcYU+rRbg 63zjSyT2YxVrmzTSRizgOY2bO2JZC7Gf3aD9d5klGH+R2MCF/eKmQ+GHI4Ms IT33s2HCLIsk3KfOH+qxhEcmXKsSsJ8eXCXWdnqtFejoXtB7wWIRlbPLBzen W8Fahl69yxMWuXov3/riXyvIH//pt+U6i/yr29cfuW09qPT1hzVFsoifqOWr +y/Ww5rM+WtxR1lEVj37r5acNXjZL8/l3sYixdqGPqfOWcPARUa7ky2LnOLd uErmkzVQnRfYVhmxyNZFZ5S/mNpAy9iCgx4qLKL6r2934DUbcHx/3atrGYto Zi9f9jPLBhSYzfk30Lo2Tm+8rtvAc0tuoRNo45QX2vQ8G1h4N8xYHG2rlzUt XWgDhp8ZChulWWTvPo+LJSU20Dx6X6lhKYvcfN9xZ6zBBvSODsr2ieP7lr+d 8Jm1gcmqMaMjS/D7gTr28d+cDd7H2a4W6Ig6yTcxHLZgxp2VuRQ92LYtu5jL Fj4vu3i9YjGL5P365cCx0BYUl6w8txi9SknyRoqkLXgvvZn1UBDjkeDhVqNl C506otvkF7JIg9Q5y806trBprfWeaQEWOZOZrz2iawscw/WXm9E9hT95RQ1w viNFR8+ir9aefbDV1BYIX8HMF34WkZ7NE5ywtgVtnSGfYj4WEff5UaG4wxZW xhalHORhEf45+/krXragkLCh3R49m1hIxL1toY41YKSB/vpsz3NuH1v4qDO3 fYSbRUqX9ld+OWALRbtC6fvR7rUd1fknbeFYKG+ALxeLZK958Vot3ha8XPkp qQtYJLl85aKcBFtw6dS4cwp9kRFEl0myBY2Y7zbb0H5nTN8IptiC332tr2vQ Vm2P3o5etYXiUr2iEg4W+Xb+VtPdG7agJbw5+sN8M9H+ktSm99wWgiZrzKzn msmnRrHSnEpb4Cw+tVUbnfAkIU2iyhaGNo5fkUKPx8ZtmXxpC4/Wr/T/NttM SoyjPj+pt4XeryOFUWizuHPfzdtt4crFPO7OmWZCN/Hl3fjdFrKv7ba78K+Z zKz+NfD8hy2kulS6HUMXCh+u0/llC7SpdRHb0Yu/HogSG7eFQ9XhYIxmxe0R bZ+2Bc+sB6tH/zYT16+esh48dKAzVjx1Re+K32CwX4YOy6wfT1jh9/YL97KN MyvowNxnEaKPllujtC9Kjg68Ty5qr0J3PJnLLFSgw4Jmrb8L0Lb9twVGlemw ImPc6NlUM9E0FOw5oE+HuL7crYCOXOA/OWtAh0bZDfI66IH6PpEYIzp41VH4 FdDXPMus7pjQ4U1gDOFGi0buvffdnA4WVXudXk82k8nuV+cOOdDh02Zzvq1o 53xKxvwGOoTwyf/dgL535FpprCOu3yFrCQ29l9d/9K4zHSIKtmSroLu1lDb9 dKODVO5t76k/zeT52fOqR3bT4cZ2bferaBn7XxYL9tCBLzn8aDz65NKt2+L3 0mHIte92GFq3kJJUdIAOh4JDIo6gc1r7Zn8dpYMH7/p31ugIZWqzbzAdnJ7t ezo70UxUOAdhMIQOGavDwibQr99H39t6jg7OO8r2j6KFYjtjrcPoEJ/MjOtB J0wcdpCNwnjvOqL3DE1plKxIjKaD/Oy5/hJ0641yDYFYOmwLOHL/HlpqC7/Q eDwd7nc8zMlGp7/IrK9LoYPKl4+fwtFmVy1NSBodoje98A9Bfzw2fLP4Mh3G uCjqp9AKKoaRmel02Lnq+uBB9I3YButj1/H9Ne882oS22eNXOpRDh8rlS3QY 6CHqMmXPPDrs831Ua4fW+OPNRy+gw/uDD2yo6PtbZl+uvEuH18o7MzXRTgbX 9ZPv0aGrb+KvCnp8iU3uovt0EFMP9V2NNqxKCv1TTIdJ3yMPZdDlKuq0N0/o UL426oIgeisX6755OR3CK+ar+NFz3ScUSp7i+RtavYwHbR5XtSD7OR2emXlL z403k5o/bs9P1NDhj9TtHb/Qu5s4tEdr6eC/+MHJ72j+m3mZO+roEPNYvnAY Td86dsb+DR1eUMS9vqJHDFK/v3hLh7Sw8wN96BhhMw+jRhwfbxz+Cd1UdWGd IosO31pspXrQvulat1Nb6PD5YqLAe7TYiVaZxa10uDP7V6ITXbzxVNS5NjqI fzuxrh3NVJWfmWrH/RJaENyKnuSq3Xewkw6zqtE9LejUnv3v+7rosI5DjMlC v48rfdLQQ4dfDV9TGtHKtnQvrw90WMnwsG5A+3H1Lpr6SIcffJuk3qIryw8X R32mw92ZKr436MXHubbK99OhYVWqZD3aXSuZ59EXOpz2q7F4jb4xqHzHdoAO xR/ME+rQE1llzA+DdNB0m517haa6O8wfHaKDd/twJNux4p/y+UfokGnLYcB2 99ujG9NH6dCXp8HBtko477TODzpM9e76Vos+DmlZNT/pcORLxi+2q6bVbN3H cHzhKyn274UfVIz9+E2Hq2vaPdjeut/xSugEHcwtn1axfXN1P016kg66fw+s Z69vsvf4yO0pOrQYdH9j2yJV4BL1Lx3sR/7eZL9PvOPVde3/6JC46Gkk+317 F2p93TeL+XZe4gI7HmrVlTEc83RYaDuZy46X/2lnw0scdjBu4/KJHc+XBgMf VDjtQOyYgkkTWvTnyYgKLjvQKnN80IzeViCo48RjBy2L2mzY+1W4I7NzgNcO nJnZc+/QVq3VqiIL7UDgUu+LDnRizKaW3EV28HQXhdWF/rh+6JSxkB1Yj6bP d6MDnix56yVsB57NJ4rZ56v2aPaxKRE7SF3YYNKPFtfQl40Ws4OZu1yf2Ofz TqbboUeSdqA43hE6gv7nOrqULoXP3+9x7gfaWjT4+QdpO/zei80cQ38OzRUR WIHjrZ5qT6O1zIyepMvaAePVtdwZdODk6x26K+3gsvQ/Qw7MJ8m9Px+4K6I7 PxTzoW03mDDvqNjBSMg/ISl0Cn/DHFXNDuYMlA6w87W/0jO/Xd0OPES2f1uJ PkMJm+LQtoPbh94YqbLrgXTzZScDO6jUWKlrhl7Wv+vDFNUO4qbPn92HXjUm rRJmYQca5+1jj7DrCcdbXzErO+hl0UpOoEFGj1fTxg72pIa7hqK9nefVvTbY wdqZyd4M9L3qlIC37nagNNv9owP9hGVb7bbVDmzGmQUf0VUfZ4UGPeygdLXa 6UF024xXFucOO4hcfPvoFPofRfuVoY8dqDRkX5bG+m2V+0oi288OfESKqz3R Gx+c2qZ1HM+Df/KKvejNlZoF5SfswNtjLvYoen9Pkml7gB2E+qlUsu+HeInt XoIhdjC1OtDpDrr7/PS949EYL514dU68f47uUrWj59nBUt71G8rRL84tHX6a bwcOV5UGa9HCWdyR2gV2cDDp+aUWdOH73lqJQjvw3/ZdcxjdvzGR9rHIDvbZ zWxajvcj02TG+NhTO7h3aCogCG0k3KCS+c4Ocir1HzLxPg7TKHsl0mYH4X+N Gnei39ne2B3ajvPLXJzxRR85fzZ3T5cd/Ds1GheLvvnXQJ7y0Q6M3Hdm1qGX f8mUqhu2gzeXBqzNsT+Ye3yE7zenPeiW5waaYT8x9Yj+IZTbHpJEeOw3osce rC6R5LUH1s5tujvQX2937jIWsIfo8DqTMPTbLPOakCX2IGTdsr4RffWCyHlh GXtojSg19Mb+Zu3mIk5NfXuI8Tu45Br2P35TP2d9dtvD9EJuVwfst+5z86h9 9LEHrx/GR7zQv4SlXTfttYcZ65Np/uiDKub3LQ/Yg5j1e8nr6D1u8bsUjtqD xa7vVVNoj3Kdxvdn7OHCiWfdedjPWQf7XnNItofrITYPhLA/lOEfp1Je2kPC 5nZLLl4W6bUSbFKSd4DV3DEVTOx/ow5vSf0W6gB/+5eHN4mxyL592nc5PjuA /wGrVo3lLGLgaLrgq9UG+G4qmr9DkUWW79p65XfBBhC7/t3mlBr2u2sWUNW4 NsLVEZ3QIV0WuRzzo4WmvxH6XVcPPTBmkQcf5IT4dm6E00akNsWcRTa/ctvb G78RUvIH7n9ZzyLH8nS+XK3aCFUjTZdXO+D3xQFbPt6xjaBaN3zf3YlFXFTm rZirHGHsSkDhelfs77mu6IqudoRP6yMTXNGBvQayDej7AdEH9qCzEw9OWCo5 QseBPZwX0d9ne67rqzpCvatz/lt0GKucQ0LbEV487+7euJlFSk4FPGkxcYR0 35FRBzd8n4YJDUcnR3jyZeVOlS0ssrBFfq+AsyMwHZYYGqJn2u3zKtE/E1bP W6B7P+XK6jIdwVrx9UFPdM6EyxKxzY5wI+xPfTJac8Wjn+88HGH4wsTpBVtZ hLr/+APXvY4QsJRZ2YDWO5L9Q3ifI6i/PrH2PXrV8Qa1OrTLWHXeAJoveE3O 2gOOYCz52ZPDg0XeJLYlLTvsCL4sVScdNLPM4Hj3MUf4a7dEOx69d+GkkWeI I+wqHa23xu87naA0EeWzjvC5e3OXM3rqt8nQD/TrH4u6PdFhPcFXgkIdIfIo 9bE/+vq9hXMZ4Y4QNDHTlY/uZspW9UQ7QvR4bRmXJ4s4XLe0d7+Mz1sYMVmE lpAaXK14xRFkPpQfKkd3R0XODaGvVDm/r0HvPd54NyDdEXqXF0e9R4fbbBa9 fA3jl77VlXs7izz/sb+9I88RUkKeJzmhdUyTtjMfOMLuz98KB9GXS1v6hYsd 4Sb5OPMTza0v5lOPDjrIS51Gt2kkHIRHGN/9A7cEduB5kIs7pfrYEagrV86p oF9xRl2aq3CEp7+j033QnnXn6vJeO4Ki/e7mHvRryyq77fWOsGS6o64frfeC s2n5G0cwaL5eMozmLQtpi3vrCI+0bY9OowsLg/oCmhyhtHV2r7gXxjP21KxD myMUVulvtUbHMY/qTH5yhHO9ru430I1UFcfKz45wp2Yq4A56sdaHwxf78HyE e8YUo6P56PfkvjjCWbXEuOfoyFIFLetBPO8r2jg70OeXsdTTvjuCUrF7FvdO FqnmjbDz+uEI33rezQmguX+v26/x0xGaTSw2LkGfrS+4VfkL309VpFEaHRwY ojo07gh/vhWbaqIDerWVTf45AqOwsMsZ/eT11/U8M46gl93vvxk9/ejq7kZ0 q7z5Ig+0fyx/vtccrodxVHA3+hh8XB21gAExF4VC/NGHs2MVe/gYUPgkSz8N fTfGkpbPz4CEm6eXpqO/B/zbcUSAAX+PFo5eQx9w2p3Ns4gBfmsWn7iB3stN 5DUXM6B4sd7cI7T3ru+yQeIM4J+L/NiM5jxNibWUYEBAvd3fd+hriQHziyQZ sILnL38Huvs578fUpbieu/I8vWjGcrms+8sYsD541v8b+qeOt8jJ5QygDB4x HkFHW98KITIMuHFj5Od39KtjhjverGBA02eudeNos6YNil9XMsCWfyVjjv38 r5cSC+UZ0MGhWc7hzSInZ99zHVVgwOV725ZzoYtVffrnFRmQ22/6mA+tej44 V1qJARnelkeF0a+u1Eh8RHf2toeJor3vC4blKTPg8P5bseLoax9Sd+mpMqDW d1WIFFrSuEjJXoMBiaPVfXLs52+cTBHTZMC6+posebTj7nX8XehuKSUXRXRU Ut3gLm0GbCgSubqGPf+tJZs1dBhQybiupYyurXSp+43eIZJdqoLm/PGpIFiP AWqJEzfV2fPzKC9bT2HA00JHcU30OpmDkUL6DHCNUzmqhfa3+bv3sgEDTHe4 i+iiv18XVS9ey4CwAY0mA/b8T1yvBhgzgM7f+MUQrdKcIWhuwoA8usAvI/TO OdXRt6YM+PNl06Axe36JI1uT1jHgZcLRdyboTLWSt25mDPgsZPjIFN3lSrsz QBjgu6zazYw9/6ELsneAAXELLq0gaImwxhg/cwY47ZBpY/v+VYl5YyoDTg9s DQX0xgfuhxbQcD9Ntiqbs9dbl/WhFs2/UPYF21EfBzbEWDCgbea6I5UdHyE/ 7eVWDBj5K8SgoXnVN9HfoZ1uFJexbWVrvCt6PQPuKITIWKDDfFaEWFkz4I3X cT+2a8I4rs6jA71Tqtjmze17VGqD8ZEfELBkj6+qaT5iy4B78T7r2Q77VDCi SmdA6V3ZQLZr5qP4+tGuxwRvsM0re1gh3Q7PXzel/v/xpk7rmPYMIL2Xv/w/ 3s3AdYkDA774mU/+P95f+ugrdF+aGocVe3zKTHTIBgZ8tNryv60efrhhvBHj c6zt/9+Htbyo+o12kUv/+v/4X7m9hY4MmF/34M3/8wtfmPZmMECwfvnN/+fX 3C8u54R+3nnm//F2G7Q60JGSP23/H79X1zbemQGLXm1f/P/4CxLeti4MWNyg U8eOh1X+VBAXkwGiCl6n/o/fy/eXy9ExT6dWsf2yr+LhsU0MGE+beMmONzdn dpOmKwMe3tviwbbFyvPDA2jTf9rf2fsVaubDm7WZAaO+x46xXb2FLu/mxgB1 EY1x9v5yn9I0FXNnALPRbS/bFmkim96gX+Qt6GCfj+rW9iizrQyoC69JY58f 7vEn+ZPoqqyRUfZ5sxDNeHHPgwGPB66sZbvaYeeUgifmW8b1Evb55D6wXqwb ndnHOcQ+vxYXVTUvbcd4/JsSY7u69qcXnxcD3tFLHNayf/+15cxzdPamsG3s fLDgLkk7uZMBZ3qmd7PzpRpONw57M0Bg7v02fXTVYwGTJh8GbFw5MqzNzpeO EZcLe3D/Is2esPOR+qfxMHUvA3LKNgaz8/WFbnJe8T4GcEu/+K3G9i0F0bSD DOCzNfJn1wPO1zwajEMMkD8+yL2aPX5wcP2iw5gPD49eYNePF6vunj59BPNF WCVgJdvpJt+2+zFgT83Bv9LoDrVL11SP4X4l6ciz69P3x983/UYH7Qgxk0RL t2XVhJ5ggK5X5xZ2fTu8mD8nP4AB0eX9ygvRskHvPEaDGWD+yYBzCuspRUhT 8lEIA7aeakmcQNteCX975iwDUs5QZX6z75cSY1PhUAZUaNwUYdfnNz+uSeuF 4/wFCrF97PvL88A7/2jMt876jjfouO81F81jGDAn97SzDp0XuJK2MJYB5bb1 zTXo5tSWoitxDDjxY2P+c7Ry89rYikQG7Pt6bvABus2c15b7MgNe/btSm4rW U8x8FpvHAJ6LmtJb0COll+Tp+QzgFKDZuaJzHKLO8d5gwNc/0v7s+1M84OT6 0wUMWMUh98QOPd7k1Li3kAFLOsYHTNGPzvB/sLzPgE+C1t+Xo426jsz9e8qA n4YbKt/h/f7zkI9nSQUDHN55ijehb/Bse+H7jAGM2gee9WgpHbuwb89x/6I1 vlSip8PXLG6vwny7/CGd3U880X+/4n4d7lfFw+Yw9Lp4i3U+rQwwPNvroYt2 dqz/IdfGgGDloFl19F4RRnY7+kaAXLISOjl+G9/6DgaEnj/4UIa9nviA5tXv GXDpW1EhLzo74Z5330cGSJ9VC+nE/oc/SSbGY4QBchJt3QHod8njvc5cTuBl bWZwm93P1fzSkOF2gpKzzz/kogv/fA/sQ5vedjmXgT7P/LbMl9cJhF6+KY1F G0j2MmMFnGB3xsmeI+iUS7UNdUucoPqzqqg+2i3pcoWZjBPEr0uhl2D/+Cke MpT1ncCvaK1EIbt/PdbAne/lBJ9VdvNcwH45y2EqQjDZCX4l5iRyuLOIzTN1 nbBaJxAtO+Djgf1/pNT14JsTTqC9rIXV7sIi5rsfjj5UcoYz2+O5luL3RlyG AOd+pjP8biw2id2I3x/103oCF5zhoJLgy2/2LJIfO37hyRNnECq+r3GMziIJ pjrhkt/QG6fWOduwyO9egezNy13gYZJvhDF+34zuWbVzva0LzKg0DpyyZBG/ KBtbG38XgLyXd2ZpGL841+/CJ11AoC6raBJNubQ7oQMdzPWo9Bd6PP181+5T +HvLiJYvaL+7lXvDzrjAYE6vSQP6KGvtxapQFyiWudGeifaVUn2zLt4Fiqiu ZlboIzkLHXRvusC48MmeTCqOv/fo6giaYexueQV9vHzHcN4tF8i4M3MvGR3w 7knE8tsusGk8MDEaHcq9r4r7ngucdTt0/hQ6eWe9UftDF4ismpNxRZevilIM rHSBlcmfpMXRFdpGvgYvXOCB84HpJejnpv3Pf6LLobh7Efqls6mHd7ULBKw4 eocL3RA6kupQ6wJvNhSd+Y3fh5/67RbLv8X1vxJltZiz71Oh6ZcdGJ/YczT2 92PvSu3+2E4XOGnfRk9EP7rKaNzc5QK6ymGusejdSSm5o+9doCFy5kw4+tU5 eYbEBxd4cZBw+KMv7NC/tfOLC4QsmG7ZjBZcuXUr15gLqKq+rViJ7r8SZP0W fYxsZqxAly/N1kv57QLnlxgNSaP3LxkQUJtwAUW74TVi6Ldzhx8xplygTF3y HQ86pid0SfacC7yijM4MA4uIXCmshEVM8Lq0IrQMbW2+bZZXkAmxRgZ3StFn BkTWvkWfKPLufoge0jtxb/NiJvx5wGt5D139xjzTV4QJ3QNkfS76xFxbYM5S Jhzdx7skDt2zfYER/yomBNdn5PugxfmLjzagda56Oe1C297ZdTdpNRMuPFXj 2ol+9Ld+jbwSE3xCqg5uQ8clJksYqzIhZGr+GBNNe6n2e582E2YochaW6AJl 5p1GUxy/+lzHavTZttykiHW4flqmwiq0W+hEgLkZE0L95Q8roAU/Jq1/QJjA oegiIYc+nNLyMZnKhIwtOyOk0Aa8jmIe1kzg9TspLIheUnxtWtKGCX4hV+MW oge3//zQiH6aJC0ugE57GltoTmdC5CvZ1bzoGb8Gy9UOTLhlBYc40C/66P4j TkzQu2FwfYKwyJX4Kx65zhifuEzXcbQfGbbwcGECzwGmyG/06iuRIk1MJhTN 3Yz6iY5g1N18sJkJEzu7bg6jHSqtegK2MaFZoiD0M1rpUHKVnicTKGWXDn5C c6z4WjCCvn2+yv0jusj//HGPHUzY3tBLetHi2tVLqN5M0F3M/t/H2M9mmFMF 9jHhPYzls9jzlfO9bEY/dou434w27Hq7/vJ+JnAnfnzehE6ScLNXO8gEzaus wQb0hihfV/sjTGh9esW7Hj1XYPRewpcJMv7yMa/RhbVzW3vRW+q3PalDL+S6 6HXIjwl/Ty6QfYWuPnn9YPwJJojmlIi8RPum7Pm12Z8JgayPm6rR8g+1/BRO MsFU/HFWFfrMz7KTDwKY8GGxL7xAr939LrT1NBMOR/UXPEMPhl7myzjDhA0L vIXYTs72jNwVxISHXBf9KtDjPSOxk8FMkPv+wv4p+o4zzxXpUCZc4q5UK0Nv 8a1f8RndGmdX+AS9KC7+2s3zTMhc5afNtk/9ijyTcCa8ykygPUYv/danzB2B 52d1OKsUXcN789Yb9NgPUW+2FakGRVsjmfClYjipBM3aNqO35iITDrw20GU7 +PSLR9/RhxPFWx6he0sdyoOimdDz+awc21Ft4sQ6hgnPbgnXP0SbjHdVCscy YWGJWgDbqVq7a7PimPBamruvGG1lr2G7N54J9x9UXGV7Yu/vN7oJTBgUX+DG dk7E4w3/0Dm9dcvYZuQFsaoScb/uL/3wgH1+qi1dopKYEK79LY/tu58WdThf YoLUP1NftgVXpPZ8ScZ8mvYWY/uJsYfnnRQmVB4y+nYfvcd1Vd/xVHz/R+Ev 2JY6PuRN0phAP8zIZLsm8d4g32UmTJmmBLF9rOj4via0aoWzF9urGk2/p17B 83Dpgi3brBHOI9uvYjx2UPTZDllY91slnQllr5wU//+7lrr8F7Rw5nMJthVd Yh2uZTBBkFNzEdt+AWOn3DOZYPfuMhfbLzNdCiSvMWHPFM98EVryZWlbM3p+ 48FZtncPLeeOzmJC/nPWHNulS4J0rLOx3qjo/j9eQP+zB9d1JiQfuriQbTc3 y6gKtJBfjzjbt4JuPD6Zw4RpaSUFtmdyFg1QcjEetN26bNu/Pij+Ex3z7qol 2xk/ms1v5THB+06NO9s/xPUP7cpngkBxnx/bYJx6Vf4GxuPVWBzb8dv+1XWj Jd6O3WX7c6jHZEoB7mfu52a29W5WrnK6yQRnSuUftkMbVzEW38J8do+WZe9X 63h4UB3aa87Shu01y4YLQwuZ8HXu23G2TxCHLnKbCS3EP59t6Uhx/Ud3mKAm tEGEfV723j2x48hdJjzyuGTLdtm7rlj1e0wYCagMY3urXNZQdhETEtJr+Njn M6tY41psMRNMnLzV2ed5rDPure1DJqRWPglkmzb/+y/PI6y3S0Yb2f5i88Ql sATzq7PvDDs/VD5YLdrzhAmy3HNz7HwK4L5ptKqMCeIuMrvY+VevIrTrAzo3 eHET2wf8Wp67PGXCojN7/s/fIgHP49TnTFC52x5WjubUqro+i17j68vNzn8n 5zXNpZUYP9P2ULYnMkbUtKrwPpmbjmbXi/86tO94qt4wAOAyUorKrFApLcnK KKMes0jLdi73OBclZESRlJFQqV+JlmjKSFLRlChFA1GkIaFBKSlREb/n8ef3 czv3vu/zvs84Pi3S3dKi+ADjVxdTVoou4yfb/nqM+XAqIY/qVVD+zkd5T5wg JavW7gF62mD4Mq8q3I/wtX7y9nTW4lm1E3yZsMqR6p3hG3XjS7VOEGCQMpvq ZaFrxbwNL5zgsHfgUqq3njk3c1Qbsd4+bZOneiz958LsN+gciZZ2cvCRlBnL XzlB+qrglOdojRec4twmvB+XKkc3orMdBiQ+tOLzR1b5N6Odz3YlHm/D/Jj9 wJP6wcie1pEO751ARfiKO/UL74MPhe99wPsQ+MWlDT297tDfk+1OwBy77v+J +tUq7c9u3zA+mwpGUT/aZ7P24fM/TtAyK2S0CPY3GYmnbWl/nWBP5Zj1ougj DxcNCvqdYDDd7bEY+vQyyQXdA07wLnXakVHU360Kj0sKOYNIqpidFLrZTDjI aqQzmOS2Wk5GaxllyF+XdoasN83TddFFf8W1o2ScwbY9qEEPbXgzeLmVrDNs P5aQZIC2WGQZ/VzOGcZELhEyQrsYdHZ8n+gMWr3nxczQ0QsMb8+d6gxTGyUT VqNr5zV4ps1zhtXlmS6B6N8/3sxxVHeGRh/GIBg97WbbV6n5zqCgKzsxBB2w rDssVsMZzgweaN5M84P32KT12s7ge+ZA/HaalzLMCg0MnGHVrK0L9qFLxl8U fW7mDDOSLw7lo/N+JWSOZZyhQKtHrpfmFXUx8Qb045nF6b/R5zxjfU7wnKHT Imp2P/pUbeQ8HXdnENP/DkI4rx26EHzJ2cMZnjqs2COBjvbm3T691hnSJMMj p6Id6jXqF4Y4w9/OjeU26H+F9aLeSc5w8+Wx3efQn9y8x/jccoYDfbP6OZxn +ceH9KI6nHEeVUydi/P38lq97dsUXUBDP75H0gLj8+3Chlk2LnCkQn90B7pq xN2Iq5EucOuT5KYX+H7glPfuPJPvArKZlTtuW1G9MI3LeeMCan6t+5PwfUKq 0iSiWcoVzr3MGcMtq1uyeFGkQqmJK2xaXaI9Cd8/+k3vNxb6uUJEQ9fMErQG 5F7bn+4KIzL+FLvb1C35O6vWROGJK/SaG89rRvvpePS8Q5+FRO0W9BuTrtzc KlcYusHpt6FLHCQnLq5xheD6YqNP6NhY6x9eda6glDxBrwst8bbs3OVGVzi6 SLV1ED059fK4lR9cIaR/7UxlfD8yEklpiRt0BdFFc2wd0RKLrrTbDLmC/8aI r07oVwF1XeOFGND9Itjrgg5/NX7w+AgGrq/preShCy/tnVwkysDjH6qaArSG R4L9BwkGDsYfuBaAnn474r6lAgNSCyyux6O7fxx9MmYiAx0DFuqJ6NI5N57V oo1uvM7YhWZT+lrcJzNwNfBxVBL6uF/o4CZlBgxOXdVKRstPDjA4N4OBqKi6 lem03jAuZ6QWA07BzyIvoyMLlXl30KMGH1+4gv7a/XJsuDYD97ikpkL0U3+7 oA4dBnxHeC+6hj4sMDd4osfAqk9hrbfQqitn3j9gxMCWrfp/y9GLZ3a8U1rK gJBeNjSgCwSZyfXof233bF6gVU5yFvuWMfBKONe+ES2q+CpryBq/r62ee4V+ PP5xQKstA3Wh+YFv0S4DeQNZdhjP1aFrPqKDnwVNXMBnQDNYTuMX+nr0mbX9 6N6KVtVetJBGQ+E9lgHXhdaT+9D7Eo3WOHAM5Pi2Cv1B55mM3L3Ji4F3+itu D6Dbs9L6r/kyoB1u8lPEtm6JR+SDt8ZhDJh8X+04AZ0994+6WDjup/LOVGl0 V8O8rVVoz+aadvJ27QMK/AgGimufb5ZFH//IWx21jYGPH8JjFdAvVneXle1g YEK9wEUZvXKmUqbVfgZsZOKF5tjS30++pI84wMDsj1Kp5On/3TpUjN6vs2HO XHTvbyZR5yADY8aeX66GTn9y1G/KITx/Fe04dXRniIJObxrud+1/t7XQDXM+ qV06jusPS1yijS5tujrDP52BsgamlHxwqZNcawYD2beSSnTQhoqpv6tOMSB5 Zf4FXfSuu9J3MrMYiBuVY78QvTGs9ZpHNgOHa3j3yG7qlwsUcxhYWdWpvQit dWjN6QO5GN9zuWMM0Y3r9+/cdoEBsXUZl4zQsyZI2TpeYaCtKrdiMXr8gyaL 8YUMiD72nrkE/TfigsljdOlHkVhy9XtbTdOrGO/CzwaA3nR9j/T8GwzsMfI7 ZIouZ0e/FL3DQOiFyCkW6Li4VQE1aPPs10Fki5xUkWOlDDQPdJeR7/1Q0dC8 y8B7MysPS/TdnYY7XO8zkDr/yF4rdGxu9ETVBwywrcX1ZNOaBxe+oS+MO660 lOI30b5xRyUDCz33nCPfOe83P/8xA+teLjy/jM7/6aW74U8YqDEx7iAv/tXn bF7FQOCifzOt0SWL42IbqxnI3XkjjVxce/yFcB0Dwe6zwm3Qkb2t/lXo7rUq eWRjxbnCR54x4Dir6S35lleR+vx6BhSdjsBy9M2+qhjnRga6vOb8IkcoySpM f8nAH3HdqbZ0nqZMXif69nSRZeQbuz82xLxm4FFLZyo5/KK6v+0bBh5sH3WL vPD5xhEKTQy8XdLxlnxdeWhe3lsGKqYOTF9B/97MsmxzMwO2BprmZIN1e5xM 3zHg4DVXQL5aoBDT0MKA/ffQ4+TN9e7yp1oZ6F9acY2s//fMeb82Bvaea60l F5lrNQh9YKB6/WbhlehQn81+j9FaFV0Tybp7i4UOfcT1KOlqkHsuCR/y+MSA zidzM3Jhw7J589oZ2Hl6quPw8/37Sn+hNR5XrCUvmFbvWNrBQHyTcRj5h4Xi l92fGWh3jIonX17PRTt+wfMo+C+FvHFflty0TgZm+gacIutc+Zr7GV0wqHhh +PkXC6DoKwPnPh+5Rr40sKU+6hsDbrkfSslBKqW+Nl0MzL8p/JCsZTVSSO47 nv+h7zXk7762qc3oiFsX68kF/yWr5XZj/mXCK3Ln/CW9Bj8ZWO37qJk858mX svs9WO+9n7wjWynezUr6xcD2jLThz718j+y172XgtaVNEzn2RkDI5D7Mv9rG l+QToyxdW9BHri0d/r1iZ8Ul2b8ZsNtweHg9r851qwb+wfj4VFaSf/+qkND/ i/Vwyuvh/chbZnwfQI8b+XR4v7opoQ33+vE+Hcwajoddm03x7gEG0kwEp4f3 r6Nyes0//P4tQofI+2L6EiYOMpBcHJtIzntataEZLbqtYwv50dSz9ueGGHDW 0vMljyxZPVV3BA9WW21bSlaVnC3Wj16VEqFLNnP797lMmAfvzvOnkbf9zbm6 SpQHPlJNPXSfjllHH5cX48E1i/Am8vUjTrFN6GWKA+XkHn2RlX7iPGiNurOf 7B/i9iFeggeFYmaK5N13dR6vGMODJiXNfrr/2RNGX5Idy4PMmFGvyO8vFkWe luRBqURsCpnXKSVbMp4H9X+OD1D+hRt9+BM3gQcX3f48Ix/afat5uTQPom9a 5pLr5vicfynDg0smBfZkG+8ys1/yPOiHl0cpv30KD88pVuCBHnPXhxwvEiC1 YyIPbiie0CffPTX51fjJPLAJ0Kuh+mH4NiRYXRn3o9b6k+rNXOdZJz1n8GDh upQxVJ8+XziqpazKg/u6vGqqZ7mikmUNaNWKxfvJapd/tljP4sG/z+4TyOqS ZTO05uL6RUaNpvqocY+XNaDBgxXKvtVm6G+TagyuavLA94vmDnJ+kFlloBYP vsEkA7LmlLkdrdo8qNFxOU71WWtLr9pDXR74jTzoRvVbR/NAfqohD+LG8wpN KJ92ii5ZZcSDqaOSeOTLb8JqRhnzIMf60wjygt3871tNeKDGm2JrTPfvwzwd AfDAOOlYA/UX/bQHRRpWPPB4OLfcgOIhPlBcsYYHY+8dEaX+9rTqQ8d+O4zX SL1E6odrU2rkGXseMKM/SpCTVc4EdTrwYPbmRElN9BcjG9UJLjwY8a9JfD71 76Ajexg+DwbtLWqpHw++1GW++vLgqt3hm1PRKSenJFz144FKTK0KWW3dqMIo fx48TNVOnIJ26nktKR3Ag6hibzvq9xeldpTpB+P5SuS/mYz2MK+dEx3GgxkD ix/KocvyNvRJx/FgZqvXyDHD/bCnuhpdNI5hJSh+1lvP7d7JgyyJU9dGo898 SHQUTuCBudWstaPQO6ecvdK9iwdWbZNviaGt978KfPofD9LmyVkKoWtDlrbv TcPzzTvwpgfnnRZDlZejrvDgmCSz4A3NpwsWjihDGyhv9nmNllJfNXdLIQ/S J4un0zxmrLxtS0cR3uesXaIv0YeGGic9us6Dxnjlqnq0bfl+Zk8JxtfyvUUN zWMrhN5IPsJ8HStZV0bzl0fzW+kWHgjGPtiaib60dZGwqIwbWIiE29H8uyGq /skJUzeIlzmrNwV9IlyyaHqoG0QXaMc/xfmbP3p12Y1MN5i7/vOqWHRR7PPQ /mdu8OzkY6NFNL9391iqjnSHR63h0V/w/aB9mXNJn647NJ1tOZWJfm1QzjQL 3MHqfXC5F9pCqUo2P8Udcr19A2egrToUNs++5w4Bjqqinfj+UXJ+sCfhlzu8 F7+TfhV9T+z74YFZfJjtKhayC11dN1GuaDYfdt6PakxEN54wTd4whw9yL7jF 5M5FB5PezuWDrLT7mAS0fIB+TKk6H7aN0M6NQ/s2RPrG6fBha6pzfxRaOmu0 ydjFfFgp9fHLZrTHshmtio58SJQ3HrUWDTvv9rehf9crbPNGT7vLyeU58UE7 NPCHF7rF6OQyYxc+zF2Z/NYTLdBUvujG44NB9Lliep/ylleITOf4YKc8er87 /f57CfmpAXyYt/DGQUe0jUqu5if0b/MJE8lqfGvri4G4H+UPxx3QX14kRC4J 5sMqJaFse7T/Y9E2NpQPisnC5WvQAZcHL56M4MPgpgUyK9Eh0T+spyfwIfSP nNRSdG+5hlQT2nCCZI4VOny0X93hRD40Q6AFeXtyGyO5mw9cWWikJTrx7HO/ 30kYD8Md3ebojMqre6uT+aBzNrML0A/Hb62NyOCDueJtIyO0reO1VL0TfMhJ Fn1vSOdz9Kfrd7Trl6Ik8vPp/q3ep/iweKxT8yL0W133n6vP8qEjffeuhege lyVys3P58HTfjW499NRTIq7PivB5hWfjtWm9jldvpF/lg+6UkaVa6Kej10/2 ucaH64lXAsmxG6tfD1zng4v2tqea6PfmR/mzivnwMfzhYQ109kcNry13+ZA8 fYGJOlpLnQmcWsMH98+FrbNpv+/GPu1Ai9dJnCK3pNzRKnyK98WvkSUn/1P9 sayOD7tXvHo7i9Zb3RW6sZ4PQcKbW2eirwfvjLj/mg/Btb1DM9Cm1wp2+rXz oVvW7+A09O/Un/o6HXy40h7MkfND9dt/o9+JdGiSlXSKbeK/8OHMidnVU+m8 8irGnfrGhzantnHkvNNvjzb00PcZZyujPWNUlqf/4sPoWYbbyJM9vAY8e/H+ 3TpnR05Q/szv7uNDvtDjQSW6j0d+zRjbz4fnrcZu5In7xuabjmBhtsOFeYro Gv9V7ChhFtb5x4uT45cnj69Br7B80jYZ/XPUxBA3URa0K9PTydU7ZiwME2fh 4icHeXLcFsO7eZIsKN/vU5yENnLZFhIixULXsX2DE9E/9EtVDcex0Gy8v4XM 9lgmVIxnYZLXs2yyYeAa21YZFtRuOBqTv3v5NChMZkF3qUaYAtp6+TKdWvQm mU8c+bT2nH27FVkIke63JTsMfrL8p4S/t0RXlXzj8Lqi1qksfNra3iBP+b19 6YTj01gYNyK8nOzvNXuDowoLiZ+4y+Qp2p9UK6ezYLXR4j9y7KO1KRdmosNN V5BfF1h9XzuLhXzJUyZk3cOzbKfNZmGlKqNB/uj5UeTgHBbMucbx5OX/vEPC 57GQ823EKzn02TbLGm11FtwEalXkwYcz531Bbww8X0ouOPSh1V2DhTctV7PJ slredubaLJgOdEWSN8hb5g+gz457tZH8YEBV4qoOC4eeK64nhz98XzZHlwXj oUwncu3FcuVWdL/atxVktUNnt6TpscCm7LUkNwm8tKUMWJiXV6tH1re22FuB PjFtswZ5v6ZqR/RCFqr5wbPJZgNtJ38uYiGo3G8yOa313kCeIcb7kq8suafy jMtaIxaW/LojRT6X6jn+pTHep9EbRMlDW839k01YsD5ZPiSLdhHMqFy+mAXp SRv7yZeWiaiKLWFBy3lTH1lCsy2qBL1oSfVPsqfcvddhwILd5cjv5OL+0wba piyMPRD9lSzfGnvwM1qs+OVncmCloOuMGQvPZRLbyc+5Vv4uS9z/neRW8sJ+ rjpgGQtjfD62kA9lSd0RsmFhdcmtNnKP/a2LyctZ+KCq+Ik8I3dCNs+WhcWG /A6ynZDPSdUVLBzliXSSY5xKjnxFd3pIdJEL8mQPXF2J93d6yA9ys7DfrqhV LPiGmfSSpVzLYpatZmHnwvV/ySYXFSImrGEhzqR3kOwvFrDxFZrhvxcZjjev 3PeMHQsiIQtGkx9dmuzpb89ChH3bcLzn8CvsBx1YKHrhpUh2LlS2rXBkwX+e /nRyvESoxX4nFupz180lv786TW+6Cwtnkj4vJMtIhs3/gv6XYWQ6fN6eVTML XfF8jTutySfHRchb8ViI3urnRq7xfio1zo2F1CeL1g7f51uzxBvR28esCyK7 +TzrW89noSynaSdZoUz95V4O8+22fhHZSmFHrZMA87ehr4wcuuHlw6meLAQm yteQ6ybF37zkhb8/1v8zed/G5rT6dSzs+LpxJuXX7Uq9lAwfFviqSnrkzilJ SevWs/A3Q8WSbPN44bY/viw8LYS15JGqyXzlABZ41x/lkfUi2p0+oi8I1twh ez1dvOpiIAuh/Tp15LuRX5aYBmO+rxj5h7y93kLFOxTr4aN2G6ovvfF9bXkR LHieCxsiV77/HO+zlYWbEQNyVL+Omr2dqxqJ9UG3Wp1sPFgemLaNBecKZx45 ZlNy/65oFlq3Dd0ij/WaL7MunoXjhTF7qH42lU27Oj2BBfER5efI+VNlXd+i TX6uvkte8/pvhuMuFvQW2fwlH7KrVLNIwnxxu7qB6rGKqaeZSjILy+MdBVTP f2Q4fXiDPmqvHUsuH7BOPHIQ8zXB8TR57XWt6nGpLFw7sLmNnKc56Dp4GPPV QmE99Qv9KUeDX6ezkLv9Sgz1F9v+6pOpORjPMLNP1J8id9ilrMhl4ZiM3Djq Z+fHNCSInWfB6focA7KEUlPApjwWHPZJJ5Irjb8YO17EenOgU10Fbbld/KVs Ed7XqWmx09GLR8CElFIWUrK+uFF/Ddh1T9S2jIU/YmlJ5PQJS3+L3GVhw8f4 YvKAysrmkHtYrw7KKFN/vmnmdsH+AQtJpwbekfXjwq1lnuD9PfA1ZA5aU/xS TPILFjjx5ffnUT0fyp3ANLJQ5fddiOYDw76zp1ReshB28oUx2eLTkbKCVyx8 ueNbRGYqokfUNOF53M7ImU/5lbA6Zsx7FjLeyWbQ/PFG/Ht03HcWJlh9KlpA +4tTgFuiHiAmeuKQMfVfUU/3iWIecHep2Rty5478iE3o9CDZ6SbolB2WRZoj PeBMvUU++X1siNpZcQ+oya6tXEz9NqZGdq8Efm63ZaQp3dftCR388R7QfL7r NM1vi7f0JQsreUCSXLfzKjp/n8xQEz0PWKlmbE3zrP9ZFx/hlR5gxve+vR29 4HneRSVvD1gWLZlzCF00WL1TbbsHVBU/0byE3qGcfHFvqgeoOD78+ZDWn8h8 icjzgMqjt++3oH2+fi/i3feAqbNss/6iRZfOeX7gjQdEh1gdHI/zPS9tfsyt Xx7gHddweBZ6sO1ZjKEkB2rrQowWoX3Co1LMVTmQPRWRaI0+yxdLyELHZB5/ RG6x2LNlzEwO7iw4NNYGzUw4zH+Gts8ft59sm5s/x3M2B8Yek1OXo7XfNBXH qnHw2/La4RXov0uMP5RpcdB8wTFqjTX9//g/emDCgYb6hgYX9LHgqm3p6FNC TyRc0dmvT93/i76sJ76EXH7RxrFoMQeTsqWzyAPOx0PVgIN/fyM3MWjf7CVX ZM05GFV2dIwbvc9Yx2t1LOPgomSFEkv73S0zL9mBg11b99fS+0+f+gzTPrRE apiQN/p7tY6zmyMHEy/rapJbpO12zHLiYHKPVhK5/Nj+1zedOVgRp22xFr0r VzKpjcH9G9rlrUPLPhL/qstxIK0q6e6LlvRXEDmGbnK+Ek8eKTV70hBacotm AblvjZXlQwEHr6JzhP3Qr17Gpbt7cVCafDaTfKJjxMr4dRgP1att/mi10QP5 LzZw8G62GQSi7UrtvxoGYLyX9nuSI8LOz8tAl9zbk0B++IHJ9grkILFWp5rs c/fGqe4gDrrmH3UNQmdtDUsZE8rBIucHPsFo1W8/tiyJ4GBHfbpPCJ1nps31 02gzB9MEcqjb6V6xrXheisWZ5HuP1oQ8QX/cbtBKFmQV+Ltuw9/bY+kaij7p EcCGRHNw+GPZkk1o5WcdFlnxHOT2y3RtRstL7W8USeAgyV5UPAwtZa3v74G+ W1Q3hSx0J/bgpEQO1uWOXkl+n6vYumcXB2uq3uWS82JXRAUlceB1x4AfjjbW uXRjUTIHx2PPnd+C1tvgvOIQ2jfK4w5ZI/vfux/o2PF/6sjTptiMyjvIQa3Q gz9kUYk2pympHGQm11hGoJ+0yPYIH+HgNWS+ILsdCNd4ko77+xXeuhUNosx+ rQxcf5bbT7JqmNGPFHRnwSTRSHSn22CR+wk8j+apM8lb58SZdJ3kYM9Sd2/y sTv/2Uqf5WBA6tRb8nad4PzNaIdHSl/Jgky78a/Rf3U39pPV9sg9P5PJwRyN XIVt6JtOaTy9LHzeetVK8suv53xdcjnI691YSC72SHxSjF5nmFRKPvlsvYbK eQ4EO6OekH1uqP/oQF9e1dNG/h13ecvWC3h/j0ycsB39pu/g62a0f7KIErnU d5OJRT4H90c+nEVOXL1whORFDjIOtxmRJyqVJGYUcKDb7eJFHth34rPwJbzP dpMCyO9GxNiuQ2eeLgwjZ38yH691Ge/D0sjdZIMrDw+XXcF4m6zJJzvZ1J97 fxXPJ2VKF3mMqRjf7BoHKt3yvcPrMdCTO4leV9k1QFabmbqDd50DHQVziSj0 0JCDR90NzOeY4Bnkwt44Ba2bWM+EAueSfb8WVu9F/+e6QpP8/JWsifUtzI+K PENydtHzSaXFHMxs6VtFds8TrVW+zYHMln8OZOkzuolb0Q7W713JkftTevVL OJhx19GTrJ1QfiEFzca+W0f+uK3H6wfaLNfWn7zaz+HZhTsc8DwehpLFBHG7 x5RyYDTyVTj5pkuh6Xq0svmTSLKqlWyBahkHepcc48h/pj1PSruLn+f+O0DO VxC1+IN2s1dKJXtJ6fY73ePA+ofSEXJ1/8H10uUcREF5OnnHj3vTgtCbxP1O khd2/HxRhQ76+fM0+XSDvdWu+xxUrs/LIo8tv1Jo8YCDBcLfzpM3X5KZIVSB 90nxxkXyu4yQA7fQQzJSV8g2Sc+GNldycN3maxH5p6n9Da/HHJj/flFMPt5X t9GuGvuJctyw58++8r2sButhS/ENconTwQDtWg4+74bh5+MDdszvQK9wYC+T V8aHdJ6s42B364Th35fP8Dzv8oyDp/tchtfXXGTvO/45B06XFwyvv7zssbU/ umDsn7PD51tlPrcSveLcmeH9Bn1Y0B5Vz0HHvezh+Dh0n694jdbji6QNx+ff jCyDBjxPL/PheArJya7tQje/C0kmv5+WZLn8BQc7N3j9R65UF52ZhT6RbJhE PmDR08ZvxPtcd3gneXroc676JQfungph5JHRtqZqrzho/6IXQv68p3xaPFpp rWEg+cqZwmaT19iP3H6tJVs8S3G/8IaDrHhdR/Kc5rEmo5swn5/vWD18Xl/i lLzRRzfcWE6uF970WuktB0fyXpiS1+o4uiY1c7D3cIv68HktrlrYjr4S6jWb rGFjOdHiHcbjV5UKuY/Te9GPnjLBUZ6ceEDO0a+Vg9ZW3UHKv5zv9attPnAQ XGTxkByuu2vwAnp3zPEy8rJw47wJHzl4ZvXiBvnj0Gnxl+i+X79yyNPHBZWs a+cg/Gh9IjltvoT6zi9Y72RkTMm+wbdftpMfHzYgGxYFJdh2cvDj5NB8cqPx i1aZrxxs7AifTJa1PXv09Ddc/wOZH1Tf9vouFi/t5kAs4k8a2S2/u3DGDw6+ /762n6z+46wgAV1zhtlJfrRlTMnKn1h/S20DyCN3NYY29WA97/6wmByVtbH1 bx8HzM+/r6g+B78/d1tvEOtTzswh6gfSedmlyegY853d5Mshufe60D7h1W3k H8L5D3OGOMhuV64kh6oU1SuPEIC05+X/yJv5976KiQpgV+ntyeStjc3KDaMF 8HlmyTTqR0onW6YtkMDPM/3Gk4vXtc3Yj87fLCpEHuj9ONdmjAB8LH6/pf62 Xe6bXslYAZRJfk4jR9sNrDg3TgB9LsLS5J1PJm7fLCcAy5feXdRfxz9xXPUa Hb9M5DX5+OPkaSAvgNig3Q/Ilx+NvTdaQQAJWk7p5LeVQqPSJwrgn+sHa/LC ++0H7ikKoDOtO4P6feft65njpwsgZ5bxIpoHHC66VOVqCMBEL0x7I/X/8qYH kpoCENcOmUh+2CgoDUKLeLkP0XyyWHjDFX0tAWhfHnhCnu0Yc/SutgCcy3zW kf/+zfF+pSuAKUZiR2m+OWHV/2+0kQDSppR3BVA+NaVrrF8qgNCifwE0Xz0R imuL5Atgh4MrQ/Pg+ikLZ8eF4XrGeY6j+dFOa2/Ju30CkIG33+3RvcYF77Wy BeBa2N5D8+7KuQoq+9FJdULPyJly29270COmTLpEdvi2vOFCjgAWrbPZQL50 4lOF2nkB+HUWfKB52l946nnVfAGwUocblqFbK/YGTywUwGFZ6RtWdL8Ley6E oV03WhwmHzjJ+9yA3rgmfBMZtsz1TC0SwKyS99rkdLX7DtLXBKC7tTbXEu2y d8Bg7E0BrH0qkm6BvrjFM9QPXbvYfit55NpHBY/QxxvPupKLFh+Zu+uWAJ5d XylPlv6+QHHkbQG4OJb8Z0759+aYszd6zbJpAeSyyhEp5eiCW3G25KBTNWN3 lAhg8krH0eSKvfrWrej1sWWfzNBTItJ3mt4RQDqn9YC8ea3o3ZNopvfUWXKV nd/gEHrJcvkd5P8B0kpw5g== "]]}, Annotation[#, "Charting`Private`Tag$104357#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwU13c81G8cAHBJZiQkssmKkHVG9XxwZJ1xxxGRhtEgIQ2SCkmUGWVUKKNB JSG/hgpnxbkoJYpKS4NKQr/P/XWv9+vuvt/n+zyf9VXZvIseyMvDw6MjwMPD /dS8eJfS61ix1pI3iM/T8ylxmKpfuM3oGLGec+6Zsn5KOpIl95oa5ZJ0wdAH /wyeElF30FUwKiMDbRcENcWeEr1bfUniRrdJ56IK6t4ODvH25pu/W7aBMDTc d3Y1csjhv6sO9fxrJCe+LB4PvcohH883WzoEPSCLGgMexJzikLXvVYyFjVqI RuWxBZlMDumtM4uwuNRKFHIGqR/tOSQkxbV6u2wbeZclH7bfkkMyVh7Ubf/X QQ6/dE0yUeGQH+Y7JeyCesihdIvBqfFeYhffIixg1E/8/b5qxmf2EvEPbO1z n/uJa1P387PHeskL91f2lEvPCF+Zxnh/bC8JV/uZFCw7QGi8PK9uBfeSM82q 81v/vSQLpOJYH9b2kmj+ewepQa+J7sj8uowfbNLmvCx6gdF7YnTz1sFf29lE 7nP//XO578m05MJX0ZvZZOeJHBGLmfdkwYKJRSI+bCLWJn4h7PEY8RcL3xDq wCb0dQId/V4fiXxNudoibTZ5YTWpUhn7hVRGDcvEfuoh0XLvgzRHvhP1zSms RTE9RPGTbWrUkh/k3TrhlIioHtLSUHr9wbofRN5vWdpwaA+R8dk843vlBzmZ 73V1MKCHNOQNZqTvmSCd9JQxr3U95N8STuMfgZ+E1jfPQEe6hySLP5Do0J0i C4Q85u9s6Cas1k1DD32nyOd7ce9db3UT4cO8V+6kTBHz6nXGFtXdJO27je3l sSlymbL0gcqlbpLJbt6bUvqHfPEtfG+R2U3yszte2sv/JdLLNEKO7egm12Se XXosMkfEDGqTtFS7yfb0vYUbf84D+wdLzm2weELczTpzAhfyQl5R8d56wyfE bFj15A41XpBKLD+koPOE8Bt0xe1154WVJvs+T8s9ISVPlgecusoL33f0TQnN dZGXYmzVe4HzIal9o1L4wy7ikqZbrtjHB1lLapyXMbqIUcrrG4O1AnDZ2kPb PKGT9OkusOh/IgC/n0QLnDnYSfY90XrQPSYAMDGs8C+6kzRKhT95uEwQmvMU Xw5u6yTUc3OfKuIEwfk4EXrr2kk8auTUo+2EoFG8QH+JQieJfuWZK9YnDDvf C0U9v9NBZA7vVxT8KgxuU96mv251kAa1wovzBEWAdfNLlkx1B5kLGb05aS4C xqvFF4WVdpBjExHdA4Ui4Fcsmemb1kHyBNOFygIXwsfPYl1rAvD/hm0x5Kco BK1c5yog3EHKWSeZJxeKwbLErKPaCzpIbgBj1aCaGLxd9m2NG08HiTr58t0B uhg0GhWvvvyrneh9HHevrRIDnslojdyRdnLhgqTWyu2LYPmVR4+od9sJNVlv e9oucXCULh/5EN1O7vSm9xvHiEN+6bLZvIh2Yqg0QX2ZJA5vU0IDnMPaiUrt bSWdInFYcPvX7L3AdjI3Ak9bO8RB9Lzn1gGPdlJHGMC3YjEs9P2TNWDUTnR+ 75WOGV0MCskdrLnJNsIDVk7y3xdD/7rdRiPf2ggnWTj+v9nFUOxpFtHxuY3E LSv88E9aAm6fngq5OtpGutc0NSY4SMD7oRdiFZw2Ep2wcMvJaxJQ47jlbeKt NtK0+ELVhX2SMNXaGNxxoI3k+mwftU6UhCTNT1X2e9vIzhIj2dEMSYgt+nKB FdlGlpg0H9G4LAmu9o1xz3e2kRDvT56XByWhJkRu2mBjGxE9ZzJTYy0FGpZN X/6jthFv3Tb71oVLYGCvD8Neso2Iy51O0pNdAn/ar/kEireRVqHNj7LVl4Dd 9+J7SaJtxOz9H7Jp7RKY78Ip6hNoIzLF2pTpXUtgsSDvmcoZFnm29Li6bu8S mJFeW636nkW85tvzpp+RBppZwD7aPRYR+yEJvy5Kg92CdUcmG1mkeXjo4IYb 0tCWfK7rXAOLmN7d+0erXRq+R+brzK9lEen9Zd8ezEiDf7j/65krLNI3zj80 sXEp7ButPnUnn0WYA4/veGnIgJLCzcqAWBYxttlcMrZKBsIN7/539QCLSFyZ S9m/Rgag7E343D4W6TpI8cn3kIHYIYVblXtYZJ1KxdSrIzJg3vGjVG8Xi5iF pJoEDclAwmhhychmvH+PlsLvjzLQVBEbuX0Ti0yaP+ZL/iUDTJvAgcmNLFIt MtdbISoLVf0yO6T8WES7alfEF0tZ8CvdkRznxSLLftGrovJk4ZqamOmcM4tM +X89vaBUFlZf7DS664TP03Ii7nSVLJQz79077MgimWce0eqaZcFRVzRe0p5F RNaYfv47KQuxJSpZm2xYZOaorPZR92Uw9H7keJkFiwx8viUu5bcMOKEPtM+b s0idJ32qNGQZPAvRdi0wY5E9midamg8tgybeaK1zpiwy3jYTKHwNvW16wRND FhlaPFycISwH/xlTJ/t0cL37Rtzll8qB7/Vn3r9W4P6+esdTpiYHf7J8+mXR XZVf/BtXy0FM1C6lUC0WabT5u+x9mByk979rparj81XMsXbHyIH67/EPCctZ xEicd//MMTlQ/LhXiaXGIpUvBfsXX5CDgKf2j/1UWeTMHums1b1yYHv97Nht JRbhvJC1bhmSA9lXvmdl0OLWCt/dP8tBwTl534OKLJIsttw1eIE8PI0a5mco sMijKM2574vl4fqbxG8P5Vnk38CKq7GK8qB2dtc7M3R02SqRTIo8HF7mNakn xyI3RE0a5Kny8ET8j3D1Mhb5Emm2rcxNHsSuaOqYoLcCaWncJg8OjXsSnWRZ hPHc+ej7fHn4+aDyZPlSFjlJ3AwjyuUhVvDIKwd020XG65kaeahZssHwqzSL WEf4EIkuedhGcRqxRcc98xsvGJAHsJle+3sJi9Sv3VSo+V4emviG86+gDURC /q7mUYD7bklMNfTO3TsqWxYqwI6uNzdGpVikrD9sPV1WAULHropWot+siRAc VFcACzPToEi0Yume28GGChCX23YH0D7C+4N+rFWA1coNohLo0+GxSw46KcCc rofve0kWYfcdeiTgrQDvvMdK7qNF1xyNzNyqAF8ONb8rRNuXJKkq7Mb7+4Pa IXSCUEpP2UEFUN1W4r0VfX9XWrxhigLcbTZOoqFnnqbr/3daAQarzS9boM1W Z79aV6IAX4t/N+ugI4tz09hVCmDjU/NMGX1NMH+1X6MCCPbdGpJFfwwr+vS+ VQF8vaxfSKM1nl44G/FUAVw3nW9bit5kedFh9jVer076qjy64EL51LFxBbAL /HxYHf1M4EqZxF8F2FUVYm+IlgqrYhYKKEK6au8/a7Qb58YCLSlF+HoisswL nWpRW3NDWRHGpzPWhqNbztdvWbNSEeQeRD9KRWsdTmv8YaYIxkWG3yvRKZs2 LSmnKkKzpGZKB/qzlUmYn5sifHS6d/I72kVVqEVigyIsKwmak8X9ruYdVGoN VgSN8uRntmiJkep9ByMVgSqfIb8H3VfivWIsRRGO0BcMD6LNEnSPFp5WBNE/ 9v5L8fzPbuV5SS9WhBNbl1E90H7q5Wn/1StC5M+3Ns/QdxfEvot4rAj7aOc3 KGF8Kb9zJVo9ijD6JGRgG3r00u9vmWOKUDt8iVcI49PuWLuD/aQilBi+uuyH Lg8+Vzz7TxEmTcpu30Lv0FrnEbJUCQpnIyd3ybBIh6DcVQU1JdBeYrmcjdb7 ML6gV08JAhOW1VAwH35UnL69xk4JQo0vf1+I+eKRsl18wl0JepkqRbHo2u1r t5X7KYFAtnn5V/R+nXfLJPcoQST1JXsI84/nqkncWIkSLCloDR/D/N2cJtRf WKUEut66fyIwvx+FDuoz7ijBgWKXAR7M/2N6ia//YyuBsN6qUg1lFhHw3l7M 4lGGy1WtNmexfpjZc1xK+ZXhoPrZQwTrS4jZ2r9xC5XhQftLsTF0m4yEh7GM MgTbi6vbYH06+bx+wTl9ZVj3qkZBBevXPZbajf0myhC3KevNMPpbfZq/h6Uy RBgW/izRZhH62U23hdYpw7hX1nxjrI/SvkLbovyVYadj3ZUYPRYpfOnd4ZCm DCqzt86Vm2B+KFFn+bOUofbUfJU8rLdvNuvrPcpTBuNUqccpFIyvDwvS15bi erZ1R+zHen3j5w2G0R1leBb2zj12DfZDMdEX8h+U4b1kW/JSOxYZc58SGRhX hrPK02/N1mE/yBlZnTupDCcFiK8f9gc3uYaixTwqwDDedKIK+8eAZvBm/qUq 8KA6cHyfK9Z7ePDhK1UFAoar5M6tx3qacGXZVUcV+HO+rfS7D9bnllyn7W4q EPcxymLdBhbZRwu7OuqrAm470pP/+rMIr4/c7ucRKnCxJSc/eSs+f+Seqabz eL21CdNG4SxCLmoLnJ5RgZhj/ZS243j94Fa5bl5VSL6rNnHhBD6/VrCBsJAq PPjqqHUwDevJldL1cUtUobJMeWZNBp7PTaUrQXqqsEqxc+WHPIynpiXulABV 6NbXbxktx/Mcmpf/7KEqrKD4jIe0s4j5hfNVEm2q8Pj+RtbVThYR3kIeOXer gv5/n6d/PmGRq+9iv9x/qQp2znJ+6RyM1y+/ScVPVZj3yuzv50EWiZ35Mrpf Uw3eV/ccoX5nkQzZAT25E2rQny7wccsynL9kNuV9TFcDQxsdyoh8G/FZOjav 4bQanBt2cghUaiOqS35xvIvVoGrLh9u7l7eRGnGJmNP1arBw0+aiy3ptpE/A sWXxGP6/RfRUsU0bkf9Vv1HQdjnIWLGms3e1kXL2mfSfc8shwG2owf5JG7F0 4wxaLVAHs8XFz2+y20hXp5jOSRF1qDvuP6jS10YmW48+1pBRh+uTman8g23E 6l7otNcqdbizJdvrx8c2MnDZamvDFnUQy70qShdoJyKJHyiHWtXhk/nxYHXr dhJGMR8SzNQAjwzRwOv32kmh90qX/xS0oCrCy8ezp4Nk3DX43XxSG6Zlez+k fOwkJt2SaUJKOjAZ4itcofeEFGnw+13I1oU962PUxIy6Sa3WM9kIbT0oCuvb lf+im1Dez/0aqdUH+dFjD1Vie8jaPcuOPc02APrIpc4GITapd1Y//tRvFQhJ Pd4glssmuc0UrXhZQzhSFvSHKtpLKoqivGJ6DCGuYv+tpxG9JMBdpPYMxxAu eFo0h0b1Ehm+Yqm6fkPgWBo28kX3kuRtT3omBw0hVXOtl/7+XhJkvMI57KMh hP2bZ7f3UC9Z3jYEm+Ybwfx5/973nOglRT8dV6wzMYLeGWeX6yW9JMtZZVbi jBGI3bKQkeruJRwFXf6ZfCNoubTb2KWnl0h/NV30tgj/L6LIPMbuJXkZziq3 S42gxP9HxS9OLyno22vrW20EQfr22aznveRSQFdaSYsReMZW7IeRXlIfFaNo /MsI/uz7dDviZy+Ztk3SVPhjBKPTxulpv3rJ6qUZBvwzRrDFtzes7HcvuVt/ yfrZPGP4naFDnv3pJU1zPUGxosZwqVp9pd5cL+lI1qp6tNwYers3uFzm55Ch gqfEk2EM16SLbD9Jc8i+lQ0NsUxjMGuQl5tZyiHid4tMStcbQ1XRhi4RWQ6x HgrWmdhoDJzFuV2achxSqjItnbHTGA4vNTenK3FIyCXF8Y5EY9jSH9gTrskh 36uCC6h1xpDWwlnYZ8ohKeC8dOcdYzA/ET7YROEQ1R6DzKy7xhDtWZ5+zYxD PH78OfbmEf4/quzcEQsOqTVOjYzvMYZHv/gDFdZyyIH6asfGj8aQJX6qVsGW Q+Y//DNlpGACFsfFmh3pHCI1q1jrrGwCNkYnCsQZHKJBoUYGqpmAgo1K0FO0 /eWTX05rm0BA8qFeX08OOZml9uaPiQkciHZX2ODNIbJbae33XPD/9OFzK/w5 RH/BhUKneBP4buUwxbONQ4A0+2w9agJDZluLL6Lp+z8tPZhkAkqhY3YO2zkk 6otJ5rVUExjMt4lP28EhDU/bkhafQR+5fUcojENsL03u6r9uAnff+2b0RHCI 7zp76y0jJqB6YSbvfAyH/Dr3usLunQkE79pnJB/LIelTBxav+ID3kxz8fhrd XHF1+Nu4CUg8sHlx/CCHGC6UPBQ3bQJ5wf8FBR7iEOGewTtnFpuCl4BK1sQR DpbTvWoHpUzhWRrz2KajuP4j4icClpqCxCndki50tJGNj6aCKUQE1NAvJXDI 65zyqRotU+iLEctzSuKQOp9Ik25iCktEx3+EHucQxs2FhTetTUGamR/XhR4X ucSXa2sKN4SfmeilcMjy/571+jmZgqf0rOYndLrS2ohPTFMoH3+r4pvKIcGj glX8YaawyOZFieQpDuFdUyz9MdwUdgk58AejC3Is4zojTWFgqVVePZptF0bL 3o/rDeh22pDOIWsrej+pJJoClRo7lZvBIdJhRVprCkzh0PjCkrEsDhFMWsy7 8Rx+/zRRwCSbQ6YLE17EF+P1p9tj4tFDndtPPio3hfXv5XOkcjikfCVl0umW Kbhob8xedZpDztpWdobWmYLlrifx0eg0P4WyU3dMQSeo9VADOiJtvk/vA1No cL9ZS3I5xPLLk3s+XabwkF9IguRxiN4CmzOxPabQ4eRTEItWVqiNKOKYwu2a Cct6NB+tQP3NgClseraxUf8Mh3RdCTmx7b0pmKi0tC8+yyEBO+d57eOhgNVh j4jKfIyvhCiDs/MpUPq88sBzNLXgvVAjPwXM778sFCjgEO2OzsZ/CymgI0I1 3YT+oXNW9ZgsBRT+M68XKuSQURvRmXJ5CkSTxOJV6D7f+KdtShToTjxV4Y2+ cyIoWUyDAkFyDIlSdMInw/EcQwoMvW70NijC+Jh/qeW2CQWOZiy3cEeHyMle eG5GgQB+w9W70TSnfwwFQoGElzdKrqFhS8RKYk0Bg+vDQh1ow5i3/JtsKdC1 SjtzDC19ub2+1IkCffcOCSudw/N6uDar2YUC/rX2f83Qfweu7xxzpwCfTvEi OnpYOE9J15sCnvMOlh5GV2zfmnhzKwVeVUkc70Mvv+AkdD6YApdEHTePoc/3 G6albqfAzgsTB/+g86jzcgLDKXA94slB2fNYH2LGZOiRFBB4cnazFjr9+pOC tdEU+F0kfMIUnaxYVLo0lgIbacLlbmg+z0QtvkMU2HTeqHADOv7EzivfDlPA NNGkPxg984BhMJiA5zG7kRmB3jtlUcM6RgFv5jy5WPQPPVWz2hQK1DwPVk9E hwUKNRanUYD3xes9aeiP+d/IqXQK7Kv7b2EOOojd/zAmC/dnwOFjPvqN4L11 Iacp4HCLI1aM9ieX2j3O4O8fXzlQhh7Yk+ZqVUCBkCxlvSto5pWo3pXn8Dyu x2lXo9lvfL2WFVMgtXFJ6E20i6zNC/6LFEjzNf5zC93mumLjRBkFhol21220 bdLikaFKCsiq23yuQ99vnArquIrn0dPNqEevnhj6WFdNgXxJlQVc12m3hF28 SQGeliM83N8bB1z7kVGL8faEaleLrj6dEx1XTwF3udo+7v11O2OntzdS4Fex +g3u+srnb43zuofxGPLmGXf9yy2ceKlNFHDeb+lUjj4fbphk8JgCbR8PCZWg 5ctkhRVaKZAzOCdZiM4b5Dkp1E6BkRiBHafRklJji391UqD1z5jYKfRJxyc5 b7oxP3J+/EtCCx+ulX3SS4FHOZFr49C84wkq5c8pQKRlL25Hxy3feTH7Jd6f +bJzI3rah6F9eIgCPTEeth7c82xRWeXzlgJjmy6oWHLPc07wlt0YBXr1lxxb yT1P429mRp8owJ6NWa2Efn3hLiz8ToGrCpvyeNAbnl18NDVBAVFWHPmG8flM LM3+7S8KRGl2UYbQ3TG+bndnKPBtqZXCHbTzDWtO5T8K3HThEylHt45pe+fy msHLG2ZO2ej7nlMbwwXNwDqfPNqOXp06NLJBxAweraiZ9UDXNTUHO4iZgVX2 UMpadJV+zi5VKTNQPFp4YRG6SMjwEEfJDCKvHGdVYH5mflhve0PVDNQvfDE6 hT7GOiySrm4Gl5/q/I1Ehx/vyXXSMYPTH4IvWKJthHZXN5magdoPU8+HWD/M PuRFnzc3gw2vH10rQeuy7q+OW20Gz+pOBR9FSx8XZ5lbm0HoQrEpQI8JVr+u pplBf/jCwhqsX4Nj/WUn3czAJmd46hSa3fovdCfDDD5SmbXb0XeSXac115vB 1hXrvRTRJwW/Spzbiv6tahGH9dFIUI+aFmMGX3EeUMZ6qjXmKbwjzgziHswL +IH1Vr71YLf9YdyvmMCAh2j+5M4NfMfMYCbwVs4W9DOB0D0xmWagZSP4ogDr dZzAlUvbKswgeO8KqQms/638K4Ts+s2AveWzvwH2G6lLOlabB8xA9GBs14dM rN+2K/fHDZrByrqb2cXoqaMGH2pHzGCbzCUNCbTWPApL8xuub+Lwjg/Yz5L/ 2hwXEjKHWe2w7n0ncT755ifUaWEO2Y6aDxWwv2af2mj1YY05vFaWYDUlYz3U 27R/gZU5nJ5TNAxG7wvd+mHNOnOoyNTTv3YM8+njdtY1hjlMjUkNG2P/Fny7 93j6TnOw8smMUsd+z3qeIeRRhNfjM9PgzhNFuQKfLS6YQ+E/uxv66CjPg10q peaws+rS/VacR5R7QrK+VpiD9+38wD8HsB+0EoUTt8zBkc/0ucd+nN9ufzFo 6jAHlXkLrk3u4ZCYbAdvg7/mwH/1tO0AzjsrXeeVLfS2AL8RjfcuGznEp8Pt 7ypfC5j+MhF1H+erJIfzrl7+FmCb1p20Cj1sQ6YubLUAxYV0Mwk/fH6zgw6U 3RZQu7JisNMH663Kn0+bUizA18bhhB6TQ9onvxncbrSAvDMP1+Q5c8i2s8MN m1Qs4fhGWwk1nCcFklt2bBq0hNsb32/4Kor1svfZles5q2FSKbn96HAvSfi5 fmuR3xr47K/QLnCll2TUv6kzkVkL33refuW+D0QzXhzd9mYtHLEd61ln1UtO Oc29+lJOINP2k89N4V6yIDJ7h9gqALF7j7ZNPWMT/cuvVaNyAPh4swjlIpuk 1NzQ0p8AnD88/xXvZZN/n/OiJVytwFXhvaOUC5sEiN/+9/CGFYysH+vhUWeT H3zr+9sWWcPuq5Wcbl42CR81/HguyhqKjAxNc970kMrzRUM60dYwtSX0uzL6 7Qbhp7f3WsNvWbfZK697iM/T1/eeHLCGgjFjgebhHmLTnJ7zL94ait+eGf37 qodIl4/DxjRrYOc+6Ip+0UMad1TmKl6yhhPZo7kVnB4iOKFiW9hvDeErc2fm t/aQY3dbTok9t4YAh8LjlS09hD8ldODQgDVcbBPwd0fzqdTv2jxoDdcsZQbP NfeQea5uZzVHrKEl4ogxPO4h05VxX6+PW8ONiWP2J5t6yJfNL840L7CBManP sxv/6yE79Q6PUgRsQDRqdO8i9Oc/GvoVgjbQ/c/Y/F5jD/mYHvHohAh+nzqQ oYR+d1foq9tiG4jVkcsfaeghw8vMqC/kbSDyv8yF++t6CJudPf7VyAYeqB/b +vxmD5k9qBkRb4L3+z7YeAKtpd3wU5xiA0bm30LWouMODc2ssrABnY86jaU3 eoi27gqRKLAB3wlw2XO9h8Qn3tOccrYBi8bxZRpVPWSl2ccAniAbeHqVT7O5 sod4j8SOpgfbQHJO+Ycj6CMnF4WobLMB/c/6/wj62ajxLuudNjBj3qV6p6KH JGQcOpgQYQMlYyedbpX3kIGPUmcFD9nAdTt3hfpLPSS5kPSK59nAzdEzaXPF PWTKa+GVpDM2EEZRDmKhgyWeJ8yctYHqjo+J2Wi7YxGmY4X4/L4a+TroBbsv nrlXYgML01bI+V3A9VBFAsKqbGD+Y/5tned6SOynvs/tzTbwR9Pqz5sC3O+L JY+tWm2ggt5eVov2DQgvus2ygVvnQgpS0BZPhdxKOmzg/YNaLyP0n7urbx5g 2wDvurwlyfk9JDqzeL/2KxtwSZ1/ae3ZHrLLPIz/2E8b+Oli/nAot4ek9GrK yP+2gSrTbM169KXQ19rXp2xg1UDoy0z0ywsetBd/bUDs0nrKOrSjsGW2Pi8V Bl6aV9883UOWvxBQfSZGhYxBz3P5OT2E7HlgFCpOhc0i1+cfQPssirHllaDC j9ext73RGTbjIbpLqJBoqia6FD13mVMVL0cF8eO9YbnZeB6xF9Zoa1Ghr2vR 7KWsHjIh7et6V5sKgWKn3VLQYtelNjF0qHC+7MiPULTt22MJB/WoEONroWKK vkELa+8xpsLk7SeabZk9JE3Rcv0BKyrwRvxq5kGX101uX2RDhe0Fn3+NZfSQ R/RrsaVUKugY/4zsQU8nqZzvWkcFb86YRwk65KvAe1UXKjRYCVY7oq3vc6La fahArp+rK0vvIcuqrmmu30CFbv92gRz0j8LkgXd+VEji/D13BH0hZjXwbqJC sLLcZX80D6VUxDyYCql1aiuWoZ+px91tDqHChLzdPSF0lZT3bo/tVFA+0Fnw 51QP8f8h0r8rlAotLncMBtD/XY0svhRJBedfo/VF6OwCmqfxHiqYXOVJT0fv PKEp2BRNhVcvX189gpbf9iJ0cD8V7s+W3g9GH1huYy4VTwXX1ZPEBE2XVPh8 4TAV7sK0uzZ6Be/vIv2jVBjPkLmsgH4+VMnnlESFO2JgKIA2y5foPpyK99ta njF4soeIp3w+sugkFUTrXj3vRY/tazYpPEUFdsDukDZ0LvNAfl0mFew7aN51 6DBbDxe7bCqknQupr0LbGevN4+RQ4c3Y4YAy9K/Fb4K+5lFBaCE9PhfdxdMo e/AsFab/PZ86hb70NadDuIAKxkW8t5PRnp0OhhrnqNC67Nn8GLRuo9rbm+ep cEOemRmF5rs8m2tVjOcvvjQoDF2TfH12w0UqPFfkG9yMTt17ovrjJSpQg+fF +6G3BgVu2VdOhdHpkWBv9GpPIs1fifEZmZ3NQEtSZVlZl6mwbvvfBa7oj4YT MSpXqaAXO6/REd2k0qlXdQ3zwfZUrR064l98dtt1KlzaO7qPoB3HfdZ538T4 VToIq9Eqg8bTb2uoUDpLnM3RU+1iVyNrqbCiZkmBKbq7YWzjvDoqdL17p2+M Lq9okjhVTwVbiwIBQ3R8XsFj+TtU2OahqGaA9j4Wva+ykQr6Lz2P6KH1o910 zO5S4cp+HfWVaOeorUaX7+F+qLrI66JDIvZZKj6gQqfQchcddEJ4qk1GExUW krMNK9Dnw8478T2iQk534SauG3fWMPY+poJkl5wN18+3t/p+bKaCgP28jVz/ Cnm5xa+VCk2ulre4lgj+tqObRYWw37W23OvrBfJF2bRTgZ++SZx7f6ctMrG1 HVTwiNRcwl1fyCbdBO0uKig6/WJw15+wEVILnlCh//LtDn3uevw8shf1UKHE 2/PQKvR/viEFR9gYj+31O4zQA+tjS3/24vrjnmSYcNfjlX4l5CkVDn2O/07h rodZWvOijwo3M+tSLLj741HX6PKMChe+BPit4e4PvePRg+dUWBSzdRtw1+M2 3GH8Ap+//uo1G+56XCY5ZS+pcEZLc+U69AVnwcFlrzCf7O+Mcs9/wN7gC89r KlwtGpyjc+9vR/0Z+YYK957DJi9u/Nh6z74bocKGrpAZX+79rOJFO99R4cHP 6peB6Lvm3SvPfKZCymirdSz3epRRk4XjVDiZNhVyBP3bZGrNoa9UuK5p1cKN fwNDZZfAH1T4tL5F5zS6eEV42Kop3E8R18yb3OtpJUSX/sH9TvsSfQf9QiMv bulfKnwI+ZP5EC2ldv/k7CzuX8T83Rx0kpx4FWu+LfizkpumuNeTXX579QJb eLLEIoAX8//eUrN7Vfy2UON51Xghekoy4EmOkC0kCCccVkZvX1j9ddMiW7j4 6Wy5E5o262owvcwWdPhqZa+gpV+47U6Vt4Vzvr+NGtCv6txvKCraQvBdnrRW dFgUw9hGxRYW+81Nv0Wf/MQ0S9W0hUMVmx6qYX3sfu4Hisa28Cc+/FMlOu+2 /+FqE1ugSHuPNqIDcjY2WVNs4YOhzrIn6G9um6jBFrYwsVR+9SR6cetW+2qw hUSv155WWM/ptTvcrGm20PWoqfkdeln2zgyOiy1UqnrFz6Df7A5lB7nZwvmm 31ES2D8iVu7yOMGwBeaSd2IEnVUa4c1ZbwvDTqt489GczP0BQUG28KCf2eGH /chr17HwlEO2cCaoVV4M+93WDU38vIdtYeW2rsXa6HCH2YL9R2zhx4cZUyo6 RS2SFZJoC63WOxbHoO/2+6uuO2ELavtq5n9Ca4ApZ36uLXCeGbX0Yv+dFH9L OXgN1/exX7I1D+e7OaWuySpbUKUkvRhDi33y2brzui28eCHfLXQG56vH3em+ NXh+9vnEGb1hf+MH8wY8v6MLTHrRD19n5f96bAuB8f2bP+C8kHnD+t+uQVtI TWWJmxbi7ycLTYdf2cJI1Kojvmh10z+hbsP4/e9TcofRdfVVLw1GbKE4ru1x B3rwvnzD9zFbqE7e9jOwCO//5FdU5KQtGKz6VnkO553/PlV+jBaxg538xo36 OB+NLZfsO2huBzea3Qcay3qIn52vnailHThf99nzFc0OLqktWG0HWVNPKKo4 nzVWGuXeIXbQ9XO/YTI63cDD+4+tHRDV5X89cZ4zW50zEEW3gw95OY1TOO8l M5YO7dhhB/WWMtI+13CePCI3tr7QDloW8XUk3OohBdVl9iem7YARfvSR+qMe 8pe1YzRl4zroPOv8dOfTHhIlYdt6o2kdvOzLlfd830MUdYun9ZXsIXLsqPee KewvBpSQmKP2OH/ILRUXYZMYfrfl8q/twZVupLFMnk38ROK03q52gIvnKWWG umyy4u9IcOx5B6h042uqXs0m2o2dP0NmHWDMxHvJN0c2kQr5eldtsyMck/63 dtybTQzeZvcZ3XeEy82Xwg9uZZPXTyTrSh84QkfPYEMZOrMh88ySh44Qp6/5 pQc9eSp9w+/HjlCfOyikEcgmty1S3zS0O8IaMbpaJ3pt+tFxq35HuCCpwpYO ZhMnywh+t3FH2HzAhydvG5sEZbia7pR3gtBIvhm3MDZp8r3jNqPgBBqpZav3 oZU0NHekKjmB8XO9gHPoZw1z566oOsG2Oy9dv6AdR68KfdFygk+u3j3HdrGJ HmXhYKiJE/B5ja6/Hc4mv1+2Ht3l4gRZt61380SySbKWdU9EvBPkv0hJscD3 MW3eMRg77AT8BwOZ3ui2F2nVfkedYO/SfMFotOip56fsk5yg7ZOU8nV05s9w F8VUJzjJZySnsY9NCpvOtbNynWDz8aXWIvvZ5MaG2cfKVU7Q4Fvr03SATRim JSanq52gat+nHy/Rk4scLorccALLjtO7f6MpD7MTftU4QcVaT1XdGDZp1Na1 6WhwAsqOHPdsdPMvn/t7m53gGz91bGMsm7xIr2voGnQCh8SQfyMH2UTL0WnL liF8vpfPN8yio+a/EpkadoL/pA8VSMexiVj0fD+VUSfQqoxsskdb+7r8i/zo BG8idlZcRleqj9rI/naCW2v73u04xCYHGhZ1bhF3Bqm6APO+eDZpiSzeM7XY GXLMd49+QkutNFFMk3SGW1d0IuYdZpNr53x21Uo7A6FcNdFFv0m4uFhIwRmO Zzr6xaMdXS2Z17SdoSdD11DtCJssGw0amrJ2hugAbTHGUTZZ/kNWO4nqDIc9 6U1b0St5OiMk7Zzhwdwdn2g0yBvx6zk4Q6V5kNkZdKDHP90trs7A86WsbBBd /Sj3QKevMxRWh/psSmCTBrbjIx8/Z4hQkfDcjX44PCs65u8MWcmOxofRfTNb LvBudobhRannz6P/Ghu0UkKcQfD9iMErtN3F1iXFUc6gtinaxCORTdxuxmzU j3aGsIvtMZvR6x/oVTTudYbtToJl4eidg9mr+w84w8sC5yup6Iwlm7YsPOwM CYPpEQ/RLxP/VEenOUPdc54JnSQ2iQxa4ex0yRlO3xv5PoZuOrr0039lzlCh 9FJ9Ai1+gS/FoMIZbE2/Wc+ir7x41bLkijOIWh02W3yMTUbdsmyGrztD8IdX i83QTMsZiz3/OcPTbocjh9Gl3h+ev7/rDKoXjzumoH/s6dvnc98ZeDVWz2Si T1ZX15KHzgBfxeRL0S3qgYbCLGf49GO+y2O0mXiX9jmOMyxY//bQ/GQ2SVp5 p3VxnzMYqbx8LYzmOJYHJ/Q7wyKHcysl0LsTj1zcNuAMSodKjyijK6dNVYyH naFqzl9tNVru7TkZ1idnOHvEzHYXejtv2m3LL87w6PW03R50ndIB5rVxZ5jX 8c0wBu3h45Gd9R3PXzyDlYROfSIo7v/bGRJFvH8UoOfqdwtM8NJgqPIi5TF6 qtZpKIGPBtcMZGza0D9uqt+W5qfBhZitJk/Q764+D7IQooGa2+WuZ+jOC1bN hxfR4EbSM85HdHORXJHkYhpcbvm39Cv6fv7PPRclaGBdbW09ga7JqVBnLaHB qZ2rnf+iC44vThSXp8FS+3emwsfZ5HTSpw3FCjTYGdNzUxSdfvSxsbESDV6s XCazGH304P5RL1UaqP4YPr0UHXuA0fhBjQa728OvL0NH712ZHaNOA6F/h24q oLfvfm1zTosG+05bhamht4bdkVu1Aq9/gl9TA+2/I2eiSYcGgzO7WrTQ9ECH knd6NFDY73lvJdp5s1rMPgMa2EiPShug7TbO0oUNaZDjsZppiDZff51XzwR/ /yIs1RRtyDwxcM+UBm9rfY+aoXUZgTfczWgw40PZbIHWcCMpI+Y0OLFYRHs1 Wpkmu3mPJQ1Glw/3r0Evc5wwF1hDg7ihe2EELbWuc/GZtTT4feLmF0ALWh1+ 0GhFg8a3f0ts0Lxrfc+42NBgvvaWF1T0jIXJ7mEqDZRS5v+1Rf+iLHKIsKPB do93vOvQX40/KPPZ0yCkV2qC67FVD6dyHGjwgJ7Xbo9+o1fYrelEAyvFA6kO 6Jc6e8vrnXH/Dz80cUT3abnHO7nQoIJ1sIXrbnUd70FXGry3umHlhG5TXWCw yx3Xa7q9lOtHSkMC8xg02PLz2leu78rXD2V60KCPdVzNGV0nm3V7OZMGKvP4 gOsb0qGnar1oYDGmYcv1Fcl1wfbrabC6468h1xfFVciADw0Cp08IcV0k+ld6 5wYayN8fbuVeP0/46fisH+7n9vm7uc4UqGo+tZEGofaz87hO5TtepLKJBomX +mO460+atyX65mbcr978V9znjZ9b7WK7lQYe8owVXB/4K63RH0iDgG7+jdz9 iZr6NhsSjPmw5n4sd/9u8C3QGQ7B83JtzbZDfxeX9fbaToPis8/yuPtvoLAy sWsHDSxvTCVzzydM2+qGbSgNMrQNArnnd9XEc6gxjAZ11YkrrdGfrbYtNA6n wbylPG+4573NJyNINZIGt/cmLFqLLg+6mHUmigbkW1EyN37eRdTfF4+mwR7r f1+48bX1xOtl//ZhvO6+cZDCje/GVU9exNHgwCfWdX10QavtDD2eBt1q02nc +H7BWa/ddpgG2kY3mDpo7y+Hj9Yl0CCif+AqNz8YimxKTgrmJ/yMlOfu54p3 WxemYr6ZO92S5Z6/6XTG0TQanBTdMSKNdnFV/bw7nQYdDtr83Hy1j48473Ka BosNjwXxcfc7NanzcS4NYpUlF81DP847O736DA0qJypLZ7EeWF9v8tApoIGu q1LuL/SaNxJCgsU06FzEe/Y9OnZcw/RQCQ1avDmXR9AN0xZbfpXSoOj0ZOUQ 2kxyy3+jZTSomSa7+9GG1Ju7H1ylge+1D4rN6HC3liKzKhrsei9R8ABdteFF e1U1DTbrdPD/h9bdM1+j6CYNzgwvungTrXmJMXCgngbu/g8XnEfLC05aGz+m gfeeOX9uvV26TWtxaTMNur7nPeXWY4m2DUOSrTR4teOvxXa0YOrjmIk2GvwJ Nmf7J3PnldyaG90YL+PxRuvQHUstNFa9pAHP2P5WKXTLvrDJ84M0sF8ZpS+G bnpe3CQ+hPXmVkOiALe+54ts/PaaBgYlNJ5pbn9SGsytek+D6cMReq/QBzXj hfQmcL8W/NxTgt6XXNNfOEkD2d9ZT/PRUR/GLor+ogHj6Hz1bPT2y+7WX6Zo 8DdhT1YCt//pq8VcmaNB0IvUqq3HuPNf8+cVwi5QGNf8SQX9ym5ht6aKC/T7 6V1Lx36aeGxlf62qC9Tv+WSXhNZtdXllu9wF/FOedcag9ztkfN6i6QLWpWGX gtBSztJC51e6wKvou0ct0Y7uytYyFi6gUn9i6jX291u+xjWCDBeQOPJ8qSp6 Q4HnnVwPF6D2jJ5YguYdjG7SYLrARYn4r4LcecK/vpu63gVydmYmfsV542PA 2i/xG10g2s9x/A5aOche488OF7gQceeOOzo1fEPehwQXqKzenLMb5519929P +iW5wHhevRB3XtoiLunOPuYCHj6/wploi2qW0J0UF3g/YytjiR77ahqTmu4C J3vWtM9HU3ct9tcvcAFbr/S2TJzHZkKb1fbcdIHZBZlhZTiv7dhhUMXzxgV+ Bao7XsV50NR99bx3dq4QtjnH6inOq3JBfvkTFa7gM9G/8cAeNpHVmGetM98N Vnv73JDBefvsya+9NiZu8O/jfIc5nO9vDimJCmx1g+xDZ5X18H1hfavP9lcZ boADi9NBfzbZc2nV24KHbuBqNTcTju8fK0IdBfh/uIFo/bZ1fAw28dT+Z8dc 7g4xk+nUfTS8X9fPle4Md3i0kV1+1R7jQfi3WcBhd9j1+npzEJVNVq3O3sS8 6Q41btdm1wGup653VLzGHW4uO3LNHM1nIhnSjh7p9g/WQfetzAyDWnfYu9r8 uxg6Vik9ZkW9OxRUFgb2ETZp5U3NmbvrDstuHmYHoQNYR1mX2tyhdLSgJW0t 9ntm5Krfr90h1DUzfBLfr55Ya7s/eOMOv0fua71Hi+kPhZ8YcYeEjfUfn6PT BJyqld66g8c+4dR76JQ6VX37MXcQXLGWegKduIyte2Ycf+8XeWI5+sArAy3L v+5Q+YGx398S59+gccVDUnT4WfZp8qs5xtdB41O2S+jAFr3HfIs+n3Xgn4g0 HQaIZtMA+uV9/uG8pWjPuluP0XQ5pQs3ltGB5vVuUQF6bber2jtlOuwQE0l3 REtbXNekraSDtY3PnWtmOP+4/c6V1KODWaKq60W0e/AawQG0t9juz/no1GzW WJABHVQKi2yOo3m/vq6IN6IDD9HZuhU9XiKhW2NOB7tVx0Ll0S2iUQZydnSY OahfmEVhE35dLycO11P/vpxA2zlaBKWto4NFm9C6BHRzEk/BP3s6GBxvWbyH 63+pAqNOdOhc+UrIi+vvF19dcafD6APRBHn0o6f9qWv96DCiu7zwqime92RD 2W90O23V5CU0VaKoqdqfDt/4tjDOox+5bJ1SDaCDb5f+iiyuW75tEdhCB8of V/P96If1QpbdIXRgSNe8tEM3FVp+2BRFhzPeXgZjJvg+qpNzfsUeOrzPMRZ/ gx6vH/eaQNd6xfx5gZbtu9CcsJcOQZ1k7Ak6XEywtOwAHU5ZHTStQyse4vh/ iafDs4D07BS0saiedO1hOpyo9xNORDvmH+uMO0KHacm444fQe25brBZPoMMy u+qSKHTH1/OyRsfosGaidN1G9IGAUM6+NDqcVFJ1NkWnjzefsDpJhxhrC+Yq 9KVYZRvhU3R425q0TRfdk9d7PT+dDl7MW5dV0Vo95qfuZuHzPDEsWoTus+J3 5DtLh+d6vBafjNnESO3cvVOX6OCQcIJUoD/X5ag4ldHB6ciaqxfRpS6pR/nL 6WB45Z5qMVrqwP51ByvoIP9KVz0fPdnNeLL9Ch08jPccS0PXxgkO2d6gQ1vi 4vuR6DCpfzDvJh34RoYrwtEalT+LG9G5/ZvyQ9Gnn74JMrpFB6k34TnB6L26 /40r12E8zKS99UWbDeye+/sfHaheMpO26G+7QgJu36XDvHdy3jbo8gUbmyLu 0UE55sZDQMusck76cJ8OzVIZ1y3Rf45piPU/pIN+6qv3q9ANJi8UbrAwntrE /lNCR7T3HApto4Noh98ZBfSKTa2vtdrp8CFR5aAcOj/11sVzHXR4bTXnsxQd O3JqZdoTOmhd7dq1CL0mg7om5Ckdasaf/+VBe7i3f1Xqo8OhpW3Mf0ZYzxbT i/vRlOSmuln06YyNAuue0aFu5GHGNPpbxoEe9Rd0YE105k6i+enzEgbRlR2P V0yg5SWSTXNe0mGT4a1H39EOmTn5fK/owL8uQvQrujizOnBkmA6XBHV+fEDX 0Sky+a/pUHGntHEM/UTibhv9DR1MrRacfI+eyWzXbxrB+AuKsH2L9sx69+f8 Ozpszmrif43eyQi94v2eDk1uZoLD6COSk/7iY3RQ0kwQH0Jfy5r36NAHPI+m HJNBtGC2/En/z3QQ1AnqeY5W9CgB6S+4n9p0Ia5NpFZMdKKtjs23f4benE3x XvOVDlGXrz3vQ+/zuCv8Ez2rWqrL9Ukp2/+ufKNDyjZm0lP0nWy6qvwPOrzj G6Nx0GyP55xetFdl051e9JhUwLETE3RYfN/NgGupnNDP05NYHwYPrmSjV3hO Ft34SYejpjK1PWirJTHu23/R4e/5DbZch+Uk1z7/TYf/nAf2dqMTPBdty5jC /HglJsd1/pLTcg5/sD4uH330BH3jqXwXzzQdrjz22sN1a05JfB2auiNYl+tX niuMwv9iPflP/GMXenLJ9beaM3RYHuh+jWvhPkreENpfWHM/1yqn7zrmzmK+ eJ5y5NqMaTvrMof5/PWYKtcu0h1V/P/oYHRYbB7XW/vom++irW4ov+tEHzj9 XCqahwFZOo09XKczA1pWzmPA7ZxXD7kuk36//y167ZnERq7v9oXqFvIyoO7V tTtcc05PvvKYz4A7Yt4PuL7f/H2lPB8Dum/1dnF95dd47Ah6xPfbCNd5Gp/b KxcwIGT+ZR7uehKZH5ZF8DPg6TUeda4jkt5tMxdgwKWAcTeu/WtH6ngEGeAt tzuBa8d3wwKt6F2vE+9xbSr9inlKiAGht7R5ufunavfiIlOYAcNn1jtzLRb9 bFJBhAEeGRJFXE9ffGrzFr2+yP031++esjOvLGRAwkNJb+55sRd0v44UZUDY fOZ9ru+adBpYijHgZsASA+555+a0dLEWMaD34D91bnwkPH6kkCHOgD/Wy69w Hf7zwU7vxQwQM2gw58aTvWej8HsJBqgOr9zBjT/jxPr11yQZcJiffxE3PpVv 1ZbvkWLAlgM2DVxPSV2345NmQLXda41+9Cj1Wk47WkvBcozr7qjLo5lLGWC6 5ks1Nx8qOBePqMgywJ9J8x5A+2SfvbtWngEuvRfmuPll9yhXlF+BAd9fbp5+ hTaczN7QiebV3jzLzUcRj1PTvkoM0EsUk32DbpRMMN2viuulPLz0Dl1uczgR 1BjweI3cS27+Z0fGcQSWMyAzPleGWy9Ce/dFnFZnwKPbXy994uZvVui1m1oM WPj8oQy33gg/3D57QJsBW6++SfqB/vUj2Nl6BQP21InMcOvTE/rmj906DLAL 3/X3FzpewktjXI8B/ExVF269e50BRVomDIg/5AciWB/DWQO5b9AbS/bMLkTP 8ezJKDBlwMTrw/fF0PLhFQniZgxw5w31lkAzXSR2TFkwgFNAnsii24RHKa3A gGXeAX3aaG/ruFVHrBgQpb/7uw76/X4ZndXWuP+3HCT00HwfnBWrbTDeT9kF GqJJyy2+PDsGvL6v7MbtDzVHj/UEO2N8eb42dUFb31FpV6ExILVB7qobuufH nUcv0ND7TYuBHt/07barK34/vHGVN1oLI5FCZ4DSLd7EzejCmRU7BLwZQDv/ 1ngfOmlPF1/ZFszH2MiSMvRH+aGz4VsZcHrAUeQy2vXRVwOLQAbcj3fef43b vyQX+3UGMWDntXvBt9CV1YxbE9sYUNs2k/YQ3fnpWSCEM8D104mZYW4/3jzS /DyWAUsCOtcpY3/fJzS5oeQgA5QFr4UuRw9W803sjGOAOlid0eLOC//UlXji GcCoiZzHnR8ohSF7NY4ywHpD2RJrtM+zL5qRxxnAFH7jEIi+4DKVvPA0A052 BTZXobcqn9nFRvstqUyoQWv8MGfm5TJggcuvdfXoKzkxasvPMEB3IHewCV37 cu4/ywIGyNjkUfvQ7dsXTGwvZsCTRM+5WfTPJAk/1jWsH7F/+d1xHnO4p7sq qQXzWTH1PB/OfykyJfGVPxlQT+N4xuG8aRV868stTQ+IOFEv4WSB9a5IiHcn 0wOeTkWvkcf52rP9j5HQcQ94KMoo0cV5vuzU5PGGBg+ofxbUuRbfBzJXrzom /cED+pxyLupas8nEK6Hi9XKeILOoebsZvm982bZ86zpHT5CjxN4QtcP31VQH R4d9nqBGXyJ3fx2b7C4VdjGs9IQol4hvkQ7Yry+K/nn8zBOCDnxmjDqyyeL8 Kw9AhAku3hsO2Tpj/bDaOMu/kAnzHNSSHNFx7xebd6KTT/Udd0V/NNpbvV6M Cbv7/x1bj37UYXUuYjETbLbSNoai9871xZYuZULinMf+bPTgpnlmgsuZEH1m mdcwukKLee3JaibkD64oCMP3qSN9F7OT1zDhX95segTaJ+HnAau1TLj9Q/ho NHrhcPa6m4QJfP0c/zh0eG7v8GlrJmxpVP6Zhjbld5f0t2eC8OPIgivophGn fZ8ZTEjTHeS8Rw8UWVkL7WBC5pu0UU8XNkluFHjcg54SNgtdj6YMdK47u5MJ H8byfmxAZy/xoemEMeGc2KGJLWjX1Ahv2m4mjM4b6tyNfrS/JCxjLxN802ZH U9HXPBbkyyYwwX6vSeF99IaIdoU36P86nzc+RIukZ5yvTGSC3HLK82Z0SLvC JctjTPgtqyDYiVazNr3ul8IEK/G8tc/RefrBLRfSmbD/1Dax7+jDwqwJ7UIm xBdftFR0xX6hr6vyFq2xs+aRMlrN85TL+SImsLd/dVRDPz7nWSF9ngljUp9c tNBCJm/855cwQTuWx8QQnbHxL+tlORPq817tt0VfqFl5/lQNE1R0YGwb+sfz 9E7HW0zYB95Ld6Jt/k1ML6hlgvmfUpsw9FuHBs/Y20wo9hvMikBrD9mJbGtg QvdYt0QM+rpQQLT1fSa01KqeOIF+4J/p/LMdz1MhK6QSHX4tse1KBxOoaiyT K2jluX32WzuZoFi5gecaOq5wI7W3iwknPxWmXUdbvNRdfb2HCboLc5Lr0DXr W3RC+5nwxbKGpxld7jEj/PYNPo965cwrtFfp1+SCESa4Jm6KHkbzT77h9xhl wq63R7+8RgdmsXgfvmUCZ5EIZxStyj49fX6MCX4P9I98ROe7rvq4YZwJXp70 LT/RJx2DWJw/TDijNrdayI1NJIW7R/KnmZAtYhwnjM5jmc9t/suErJKoRhF0 sb2o0fcZJlzuljEQQ9fa1RSI8njBxNl5kxLoIWvecDt+L/jYNTUuh97KuzNF VMALYuNXzVNAf3zwtJSDLjwdL66InoSK55uFvODB4FYNZbQgcbM5tNALFD18 9JejDSyLpOsk8Pq/C2p10LemBVYdkvSCTb+yz+qiLRp2O9lJeUEttTpmJZpq bhvPWeIFEdoeJvpob8rnD99kvEA4LiTJED34y5OvTha/D8pkGKE3195TPLTM CzJc3ykYo3eaZDFE5b0gJHZRpQk63sjiP20lL7h3Oe68GXrBREn/N7TyAnEv c3TKDdEft5W9QFucLWyBzl71WsNOFX+f9WmbJbpcPzl9s7oX5DSe4F+L7tHp 25Kv4wUik5YN1uipHy+1PHW94Nt3KUsbtHLDyBexlV5gsv5YPddh9t/3HtHz gjI5yyoqemHgwtRtq7zgafT3g3ZoY11JdzVDL1jfXP6Ja98JWelB9KvxOeY6 dOVhzfNuxl7QdCRFwx5tX2RdQ6F4wY/GVRUO6PBAh/3f0Xtf/JjviM7VdVt7 2cwLbll7b+D6XYNfq6KFF6wrkeB3Qose2Zr2DJ0yFeLFtbHDDnqmpReEugRd 4vpo/76XC9bg/o17r3Hm3r/o0IV76IB690Su2YFJQfvXeoHFm19tXCtPZn37 TLzgiZ+DKw39f8d2Go9VFwQAPGu7JCVJ0U5IiBIaVEKliIfn4lmQVq9Eyb4l pJJoUZZKSZZIpJIlypKULNGiRGUrkkoS74yP/1917zkzc2bOVRWK3xKuN2CB scsina30/le5lScMWSAeF3uAPDWx4KTRehasW38vmWyrXDX7wQYWzF0kI2yG Dhl48c59I8azla1KTnvw6oqKEQsOqWxjk4eMPyld2YT1GWyfQl4wvec7Y8yC UckjVWTjpv68mSYsmL1hczfZNfGP93O0SVPTxG10HnaO0w83ZcHN6PlLyEXK 40UNN7Ngy2p5IH8emPp0GG18ooVFFiuQjMrbwoK7ltb7yauCZSxdt7IgzfJU ANnWZMEcRTMW6GwPOU0Oma7wvg0dMmV1EjmtaUVy/DYWnDdNSye/TNTczdrO guiXLXnkoZ26KtPNMR9OdYVkeZX1P6rQ5yvCy8ibfprkh1hgvRQJVpBdC7b7 6u1gATNtXeXYfoKtDQbRG7zXjf16kQln/G1LFqSWCz8e28/0ndV7rbD+8k8V je2ned/pxSwWWEm03iVrJh20eo+uPf8ng2zn7CVzwRrrV/z15bH9qAR+MLdh wSWd4DPk9J/Hrk1hs2DRx59B5FQlkfGN6GzHoy7k6w5BuxIZzPdE37H4JceN Vu6yZcGsyne65Mu1PsvV7FhwNuGGPDlhwlDkXzQ/uEWQfGnd4W9l9iwwPxDQ Svk7m3Egm8VlQa/ZlHPkM+3fJOR5WM8ag/vJUTL73LvQ0hN3GJCPh+/U8nVg QdheThvVV1hx2/mNjiyo6xHPIof+5g5Nc2LBzw2aXuQAJ+bhlZ0sWOr8QZTs e6lp3j5nFhSbOFdSPXvVWQas2sUCA86ucLKH/jbDit143tLeC5DdPJ8ln97D AlcJ6/t0HlxvmYgye1mwrMzMlbxHdkPl130s2LOzpJ7Ol/OOR4p39+P5CdUN JjseXxcZ4MICWzPdFWTOnzVmM1yxf+pU+9P53dGg0rD6IAsqZm4UovO+fUq6 pqA7C1bMGomnfrDVUOH8U7SUr4Em2Th7IWN/iAUi79w51D/0TsxuDT7Cgjfe CTEb0GvLYg22eGE9b2ySIa/+K5E8yxvfvyolifqT+u6pzqk+LMh5O+Eq9a9l GwS/1vhjvXX9idBHL/bx33o+gAUWe/6OAJ2/nOFbvEAWeD6NcyXLyv92Gwhi gUDU3c3r0BL/ugelQ1mgde9Yhw76350GYadI7C8bD9/Sonz/6BWXP8GCKw2Z E8k6apNk36FXR7fyNNE+t/RWWZ5iwcEFOlOonw+lpjhtiGbBjB3vN9E8GEw4 8mTxeRYE9g/xaZ6cf3fmZSs6c7xzPM0brbmZLfEXWJBu875BEX3owsdfMy9i fz8xCAron2dMl4omYPwUO0YXo/vDZMM+X2VB1csz8vPR0eVaMVeSWfBQS0uX 5t1KUfMk+2ss2Aa/rGgeugaH5jdex/qb9TSE5mWvb2/Hk1TcX0VXpRS6x63E OOUWCw50NQ9NQ3+xdZq86wELQg01RkZwfrc/nrZLrgDjNbWm/Z8Z/X3t/bIm tPWjO5XD6JZx0/yMC9G/XU4OoRuT8/sUS1igp5ct9Atd1jO58esTFpi+M0jo QV/xuZ108CULv3+N4prQSZ9s/y2vw357xGXzK3TC1vHsdrRCpcC/BnScnO0M ywbsF8WuNnV0/yoTCdVsYsGpRxGjz9ABU2z2/nnHgi85IQKlaPtLo6v8O1nA cdBtS0OrecitMOpiQfXfrevp/iS6VX/ZtG4WdHumXr2BzhgNmpPYw4Jzo7p2 19DDfNHRwl4WPPgxoSABfUFhasXIT+xPXHeF0+j6vDlsP0Fr8Gq/VO2ONq1d 5ecrYw3zXHu8tNC13zL2LzGxhlAh+Yg8vH8+E3jkledjDZUXTS9Io63SP6Sx M61hbVzTAN3XD6/TD0l9aw3x2lUHXuD9XqxC1+u9mA20l96pnovWW+MjVaxr Aw9fzvX1MH257q/+46Y7e23gxu8f3+rx+0MFbt6NireBUtnmDGX00JJaXalq GwgOVoiLw++VtUIxrSEjNvCxp5s1Hj3pMC9VVJUN9S+KfoVswu+bOtfZ6vZs cHw2bas0Oj/g6s6/6AKVhXFS6HEqjXdKOWwQWb/+y0z0ybC123fw2PBwUVaI BDpdVzTCw5ENQb/VqiejO1Iu/r27hw3pKaInR/D7ievzpEXnMBtc7QbetaO3 Lp57bWMUG1y82HfvGNHPe7vjBU7jevZ6cHPQC049OFuAli0JnnQb/WuQHaZ2 hg09kt68W+j46gt7551lw5efr+bcRPcclFL7dZENb43sHySiwx9JFF1LYcOv Mxk5x9Fuhz/e5d5gQ2S5mXcE2lbpdpZMKhsMHT4bhqNVz26/cvomG5hXfa9C 0U27o476ZuB+X3hNDkIvmS622TKHDRP7HZI80WWcic3CRWzwcI0O3IkOCTFz eY621DPa5oRenxorFFfMhj45GTlHdGm/vMqKR2yoUpAr5aEfHdUOtnnMBnnX xFl26KK0vcqZT9kwfZz7Dwv0/d/PAllNbBiX6xdigPaaKym1oJkNnQ9nH9ZH a+uz03vQ5qte7gH0vYjPjYFv2BC48youAfMnO7o8vQXXs/HBam10rqFq47hP bFh4KVlDDZ11Klrx5nc21FzzElyIrmnZJX6gnw1GlqKyCyieyut+af1gQ5Tl 1dXy6GXV3SWPB9hQ+0z84Hx04oQNNq2/2fBNP29ABn0y8Pex2SNsuMkRXz4T ve+g7afQSQzsTVd0mICOeKT2dMtkBgKFriWOR9+YPjFbcgoDFxuU3omi22/l +lyZyoCyqyMjgmZ6xCQLxRkoX+jqKIg2cSox+DmLgYMZLTeG8ftcgbUkyWEh A3K71g99R3dlXFCVXcTA18njHcg3haeWNKI37cqq7kMr3v7RaryEgdyovCu9 aKWpJQtVFRi4HHHc5itapZRJGVZhoNV9RX8HWm3F6cxYbQas8qRrPqD7jwqv M1vLgIiNjQX59tvDzyfoMJDQfqT5PVo9wr7PW5eBS8O2HS1ojU/L1fjAgOqc 6+Lv0JoXn+SqbGRAkiNzvBmtPX64oHw7rj9j85I69ItnnzqjzBnojmWKXqJ3 xjyfxbZg4Me/vTbkaPmrrj07GKixj4qqRXevNVk03ZoBXueHSS/Ql1zPH2fb M5Butn/FM1q/VlD+Qg4D6rs9m6rRFf/2fupBLzMLDCIPRKxb589j4NiuyOan 6C3XPvdfdWRgrnPAmSr0SLMG++seBjbnn9esQMckzTuWt5eBdfP5veUUT+cJ d/z3MfDk8aJUstXAm6kSLgzcOhEzn3xLLLhE8wADUcozZz9Bb2zY920U3ZSb 2PQY/failUylGwMdP+XiyBMUFD0YdwYO2YjKkbmGtcsCDjMw/NJCqwz9a+ID S2NPjKfe8dFSdOSL5CCJIwxwm/MqyPl2nm+TvTA+TKcdWdxzflSlLwNXcm+f eYQuSd//WyKEAd+2U0ol6CGvgZoatKvAKVGymrH39YijDFQk2LcWo69+CrMU PMaA8DaXC+Sj85JzvoczIM3aNINc2KN4PCOCgTTtsh9FtL772fzdx7FeToo1 kJ1ZRdNbIxkw85saRzaOev3fi1MMrDfNUCYH2fOMIqMYEPeKlSTfV+qYt+k0 Pm+iyXAhennlz2dF0VifhlI1ZMdzPte8zzCgtGdFPvmSk5CvVgwDHzolrpKn Ck5XuhXLgOxXbW/yxhfnhPaeZaC+x28X2S9h3psl5/B9eiesyL3aShEJ5xlw fzZ+FXnZxBwe+wIDVccOLiZzX61ZMyuOgXGRN2aRaw8adZy4iPHas//vQ/Qk g5oi40sMNBYPfyMbiFueE4nH+NrsaCN7tbxxKUF79h9sIuek8zf6JjDw0Zip Ifd4dcquSWSgVnbSY/IiY9efA2h7pYACsq3U7+qsJDxf6g/vkGM/+Sbvu8zA ze/FGeSaHGGfZVewfyw6nkIWDTpu0Y7WOilzhay3TWJ50lWsB1W3ePLheRcE bZMZ0H198gK54/717LprDIyKSMeQbVh3uKYpDGjE3T1NrvpRMq30BgNn5u+K Jq+Nel6ofZOBF/OWnSW721ud/YV+s0R57HnpSu/2305j4Jrcz0vk9iGHDS7p DMBD/8tk2cquuYoZeF4yqq+Trc4dGPiE3nb1TTr5pNPg08uZDHzfmp5DfqLu f9XuFgOlPL0H5FEBUW/pLAZeR54uJa9+EWnegN4eeK2a7JowQ/F0NgN6fUca ya3a8s0TchhoEHDoIXuqrxYoQX8+unqQLKZkpnDkDtbD28fClF8dWd8jnbkM GDSIypFfzoy5fDmPgdi2eyrk3WJplTZ3GYiJW6hHPjvaJF2Vz4BaszSHrDzY qx90D/tH9TVXclmf6B7t+wwY6X0JIn9v1bh/8wHW0+HwVPLmsij28UIGJs82 HCW3FaQEGRZhf2pzm0XnwSu38OZfdP5rSxVyyvWeob0lDDxcrMElC4Zvuri5 jIHQiSbV5AuBnFLhxwwYz5rcSVb1OtRdgE4b9hGl82q3N3mtcjkD7UpuhuT8 LePeTq1iwObPhcdks41Swk/QkN38hfxZT0XJ7ykDv3rLJ1F/mKFq6/OtmoH9 TZnmZBeJ/LnPnzNwRz2hi7zw1X92UQ0MmIg80qb+c/956NFNjQys2lbuTN5W EZ8x7hW+z+dQLNnv3tN/rk0MfNpa209uurg0YfsbnFcPXHOp353kvm+RaGXA 8upMNvXPoYp9V1+jFdeanyU7rxxyvvKRgafa2+vIIDjz+8p27K8/Y8yo//Zf NRHa/oWB7OmK26l/s77kLj31FfO9Sd+T+nuZmWGP1TcGfod7FZNV819kzevF /mbsOpHmwaTw7jWZfQz0xZ2KJxcoym9+9gPP77ToGpofci6RrpOHGBBjmVg8 p37cKL2qDh2qOieF/Ecv5U/cXwYyfiX+Jb+c9ihI8R/GP/npdZpXIdm/Y4zH 2YLolPMiNN86Bvj3jonaQrFsans9Ott7jaDwDFt4PPPZ4jfo4m6HA4Xouhyv MHINc/KDp6QtvGAedJN71rYVfp1pC3PcB3LeUj8bjvR+NdsWgv7TMaV5nOTz YeDmPFsIaWmKaUWf8j32ZbuiLZw16j1N836/f0N1or4tbJhrJT+INuccatpt YAv6eVuzyZrrpNrVDW1BKOe1/h/0uFHrv+XrbSF1aprjEM1Hv7cKfUa2INYg l033k/u+baGw1RYmSf9zFMD7i6jPd2hl24LgO2bVZLo/eU7NXeBuCwaeHzhy aPuJ20ruXbMF+Vz35WZ0Xwuqd/9bZwuS5cxrf3TQ94ENi0TtoC5wQmQ+umMT q/C3hh0cfH60vBf9RquM/Z5vB8VvPzQvwfv3+rnPJDNj7KBeoMiJj97YKXVo aakdOC2Zkn4eXZg2MnDspx34Kc6YVosuFek7N7zEHso/HxgWxu8D7qaFH2Us 7SHSiZ25En0woN94wTF7mPA82NMOPf+ykE1drj28jNoaFoj2tMy7F59nD9YC 3dJB6BcTd8/ZddceFIoU08hBbjVvhvPtIezDmepgdLvhBfslBfbQJDN5cij6 xmcVxyOP7OFicMChCLSqEvu/+c/t4ejJ+ePPoPXvZh3d22EPAmX/TbmKHoz9 oanWaQ+Wxnoh5Ex3zY5BtHpM1l/yXLUCk9Bue/i1J6AzGf0rvXza5W/2YHWr uvg6Ov1Ky4XGAXsIV5C0v4mefXJKpr4AB6xjDC2y0X2Ouxql5nBg2Nt/aSHa 2HSTWi2aF5YRSL6yctnJCBkOVLZHvCHvGPmy4d9cDgycsjhZhL53zjn343wO tBfN7Sum/VftjMlYzIE2/qnkUrSkqpO54UoOaOhMq61A75+1IXMYnTCwXL4S /WR40aQ8NQ5IOw26kj0r20uWaXDgu3/StCr0O77jSjEtDsyXVjF+ir4e6yDe rMOB8nyDjGfG9PMSXo3LJg68jfNY8xLtvD3/iZYxB+QMDx8ln00RKxpnwoHQ /TK15AGLB7eiTTngdcDUuQ6dlS55Om8rB9IsTE/Vo5fZl1uM7ODAVJe6Z41o qRKl5hM8DqyU2SLyBr1RKrjWis+BRtWcDWT3/c2V8x04oKry8Cj5pXTo/WxH DmhKPxR+iz7p9v5igzMHXoDLCFl0UbS9rAsHLltf+dBC+Qr93ZbuxYEK2Tzu R3RFe1foLm8OTPiiHk2+YNCisMgH4z/ToZSsM1L230VfDqi/aVjUhg70iP4b HsCBHeFi7eQpjsoznEM5oBXVZPGJ4lcil7fgGAemrzgYQM6cL2nTgh4QL04n b38zlGAZzgHdBlfhzxQv8wrF9ZEcCGpbkUWW13cwkI/mgI2G6p8v6P4Eq09v 0baBP+U60GXDxmHnz3Cg/9v+TeSd+ao102I5oOPgeZacvmLEZuQcBwbVf6p0 ojXnXTjwJp4D777Ebe9Cb/5bkxSbivUxc7l9D9on2Dxmy00OGKS3eJPTJjce E0njgPlRkwvkSXPfuXikY/51TOvIFTrdOpa3OGDk02/4Fb3Bb3yzZC7mV+qz 1DfKj+jx6mq0hvbileTkk2LFIXkYn0uyJmThxJkpA3c54Gyn7U1+VLTQo/4+ B3JOLX5N1hOA6THFHOg88SKiF+0SXiq8uYQDTfPSEsnx040GhR5xwFsD7pCH 5be+P1jKAQnTuLfk+wa2GRZPOJC3SlyxD91V9T5pcjkHWheX6JClLRxiStGx WspmZE+HPd7qlRyYNFnrIFkzxNN4RjUHWEEz8sk7pwzrPEUPnEysIMfG+KsG P+OA0I4vTeSB5FCpHzUc6DK/OUi+/Tjm08taXI/GuFXf0SvGZwdGv8LzLzKc RNYYvTmd3cSBxR93ZJK1fydflm/Geiy3f0Be/+V8SdZrPM9TQ+vJ7PIAgefv cP1LFwv1U/8s8jp9toUDxV8niJGd7rrL27/nwBLfhNlk15Rd+l8/4Pm0fq9E Dj22LXByOweY6/e3kyP9TabXoRvZK9jk04fXX477xAHTHCs++ZLz6hKFLxy4 a1F4gHyZo7b9O7q1bsSTfJ2l1JrfwYGY8/3+5GwjOYFNXRwwtBuIJOetm3N6 Wjf2lxjBM+QCLUn5V2gF37Lz5JIVYtkJPRxoUddOID9ZOkF/51cOJNc5XCVX zxesVf7GgY7D+jfItVLD3J/omTp16eS34/sCQvpwPadn5JI/jnaKb/6O+WI/ yid/+d2WNKOfA7uyFheQe3rfqb5B+93SLSL3f3lVfOUH5vvgpEfkf6+eflj5 kwOKuY+ekCdUFI0r+cUBJXOzKvK8Gynw/g8+f1LnM7J62KmAf8PYTw+1VJP1 PIOTIkc4UHInfuz3L7qz9sPUcVyQcNMsJy/NWn3jAHooWfIxWTF9lWsD+kd4 6tj7lW6orV4jwIXdOj/H1rciecW4eHT5q99j61dLUqoYJ8gF78PZ98galxSi HNH9mgvyyFrnl1hXoM+uNLlN1o5ZKKckxIX6IIVMsm6UXMcptMzG4lQyRMpm /UDXnRW7Rt4QIgUPhLnQYvUyjjxb2MFutggXLFanxo7FLzjTywPtclk/ihwT vCF3hSgXEvbdDSHvEjr9MhKdNxrjR9YJftvbifby0Rirl/agg4rJ47kwPfbe HnK+YJGRwAQufOIlOozVY9AkJ3v0Pi8j27H9BV1OnD2RCxf7WjaTQwKfS56Y xIWUROXlZGsBGbUutKHnsgVj8QvcaWY0GdfD/TxW//UB/8IFpnAh/lGaCHlh wPJRj6lc6DzCeUvn6dfoobl16Lt+HrXkKv9Ha1TFuLCNZfaE7OZv496F/vVp 6y3yI79jnfbiXFBeGuBHPjvyUrQAfc7z7gHyHr95i6Snc+ENL8eRLOGXa1+H HrX7Y0zm+bbVGc3gQtPN4unkcT7rClVnccFugvlZ6hf1fyPenECb7mg5Sr7h 3TjYhV5ZrOpB3ua9X/2aFK7fZpkFOdHr4g1paS6EuDlNIesd+R0tOJcLViKa 7tT//qn6+Tmjs82C7MkFHcJ7qtFfKyI3kddYS+ifleWCzfO3MmQNLeVehflc WPx+XxH13+U/+abbF3Ah/+qeIervXemdmnlozt3UD+Qbjq4LZBZyYYFU6hPy knrfP+1oU4PO0+QFOedTPBdzwWjIbTF59oEaoaRlXJCLqASaH6+WWfYKK+Dz tWUXks9+ePN6Nzplh7oIeca2zmx1RS40mqZUdBvTv48X5pYv58LloezNZJGv awq+qXChYe5BY5pn/buuueuu4kJ6eM4smn8fVrmHJaEtnhn30/ysETS8JKTJ Bcf5qc/INy99KK1ED3uUBpN5L2RmWK3mQljinq80f19oRWe7rOXC78NJeTSv b4n6f0vU54Kv/Dl5mvf7kq13CW7lQtLzw7x3Y/HyqLVHOz3MVid3bTij/QD9 1KNUhLzry7Mp7mZcEM93SaX7iJOiYfanbVxwi//yje4v9lnKQxUWXFAr9XZ7 TfkuEIw8ZcMFSZEh21fUb+rTb8114sIFv8zHL9C5IzVHFf24ME9a+Qnd/4Jl o2+diOXCuGC/xVkU7zB2t1c6F54/4Ocl0Pu/9uUyj3F9Nn/HHaf5a7Ss/vRb LvxrObjVE81cVA588BPzdVl/gSN6pK0uUHsqD75eMyvbTn/e0z/GcBEPJjnf 9QNj+v8Jf1aBLg+u8Ca0q9Dvj5ixPHoHDzTDggrnU3+bOJz5aj8PLujU9Ymj Zes616eE8mDPrgcr6f4/SyyqSegYD/rzMkTIYsaa+7jo/5rvNQvR+SgKOiMd xoO2jPlB5PabMh+Ph/OgVnZBvSA6PWiLv2skD5r5or4C1G/Usu+tieaBWpXL xxH83rA97alSHc+DQfPa4T9oEGZHqSbwwFFpdT150eG1/THox/WFaeQe25Fc u0QeOKQtZ8jey0J0e5Pw+fNCHgyi44pObZZI5oFl7Kqg3+jmr9f3WN/kwVWP J0t/ogu4YdUF6Dsb1YXISXW7VeTTeBCRWdwygN51T6m/Ey2zUfcseTDk9hHv DB7Mb3kgSp49tzAsIYsHBqFVX/vRViYN19vzeOC5V6K+Dz1ZX8Te4C4PZMdl 5ZKLtVbNTEKXHtl9jqy4ODaYyeeB8zRVhjw6uoP78h4PFPdObu9F38itly4u 4MEv2cGhb+g/cvWRFx/xYFT7jO5XdKaU8Po/aDWTlAVkRzGNv1alPPjQ1Die XPP3zG6JMh4MOYe97EFfabTYGP4Y4zGgsZtsElk3eqiCBwMjWRe70Zd+v3Qz r+GB9fV5M7vQAUKm5pnoJ1ESI530/GmlKyc954HEMbkvZOWlOX0l6M3HI+6R C63OuKys5UFcwlkO+X2uxR7xeh5MtIjM6kAvcK/n1TTzIFm02ekLWjRgs77i ax7MvTLBnNx1vEwuFP20c7seOefqnfe6b3hQf2ClFHl9XYxdxlse9IovqvqM 3qlmaRP5Huv5a70GObWvYZvJJx5c1Ngm+wntqRE+koHOEzeaTN7kqZM+/TMP rO4wf9rRn0evjG9Gtxi0NJAXTHMtdO7gwawFplHki8qTlI5286DSoHYSec+B h80d6EmxqUNtaO1c12Obe3jg1pnYRW7SefVxxlce2Hl8riJLbk6+cOUbD8wW vI4kn9ijN774O75v5o5ZZNvM73cW9vPg8M4JE8hK/cn8Y+iW5a//fERXHZlc uPUHDyq+N7wji4Y3ub8b4EGqm3IK2T/F7ePQbzzvJ3asIx9ov/5w1QgPynds ONqKlki/URyNVp23xZt8++DN0l5047n9B8j9gpmVqaM8kPMftCO7y+c2yArw IWfHqtXkQ/alX0WE+aBXv/77B/SsJY/7+Ogl6+s7yHlfn/woQrt/9/5A/u1T 9eeICB+ivsx4Qfa8WCvyTZQPtZ5OWWTvpveyjRP58OZLmAd5blKrnPokPvx8 cd6FXODctjAKfSWk2Jk8/OuzgslkPoyosNhkv5nfVhVO4UPFkyQgz3vXu1pm Kh8C17pokwuTv6/1RDvoW2iQR9V/6quJ8aGzzWEZOcB8eMv1aXyY8iBhOllu zsg2IXE+SPYtnUIubh214KJf+VSIkgUOCLHnTOdDe4DZ8Ht00KlJO09K8GHu HvcO8gLWlN3d6Hkxd9vIpfPE9m2agfF4O/09WThzupugJB8c8cOMfLR6tt+h mXzYe2TGY7J4taXZG7RMyL1i8qWn0XIwiw9/D3oVkG9XTSmdKMWH3JbNd8i6 VcYxLmgTI/ssckVlqFMd2t81Ip3cUjFuQvxsPmh9ULtG3l2h2ywgzQcPyVuX yQPlXjd3oh+3b0ggTy4f2Kw6hw+iq0rPkVc/7jhdKsMH9Zi/x8f2U7bYYdlc PkxPNQ0nby3ja5xAt4nnhZKdSt82Wslifu80B5J9HlkdkZvHh/eaO33J0SUv ZLrQ/VuYI+QbxSaFOfP50JWV70EuKirj+srxIXWWnxu5sVBPyEge86GZ9h+5 52H+NfEFmK8n6/aTN95PWqG1GPOdFe9MTsoLu2e3DN+v7LaL/OyOz0ifAh/g gv5e8tBtV8OQ5XwIu31t7Hnit7s+bVHC/EW4jL1vabZjmJQyH1KcLo6tRy+r RbGV/HH52Hp33LJ+dlOFD4kJ88f2I1b27snUFXxY56rhT65s4he7ohUn8Mb2 rye4P0dTlQ9bbAXG4jM4qz/9AnqVgEfYWD6XH74+jK7VHTcW36WWgRcereRD uJldFPnjbtEzi9X4YD11xZmxevA7HhmGXqcx++zY+m/E+m9V58Ojk6qXxvY3 lOr0WoMPO1U9U8l3pq3g6K7iw/M+oQyyy6I71klo+YfXx+qlbUuh6U5NPrSY rMwnVye9XNmvxYf4AesKcuLGv/8mruXDGbOOHjKbCfi9D+1t/f47WdJV5Ptz 9KfbPb/IYRemtcfq8OGGsokAnRe3noVV8np8uDsgJkVeH7357Bp9PA/ncjeS R67XnrqEjjKYsoV874FV+Ci6KsTTgqzyievz2ADPe+JpLllqtQd/+3o+rO4u 8yZ3vYtX2W2E9Xx1cR750KEDvo/RS/4zfTh2XqdtqJbfxIdhbnAZeTb07H6N Nj+tUEfeeEX7mqkJHybM3TrWz67sfCWjsoUP12N6VanfMb3iE3+Y8+FE9/aH 5M/H2llmFnwoVLr5hOwml389DZ3hNOMFOWI7Z73jDj4Mnp/dRs7PyfBvsMR4 DvdMpH4s6Wny6641HzYdzGWTq8eFtPnY82H876Cxfm9QGz2uFa3Iei9Jvnf5 suwGDh8KkrfKk68bFLGmcvkQ8NlJmxwQMvQ0nscHqSSP/WT1CQfuFDrywbNC 7BU5bpr90XF7+eDUUHOX5tXueauXhhzmwyWZh+k0H7PcYi+0onvzdxSQB5/0 T17nifUwY+gpOey/jL4/6BXN+7vJ14sX3P/Piw8P/AcVaf6286duYXyxXyuf Tifbp3x0UwvmAy/u2D2a7+aqJwo/nOTDEbENg3R/+KWT1a56A/PXKbWb7jdb FaTko9Bu69r9yNdm+tn1oof978WQd3wzbcxI5YN+rF8xOTvxS7liGh+Wfzow +zt6n+D8tEWZfPAr+lFJ/lh+4sDsO9ifQqXVf9A8vjOQcRht8N83Y/LpJKar EZ3YU8UlwxEFh9hc7LdH4k6S4xUf75C4i/WaEd1Ftj4xrDXlPh8iFFuu0v3u 1hEH971oH4ulD8iiO6uyqtBhTodfknP1ziuEP8D8zVESoPujRJ+6jOhDPqyJ +2xP3vM2juWEvvTB6RC5pEIgpgwdfb/7BNn18vMpwYV82DMy6SG5/ISm8Ud0 t3lyPXmeV/xR/SJ8nvj6HvKhncKPktBXlncJ/aJ+Z753ZBR9OO6sDPl/67Df mA== "]]}, Annotation[#, "Charting`Private`Tag$104357#3"]& ]}}, {}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, {0, 0}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {False, False}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{True, False}, {True, False}}, FrameLabel -> {{ FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ TagBox["Relativeabundance", HoldForm], Medium, StripOnInput -> False], TextForm]], "InlineText"], Text[ Style[ HoldForm[$CellContext`Relativeabundance], Medium]]], TraditionalForm], None}, { FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ TagBox[ TagBox["t", HoldForm], HoldForm], Medium, StripOnInput -> False], TextForm]], "InlineText"], Text[ Style[ HoldForm[ HoldForm[$CellContext`t]], Medium]]], TraditionalForm], None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> 500, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{0, 150}, {0, 1}}, PlotRangeClipping -> True, PlotRangePadding -> {{Automatic, Automatic}, {Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}],FormBox[ FormBox[ TemplateBox[{ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ TagBox[ SubscriptBox["x", "1"], HoldForm], Medium, StripOnInput -> False], TextForm]], "InlineText"], Text[ Style[ HoldForm[ Subscript[$CellContext`x, 1]], Medium]]], InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ TagBox[ SubscriptBox["x", "2"], HoldForm], Medium, StripOnInput -> False], TextForm]], "InlineText"], Text[ Style[ HoldForm[ Subscript[$CellContext`x, 2]], Medium]]], InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ TagBox[ SubscriptBox["x", "3"], HoldForm], Medium, StripOnInput -> False], TextForm]], "InlineText"], Text[ Style[ HoldForm[ Subscript[$CellContext`x, 3]], Medium]]]}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.368417, 0.506779, 0.709798], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.24561133333333335`, 0.3378526666666667, 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification]}]], "RGBColor[0.368417, 0.506779, 0.709798]"], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.368417, 0.506779, 0.709798]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.880722, 0.611041, 0.142051], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.587148, 0.40736066666666665`, 0.09470066666666668], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification]}]], "RGBColor[0.880722, 0.611041, 0.142051]"], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.880722, 0.611041, 0.142051]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.560181, 0.691569, 0.194885], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.37345400000000006`, 0.461046, 0.12992333333333334`], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification]}]], "RGBColor[0.560181, 0.691569, 0.194885]"], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.560181, 0.691569, 0.194885]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{{3.7376344038165655`*^9, 3.7376344337625237`*^9}, 3.7376346923965864`*^9, {3.7376347648398004`*^9, 3.737634783994438*^9}, 3.7376348551221275`*^9, 3.737635993254409*^9, 3.7377894616180906`*^9, { 3.7377897097971773`*^9, 3.737789802268672*^9}, 3.7377941991146326`*^9, 3.7377943851464148`*^9},ExpressionUUID->"42ecb21c-3643-40ec-ad59-\ d4ec4f68feb3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"perturb1", "=", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu1", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"x", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"a", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"b", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"c", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"x", "[", "t", "]"}], "*", "eps1", " ", "*", " ", RowBox[{"(", RowBox[{ RowBox[{"UnitStep", "[", RowBox[{"t", "-", "1.5"}], "]"}], "-", RowBox[{"UnitStep", "[", RowBox[{"t", "-", "2.5"}], "]"}]}], ")"}]}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"perturb2", "=", RowBox[{ RowBox[{ RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu2", "*", RowBox[{"y", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"y", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"d", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"e", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"f", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"y", "[", "t", "]"}], "*", "eps2", " ", "*", " ", RowBox[{"(", RowBox[{ RowBox[{"UnitStep", "[", RowBox[{"t", "-", "1.5"}], "]"}], "-", RowBox[{"UnitStep", "[", RowBox[{"t", "-", "2.5"}], "]"}]}], ")"}]}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"perturb3", "=", RowBox[{ RowBox[{ RowBox[{"z", "'"}], "[", "t", "]"}], "\[Equal]", " ", RowBox[{ RowBox[{"mu3", "*", RowBox[{"z", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"z", "[", "t", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{"g", "*", RowBox[{"x", "[", "t", "]"}]}], "+", RowBox[{"h", "*", RowBox[{"y", "[", "t", "]"}]}], " ", "+", " ", RowBox[{"i", "*", RowBox[{"z", "[", "t", "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"z", "[", "t", "]"}], "*", "eps3", " ", "*", " ", RowBox[{"(", RowBox[{ RowBox[{"UnitStep", "[", RowBox[{"t", "-", "1.5"}], "]"}], "-", RowBox[{"UnitStep", "[", RowBox[{"t", "-", "2.5"}], "]"}]}], ")"}]}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"perturbSol", StyleBox[" ", FontSize->12], StyleBox["=", FontSize->12], StyleBox[" ", FontSize->12], RowBox[{"ParametricNDSolve", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"perturb1", ",", "perturb2", ",", " ", "perturb3", ",", " ", RowBox[{ RowBox[{"x", "[", "0", "]"}], "\[Equal]", " ", "1"}], ",", RowBox[{ RowBox[{"y", "[", "0", "]"}], " ", "\[Equal]", "1"}], ",", " ", RowBox[{ RowBox[{"z", "[", "0", "]"}], "\[Equal]", " ", "1"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"t", ",", "0", ",", "500"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ "x0", ",", " ", "y0", ",", " ", "z0", ",", " ", "mu1", ",", "mu2", ",", "mu3", ",", "a", ",", "b", ",", "c", ",", "d", ",", "e", ",", "f", ",", "g", ",", "h", ",", "i", ",", "eps1", ",", "eps2", ",", "eps3"}], "}"}]}], "\[IndentingNewLine]", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"solTest1", "=", " ", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", "paramTest"}], "]"}], "/.", "perturbSol"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"solTest2", "=", " ", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"y", "[", "t", "]"}], ",", "paramTest"}], "]"}], "/.", "perturbSol"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"solTest3", "=", " ", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Apply", "[", RowBox[{ RowBox[{"z", "[", "t", "]"}], ",", "paramTest"}], "]"}], "/.", "perturbSol"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"solTest1", "/", RowBox[{"(", RowBox[{"solTest1", "+", "solTest2", "+", "solTest3"}], ")"}]}], ",", RowBox[{"solTest2", "/", RowBox[{"(", RowBox[{"solTest1", "+", "solTest2", "+", "solTest3"}], ")"}]}], ",", RowBox[{"solTest3", "/", RowBox[{"(", RowBox[{"solTest1", "+", "solTest2", "+", "solTest3"}], ")"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"t", ",", "0", ",", "150"}], "}"}], ",", " ", "\[IndentingNewLine]", RowBox[{"Frame", "\[Rule]", RowBox[{"{", RowBox[{"True", ",", "True", ",", "False", ",", "False"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Text", "[", RowBox[{"Style", "[", RowBox[{ RowBox[{"ToExpression", "[", RowBox[{"\"\\"", ",", "TeXForm", ",", "HoldForm"}], "]"}], ",", "Medium"}], "]"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{"Style", "[", RowBox[{ RowBox[{"ToExpression", "[", RowBox[{ "\"\\"", ",", "TeXForm", ",", "HoldForm"}], "]"}], ",", "Medium"}], "]"}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"Axes", "\[Rule]", "False"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", StyleBox[" ", FontSize->12], StyleBox["\[Rule]", FontSize->12], " ", RowBox[{"{", RowBox[{ RowBox[{"Text", "[", RowBox[{"Style", "[", RowBox[{ RowBox[{"ToExpression", "[", RowBox[{"\"\\"", ",", "TeXForm", ",", "HoldForm"}], "]"}], ",", "Medium"}], "]"}], "]"}], ",", " ", RowBox[{"Text", "[", RowBox[{"Style", "[", RowBox[{ RowBox[{"ToExpression", "[", RowBox[{"\"\\"", ",", "TeXForm", ",", "HoldForm"}], "]"}], ",", "Medium"}], "]"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{"Style", "[", RowBox[{ RowBox[{"ToExpression", "[", RowBox[{"\"\\"", ",", "TeXForm", ",", "HoldForm"}], "]"}], ",", "Medium"}], "]"}], "]"}]}], "}"}]}], ",", " ", "\[IndentingNewLine]", RowBox[{"PlotPoints", "\[Rule]", "200"}], ",", " ", "\[IndentingNewLine]", RowBox[{"ImageSize", "\[Rule]", "500"}], ",", " ", "\[IndentingNewLine]", RowBox[{"PlotRange", " ", "\[Rule]", " ", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "150"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}], "Input", CellChangeTimes->{{3.737623013498502*^9, 3.7376230306888943`*^9}, { 3.737623080013054*^9, 3.737623105101186*^9}, {3.737623245390669*^9, 3.737623247849956*^9}, {3.737629096233798*^9, 3.737629099969615*^9}, 3.737634111541668*^9, 3.7376344435208373`*^9, {3.7376347089285717`*^9, 3.737634732672142*^9}, 3.737794091035866*^9, {3.737794218591035*^9, 3.7377942620013266`*^9}},ExpressionUUID->"af667c1f-bb1c-49c0-8c30-\ dde31900faaa"], Cell[BoxData[ TemplateBox[{GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwc2nk4lN8XAHAheyJpQZYo+74n7hnZhmgGI+2RhBQVkYTwtVWWsoQoEqkk KkklUqiUfR1rC9okSyTxO/P7q+fzeOe999x77rnnfZ5kXH3sD7KzsbE952Jj Y/0rf6NSv9W60ESkdpsvg9FOqLOPBTy1o4lRfIjaiV3tpCFGJEBPO42ItfV8 P+LSTpbRQWWddgHJfBX2ZdG7nag97IgS0n5EjlVtZZSHtxNnZ06OY2sriNXb fJmh6HZy9q9maPPiU6J8cVJt/Hw7+Xqt1ojqXk24nuddfZnaTkxGZHT4tOtI 73P/0D2F7aS13OD4pvx6wpwW295Y1E484rbd81r7hrhJRyeolraTJNUzKm8X G4jKL6/Mkop2MmHovcLCvZmMR1nXjbxpJxZhdXzc2p1k5btX4oGj7UToS4vi 1e+d5IHso+Qf39oJk95vpZ/fRaySKxudfrYTX9npqENre8jV//6+Xvq7naTX rueoX+wlV0f+2vSzd5CTXM/PmLkPkXcLjNEHYh2EWWF2QahmiAQ3cXZFr+sg 4PPmSq/UB7L8j3+GvXQH4e9qf+LX/YHw8Hx0adrQQa4Vfv+Tt/UTEbk3ynNc o4O82Sp2cqn2CPnT9GTsmFkHEf/eWXU1bYQ80JG8z2vZQbzPpfBvmh8hy8KO tWZQO4jgG6Gco69GSdxn85pCuw5ib8nd0Ln9K1kddTQoxBnnQ5mSuRX8gyz9 6rxc5nAHURkq8TYb+kGu9g+L7jvSQULCfB71m4+RN/fioi/7dBDp51+3iiz/ SV63pgssnOggWtnjRpW0cWL4jNMtNRjjFR9xl//4i2y77a0pdKGDSH4zP+8n OkGmHGN7lyd0kLqKvJJqywny7dRZB4GkDrJmp+v8rjsTpPK/3T/+JneQist9 SYn+k2TlGK3o0ZUO4uqx+VFfwSTh/bk582o2ro9BZq9SzyQ5lsDdE3mtg+zu dJZ/ZTJF5NzG4izzOsiiaNvTP9zTJCDuoGPx7Q5y87PWB4tN02QpR6B3RFEH oT1M4k72niaSsj1URnEHyXXcZq/WPE3ePdKJnCjtINZydwNOc/wmtvV6f549 6CCTkwJZ9bq/iU6ChVt0WQcxu/RmxDXjNzH47bJtZUUH+e6quOxew29y5mPF 584nHSRFK0br38JvUqzx/Fr6sw5iwj6y3VpzhihJCZ3f8byDDDebn0k7MEOO WM+Xrq7uIPE5ebmfUmaIWGOaVNuLDqJ/jKNes36G+NlL9sa/7CCD4PojZG6G jOUpTFrWdpAYoeoVDSqzZNeXkZ56HO91vctAza5ZIvpyt2XsvQ7Cd5b9zpO4 WVKUsf298Y0OcuHXFvPbo7OEmR1dGxHfQS621AbE5f0hJ164HI3e30Eykxt6 rST+knur3E3PY77eXdOV/4p/gdRIL5E+TNrJz6bAE882LZD6is8zP7XaiUbs WnjouUDmf+n1e29sJ6V/dnbn1S0QuWp2w23L2smjnj7+yIhF8okZvfJxTxvZ //6YQc4ZNhh9uvhW36+NeCUGZO2bXgKfv7hMX8htJXSDdykHBdihae/Ev+iU VmIwuD7+sCw77JusdjgT00q4NN6HBNDZQYlr1Hjn0VZyvVFuf0IRO4xx1V8Y MGwlcQFBzikv2UFQp9KzTKWVHJdqomUy2eFsqy6JlWrF83WaUsDLAc5MT23Z pa2kV7Bl/fODHJASPpCk1NRCasrkxV8Fc8CoUkP6xxct5NbeMyJvL3GAebm/ RfrDFpLE1crffIsDjB0079jcbCGBdxU4O6s54J2v/cBcRgvZ5xQy39vFAR9C I6bzL7QQi4XWqQ8/OYBwtHHQwlqIWr7ij1EuTvCw7vqgFNBCRO1CP4+t44Qv FPr2dvT8dFvflA4n8HR2WYUHtpBPWUodczaccK60+6HmqRZS+qO9liuIE4Zd 2ObTglqI3QWVm5IdnBCmmb8s/EwL0dUNvyb3gxOeKoQUm4a0EIm+zstKnEvh Ej2oamloC/mqEhGrp7UU/l4UV7qE84lu6Payi18K3rd2T76JaCFV/NGqIRZc 0JbkJV4U10K044ZK+8q4YbJ2zU4tjK9DZemmzkZuOKddx87IxPgbFaqbRrlh IrzLKehKC3m60rexRowHcp4o/G3IbiFmVxe+FYbwwIpGeYGL11uI4wPxDSct eOFZ4XmJjKIWcrKfkSbYwQcxtuUr02tayJqzpyR5fvKB5aG96YKvWkiFbNaN JTz8oNkSmRNV20IWPD7dnzLkh2V5JgYhr3H+k8eberL4of3Q4QPnGlvIZZ5E 3oKDArC4GMuU6MXfa705TaaXgQBct1w100Juvo53ihcQBBW/yE1PZ1tI2n4H zT5ZQbAeCbJwm2shfvG9w0H2giDrEVxQ8Q/36+sYvaxYEPR8S0PCOFtJTo6I gqrXchgWLhD2XdFKzGLUvC74CMGnSLlHTPVW8qQ1sVPntBBoqdh/rNFsJVpS k2a9UULQkFQrdle7lciUPZJSzhaCrxmrbsXot5KFj9Be3yAEl2RHwIm0knLi AJxKwnBrwlHEYVsrUZ4JWHX6kzDc7Lwe0+zbStiAYiPxSxjmjcPmFU60krYY vrBn/4RhjeaDd+H+rSRELOvL4qoVcClvT7RxUCtpMn7xNJK6AmbWZzk0RrSS k5ECB+LvroD2rpPKbmmt5IVwTnFOoAisc9v0kV7VSpxV3ljVC4jCnZ5jE4Zr 24iQeGqU2lpR6KZu2iIm0UbqeV1fJm8QBZWwb53zkm3EYOQPcTERBeZd9nf1 cm1kTa6i/pyPKHxL7Bs5rdFGulbHblBpFQVbNf7fdlZtZDuHFXti+ioQOKv0 5+apNuLU8+rJ9o1rIH9Z0WvNj21kQHgwN4lPHNqET00nVbWTumuPDxirSkJE VtPzurYOktXr3EC9IA3JgodNeWY7CbmhyJ06LwNxa4brZ7W6SdLaHjXxc7Kg 7NBTupjXQ262pCdOL8jBykMHrysJ95Kj+oYDPBc3Qqjf+68TuX0ky1nV7tk6 BRjjfHhYXmaA6Lg3+52VVYCV988ZR24cIA0n/DPNFRXghZPv8gHlATIf/2z0 nY4CjCy8yYrXGyC7X9lG9NsoQKRh6rs2mwEipnW0fPGUAtRWv3s+6z9A0viL 15t2KEDJ7y/8p+oHSFKlxkxtvCI0eTxrTtYaJF3WMUt4UhRh8J9vjrTuIJHs HOCnZioC80tSwC39QXLnZ7z02wJFcGY7oVi+eZDUSv+gNlYpwoCMpNkTi0Ey F154pXNCEWpC83fu2TlIDliuNx11UgINM3WpudBBcqv11FbFPUqw7rcJFcIH yfi+ZievA0rg9vSFUGTkIAkJDDv83UcJhN/sOMwZO0guF/Ynj8coQXfn4vRI 0iBp4M8cma3A558cbdS/Pkh0m0Qu8Eopw7W65gvDNYMkPt3h+4CcMnTHVJ94 /GqQjLpesilTUobp+f7p2LpBcmV6Bd8BPWUwUv1eK/t2kLCLr4h+aqsMd87u ct/UMkiaDgqd9QlWhp5zCd9+DQwSr78C/u3dypDyvqUk+M8geflya9vtAWXY crPq6OLcIFkXf147/LMyvGj8diF0Hn8vLTCh9ksZOHfa/QhYHCT6Fvw+MTwq sMw5nYe6dIhwJvF6GumrgMWkhd9hoSGSvZFrT06yCjy9bVZbIDdE8o/+uTqV oQJCWUz1HxuGSHHZ9w+WOSowNFC+Q11+iFRZtHqMFanARcv6L4WKQ2TI/Zqf UZ0KCPbUMgPUhohcwabz7X9UwMyQIn5Sf4io/FRtVGBTBTnJvcuiDYaIrr7M imAuVfh8aqIk2XCIWNRxX14vogoJNSVC+UZD5NBI23UfFVUQbGpbnUOGyC15 nye8+1ThnPKZ4RmLIVLq47qw+6AqiPbefN1qOUSePGJQ7h1WhWjbEec7VkOk wXJznVOgKnz9kRTsYD1Efhzibb2epAqqDpYDp2yHyO/iedGZNFXgfHhf0chu iCzM/HS2zlYFnROr1/9BC8Z09I/fUoU7lqXrDtOGiMbN61+NX6qCeGCOhbzD EDEYT1VNeqMKMY163O/RFIM4309NqlAimBpwzHGI2Nf7/o7rU4VuuxSPu4wh cmLUmL3rtyrMnw5LZXPGvlZD01z5nyoUeggMnUdHBsrFhHCogUcVZVB0xxBJ 5uEX3CCkBsuW2rNJ7hwiZQpda48rqkGNRfIg1+4hcq9m61CBuho8Kv3adxJ9 a2/1zT5dNeDL3/HwIzo7+ZY+1VQNljC/Td/fM0Quq0sthlipwYMTNftX7x0i F99cqn1gpwb9JhKFAegotjMM6V1qcP3Mw3a1fUMkLPOXhJOLGtz9nP/kP3SQ nvunc4fUwL0oOLwbfdR724mZE2pQMZf3KGD/EPHgfrlJNUgNquKGFV6gXXMN 2A+EqYHI3MUwXpch4tQlk/T+vBpsy1n+JR5NO5HqzHlJDc7ZN803oK0F+aU3 patBUmvvPLfrEDErDB3xuaoGG+HOV4I2MZu6e+OGGlwyeVjnhzYY8DjJvK0G aQtHUvLRWkF9xsKlamBrsJXRjt54r7YhuFINOq/YligeGCLSNkbJpS/VYGvX Dto2tNhw8a7RN2pw5c6ekWPolWflZCWb1YDDuyEgCS0okf7VoVMNmr6u4biL 5nm0rDS2Tw0OhjyMq0Oz24efev5RDZTmRYT60fPff8P0FzV4//pG8i/07+jD PMrjaqDiyiHG7jZExtcPNu7/rQb6dbK5y9Ffnzmmpc6rwREBfnUx9Cfn13sb 2NXB4s3TFzLo/knjjey86pC9bvO+jeiu+NIf+svVwaDgHJcCukVR/uERUXVQ PVdUwfp7w8vM4Ovi6nDQ9/qZ9ejafUJm3TLqIB52lC6OrpqL5F+uoA7bDi43 EEZXpPxpMVPD8bZGaXOiH2gczQjSUQf+Dy3mUzj/u28/uNzbpA7fHaZ8h9A3 3bcrDoM6LNh9KXuLzl3SMC5uqQ4Zi8Vr76OvXIFyuq06jAhZZKahU/UfhkY7 qMPOOzeNT6ETWxQtn+1QB+NTbezO6Lgj2YKT+9SBXHn1XRsdySPSoeCuDl/L Av4JoEOuR2ft9VYHyshnvY+4n4Em827Jx9VhZmRdZhn6eLevyptAdUhhnFWJ Rrsv3/lE9z91+Lzt9qAUev+t9+GHz6nDKzEXnlHMr53mW6xzktRhbaP0oSK0 3WmVboFsnD8lrVUdrT+y8PtjmTrMiugXiWD+mj3fJVL8FNffTFLmLea7fVq5 etALdQi4edowDO1tedxD6L06iIqd3/cRz8+1gs/dmz+rQ/yWlPILeN6KQk1/ c39ThyyFF9Fa6IrtV1e0jqtDrLopfzuezzbuHTae8+qwJjdfXwTNqePe/4ZX A9LUxg764Xnnu5bsfU9AA4ovLYpyo4UFauZSlmtAuYfv+TSsD5KfpFa7iGrA zK1L7SVYPwySu7fNSGvAvlV1axqchsiRqa3VsgYakDIo65JuP0T89p/exmuk AdGVD2N40UENhX1jxhpwKE8jM4A+RGLyuOYeb9GAEvOBOFusd7mOVVq0bRrg caKpZxDrZccD7bxgdw2AfUzPAqyvvdKuWq6eGpCwItlrBuvvx/OJVZbeGjBt OnfGHD3u9qN3xXENEJR8PMw0x3hEC0QLz2iA6q19SydM8Tz7i0W3J2tA4Ih8 6avNmD/X1kf/SdMAzzXcBcNY/+feKkWvy9SAr80OMUvRZeuNog/maICLhN86 Y7wv1Jp2RU8XaUDszdCxS7pDZJ1yVrRonQawa74T/qiK53FQKobxRwNarCMb JNfh/gsoxJya14B56fgaDokhUq6vEZO1qAEBi7+ER8RwfeIh5vNSTXi71ePF zTVD5JuRS4z/Ck0oOP2kcc3KIdKTmhuToqwJe76tDLnLN0Qeb90Q275HEzp/ ykHd70FyLTVH++V+TVDqY/O7ND1IYgbX9Zce0ASjuJbEvVODxMlvlXaipybk yRcm/Po1SKYyufus/TWBd2fAV74fg0Tj2xeNqvOa4LcY7rzs4yC5GXu369YT TdB8EpHm+n6QpNXqK4St1YJ0JwWOttxBUpjtt/10sxZMvIsI3W01SC5tlfm3 Il0bdtIT3DNeD5CBK+2E4aADM96r/8WsGiAcNX9mtdfpAruzyWiRSz/ZZWll euCjLsy2eIgJVPWRVUezFYyv6MHSuUi1Kf0+Uujl9t99N31giwobenK/l2Tz aoW2SRlAwrP20bvmvaSeS4nXotMAjHPvSul8ZpLX3Um8jtmGUOB4tp0vhklU ty0pEHDeBMt+GZt+3MQknhmDFS4yRrBHKiLpw3gP4Y6pO+zSZwQ3E29vF3nQ Q3pau+6UpGyGqXXF5kWhPSRyeodb9h5jiPPkyvO36yHJa+5Ux+w3Bo4GjmMN tj0kz2hB8sQBY2g/H1Egi351Nrfb0tMY7KJaaa02PYRL8JvdLz98PlHnkj61 h0RvDDY0O28Mdx1a3oiY9ZC47dmCXyuMIX/7ulyxTT0k6fGHct01JiBsuVp6 n3wPmc0UjNkrbgJTAzt/1mzsIftDNm2PljQB552TeopojS0Xp7vkTOBuw3e1 abke8r6BohWsaQIlApFVF9f3EL7Ba7dfWJtAroTZ3k/rMB6ufdnbzphA0ZsO g6GVPeT7aNyRwDATiD1U9tcR7fC2bHNOhAlkPLmo+1qkh6xPFGROxJpAsJyE 4P0VPaRqbeXq1FQTGJnzpJ8X6iH/VNYl9RabgNmzxDUMgR5y0oEZ4fnBBAZe FR8knD3EacAyJeKzCbTpa5q85Ogh+ocf5GeNmsBx7h0xVPRs+IXXzWMmUPsg 8hiDvYecKiXLN/01gZeqhanH2XpIsHBeBt9KAq0bJje+mO8m4Y3eJbfNCayI tNcpm+4mrru6X7yyItB8dkCXit4yYt42YEOg8azNzd6pbsK5KDkjYk9gsfDG ACf6P7XmzcF7CVg23UjbOdFNYi7o1m8NICA8WK4g/rObJNgs9P+4SYD8/lI6 PtpNZqf7M1pu43hOKbKX0a7Xnjs9ukvAMO7PNEHrTYe9D3tAYMnjvueJI92k P5ujUqSKwEOjohG94W6iNsGTZdhJoOe3WGTKx27i3hBb9IId4NLlrPbM/m6S KRPEr8sJ0Oarf3Ibuumkl2fBUoBdzWKBHOhNMjYbzvMAHPYqverd100ETwpk MQQBPv1oPrOlt5uUSSWcH10LIEPUTnD0dJOlJ5IPC2oC9NSfU2lo7ybDBcfY r2kBVFokxEWha3vt0jV1AI4uCdlJQcdY8NY56gPoSwvQytu6CZ9YyPpMYwC/ xuNJt1u7iVD1oW55axyvvMuzoLmbjE+b+T62AfhBbnzyQDcrree2sQU49Uui WQl9MblX5ygN4Mrx+YXipm4i6kFPfOAEMHRhyd3njd1EbLmRJeUAwMCMBWPq XTeZ27Kmv8UNwN6wbPQpmhk47efmDuBVHvvjP/SVD8W50Z4ATnY2NmvRUmVy C+98AC7sfOxk3tBN5PYIPtwZDDAdu7mw9E03Ub89tN4vBUBt3EPiQ103cfw5 K/gtFSA3tObCE3SQttBfl8sAHb5HXVLQL5+YtG7LBOgfzlG3Ru9syIxQzgGY H552L6/tJlE/GJ8+3AHI+clpXPCqm9zRPNK04y7AE/s1zVHoZv/Ip03FAIec Vevc0RILpcmVpQC001bd8ugSQSHzjHKA96blyXdfdpNe9Tc36C8BzK7Jub2v 6SbsfkNJ9a8AoiwXRB+g5ctnz5A6ACG2OMUM9HGQd1J9A6B557r/ITQPPZKL twnAld8xhwutlpI5EdoM0L5Ta//PF93Eobu0/3cLwMHnGWFd6GyXobJP7QBL a6Y/30ZrHzc5VMUE2OrqYLod7VzGcNDvA7i1YkZgCzpkzpvc7Qdolp01UEfX h2euvjIEsG3f7wc86L2XZusCRgBmFyQ3V1V3k8jO5Q/GRgHcTn0RKkYXistf O/gV4K5Zt0U2euo6I9DhB0BBvUDHGXTcg1IF9Ulc3yOLYRS0t+3Xh9lTuF5X DuZpo+2GZbYI/gZYozMptxEtvCZpz49ZgDcUL2MB9MS9+q+75wBOxFq0L1Z1 kzYqW2DDXwDBfvU3k+jLp30u3l4AuMZY/rYXHbSyQEqcjQK7bWc7mtG7i/rv xC2hwJW/raQOLT1gW+fJSYHfilSF++gCU5V5eT4KuBQdd0hAxzAPxKbxU8BX 19AiGu3ll7mKexkFivuepYSi1fL5NIeXU2DKdsT6GFqImFYyhCmwZibknhd6 ovOUzasVFHgYXnHcDV3G++VgnigFrvJxLNvBmm+u9KTIagoeKPbPDqz5GjmH RayhAG/o+bXbWPNtS1g2uZYCwzrpt6zRxkfqMlzFKRASuf6yBVqSa1G+RYIC mz/JfDBFs13Ve0iRpIDN28QYgv6gf9S0RIoCOSUe5zajXzbdaJSWocAZo+tf DdH5nn27E9dTgIcf8vVZ8bKLfl2UpcBFX8NKXVa8mVsDfDZQIP79f1o66K06 kZwDGykQGSPOoc2K/92TJDsFCkhw/FLXYsXvPilZqUgBkbz5ck1W/AtKd1SV KeDQopPNcmuaq2GWCgVGpxMGWH6gkVEroEYBzkDOM6zfp75udghWpwBfTcxJ 1vsDXXmHvmlQIMFUpIE1/s6/cHSXFu7ngYwzeujNyYF/32hT4MSllecMWOuh ei9mky4FhE0Dpzax1qN2RPSWHq7/wJPHxqz12Ct1fa0BBdb3t/cAaz1mnDRi DXG/7z3dbsZaj8T4Z7ObKPD6jbuGFWs9FGutPTZTYD73jdtWtOeLf52dxhSY Lu6foqGtd+ketCQUWPRMH2SgVaa8J8qAAjXWv+R3occ39AqkbqHAzBH71+7o lkqRjKXmFEi/ZSV7hBX/dht5fwsKeLCXdZ1gxRtbQXGkUiCMu4kRzop3/cT7 GmsKuFd4rotjxftEcbf2VgqUXHKEi+jF75dPrthGgY9tM2nX0ecPPtucQ6OA adSS9CK0WP8Qu4Y9BdxUdi0tR+s1KiXYMihwfsV7qfes+C23MXqdKFCn2/iu G02vOiF+2BnzceX48Ge0d8nTgphdFEga2r+Tdd7mFIeOrN5Dgf2vLj9gncfo 3KU6+Xsp4GpXdUoMnXvJrqrGBfPB4a6ZPrrLf7Br4RAF0qrKmP5o9zHOqxc8 KaC5XeJ8FHrSXfGgxGEKdHUIF6ShBZ2P/zI8SgHHoWCJJ2izTZx8/n64vgNL Obmx/txbkDf6FkaByuCQJ6Vok4CtS4LCKeB3S2f5G/Tbn751PJEUuD+b3zCE Hh587LAxmgKxRUGRK7BeStTYeLtcoEC+4tznQHRMtE9WZzoFDidSXHZgfV7F lnzAPRPnx8yxCkBfDyxXnL5CgcL0W5dT0JWeS8pWXKOA7F/f463oKZtL723z KXCqdYLPEev9fqFHizWluP5HP1R54P2hdVlU3OAB5v86tfI4NKe0n96dhxQQ zb7LW4QuVNc8klxOgW/Kq59MoCfsbve4VVKgv5zLKRzvo8gLVx8ufUOBlO9e +0vru4mT6ELTqbcU6LHLmOpGK2Tt/v6jgQIRSnIflrzuJu/urJXtaKRA/Trh 1/boVQ2XEvPbKXA8qPvlLLqQL+aw5RAFDOm67oy33ST44nDUkw8UGFj5ISYc bSdmnqv+iQJzj/o57qEnFNm7V4/gemUGswvgfbuZGmwx+h3rQ6KJdD36fbSv TOwsBS4rRr6jvcfnOXd0vlluCgUbVh65jv2Ar3ee8l5hU0hUUVcdRI+1/gz9 tcIU1qjS7Ne1dJOvuVEKa1aZgnmnxdvL6A/w4NRBCVOoX37aPxn7j5bg5RJs iqYQdK8kNRv7lZKpV/t1TU3Bjtjv/9eN9We38MP6Labwmr04yQL7nzs1u3l3 m5uC04NauUT0zYuTJeFWprAku8hHjtlNrmnIcDTZmYLgGG8KHfunRO/gG167 TOGb3EWOSuy3fD9pfb3qZwqBU+VZ/div3bqWPaB80hTuWr7ZrPWpm3zezdf+ KMAUuk756kWhd7YPPW8MMoWq4/yG6p+x/6xNTFkMM4V7t70D/8P+b9XNMdh3 wRSumIjXmX7pJk8P30qTzDeFI2eNnyyO4X0+KWOe1WkKg2M1jNN/8TxV1iUI dpuCuyx/SB+aK+5IT2iPKRRJvP1BsP/llHns49pnChU6FteX/usmS7bRMuQ/ msJLDtEDyQt4Pm+F/CwZMwXK+jtrny/pIT9cmem1S7fAicdSJ614ekhLS/LY T+0tsIE9N1l2VQ+JySKtQpe3wJsPtTIh+j3Ex/AoV/T0FvCtXV0ru7OHmFa1 +b3daQZRe6xfFoX3EPWTNGWDSjPoirtUfPlOD7H9t01jTswcaJUSnhVtPWS7 T7RvXKg5hCUvW3GAjUkulpou+vSZg4ibxdAhBSYZlRPpOGNoAd/DB+/K2TGJ Yrj46I4sC+D+V3EpxY9JrtwrsDo3ZwE/XK7f8Elhkr+vD3+K22cJMvsDDSUe MomE+t+I1S6W0Lhr8FkC2iQ5TjbP1RI2DEn+ZS9jkvC9ha7PDlrCtE3l1VE0 3+Tw4M/DlkB9wZNwr5xJxCRc+xwDLaFpru2X1lMmMTjq3CGZZAnZ+lwKS2qY xG+FeX3pC0soFv5+r7KRSXqiBJ/JvbSEZ3o8m9c2MQnlb2dJ6itLmKnuiDyB FvzklRlUbwnVgg7b5JuZpPBh4lHT95aQoe9We66FSfqde1e2dFvCEelkHat2 JqFePeHya9wSrLUMm+N7mOSeiLHTgQlLaP7yd2EQvSqGy6Z90hK0lhl90WIy ySffdJ3Hvy3BPop3sh0dYvqc++y8JaS7f+xZ08ckDz7z3RXisYKV4R1TSQNM IqmSO6cuZQVBLls06J+YRCPMWaFa2gqMvixdlYPe0iboZL/eCtIeJd4eR3sE ny7x22AFF66OfI7H7+eSBkePx8pWsMx1OrVumEnMjnB3mBpYwZ8rDZ8Vv+D3 813vEgbdCnzl/FRKfzBJMLvswLC9FRhXzHPOouOdugUCHa0gp2j5BeMxJild MPfI2G4Fi/xtt+vQ83ZSUgN7rCD3fbNs1098/mfzeQ8vK+C4lvfvyy+MR0Pf 43SEFTx70X6seZpJ+JPlv/2KtML9vGDF+5tJXGdWH/WIsgIdsf+6AS1UOXuC EWsFuyoslIrRR2wqQtUTrCBAIy46ZoZJNrobp33MsIKMpBYdtT9McjlzS61N qRUsOZIYbT7PJD8XtKkv7luBxrEdJX5oC1e5BoOHVrDx9qbU6+gphaUtG8qt 4O/lQ0ls/5iEXlbbt/jMCnr4ne0eofmaqdP3X1vBN9r0l9WLTHKaiyYnMWQF eqocX24s6SXxlfutzn2wgjUl1a/eonNPHvOe+2gFFe8jXX6h3wxffNA1bAVZ r606jNh7yZq6drOU71ZA0V5d9g79IHrXQcFZK6ByWe74zNFL6ol37Jk/VvBq 7psyN2cvYc4EF32fw/X461ipgGb3yJ5+888Kln/MXX8YTbMa+i+agwoqIcFf v6O/8xzKZ1tOhaisrLOflvYStuqANz5CVDgqpOTEztVLRE7FjPULU0GKbvFN Cr3pS6Hes5VUsH11ZPtOdMzr77WnxKhQL6Fr2ICWizs+MrGBCgtfYzTyuHuJ gWkEv6s8FdI3R4hWom3mLqk3K+DfzfifdqKPez0MKFamwvwHDjs+nl5SZT3L 7a1JhderHaK90Xv4QxQ+b6aCt6DFng28vUTi+un/TphQIdZFjBijezed+rAE qFBendLliN7p5XdFcgsVDke1aEWgnV57CTlTqTCwPCOqF02L3j77hkGF5Adf n53l6yXLpRiMHdupsG+ZmFwK+n2ZfemIM8a3krHlJtp22NabczcV3snQit6h rc3NBo1dqeDYz60lyt9LzDg06+8dpULn3BeRNDRHptoG4kvFfsduVT76hZZK +LtjVLgmYNH6AE1xld/81Y8KW6PpZ5rRJtXr7smepoLZ2/+SuQV6yT9n8WWl wVSQ3Kd1dCX66fgaLwihwuIqPQ4Z9CbplXJ7zlLhe1PePkO0fijf5dRoKgwH NHxyR/9exTMtF0vFejOQeQxddnep/f04Kky1CiwPRuv0swk0XaDCTx5JpUT0 pP+Cx94EKpzQMWxJR5cum3/1PRHXz4updx2tYTwTyptMhbrHcnoP0T/bpnrT Uqiw5SFH8zP0Xe8Jw41pVNgT2q1Qi1a98mPSNIMK7Vu6l3eglf5+PBR8DfPn p37lBFotV1xsPIcKinSFjlm0FtWh4cB1KoSrn3mwwIov7YWGTT4VVqoWv+Rd hutjMvehsoAKAaWPfwuiTT9rpmgVUuFMWMRPEbS1ds6ftXeoUFBTrLsObdfT dftCERWyr5IIGbT9WaG9S4qpMJT0JW0D2knBSsj/HhXE7V6eUETvbAx9MVpC BaGY4VWq6L0nH/ntvk+FnEn3sxpo13U/NzY9oMJ7s933tdFeh/eee/QI89mD 7agh+uiKVGPlx7j/13t/G6GPP373M7sC1zslxtIEfXL/0twVT6mQNim2H9BB 3MaOUc+okHTsFpiiQ+76cc1VUqHlpe2XLehwxp3yI1UYb674TnN01PxHr6Fq KtQ+V7pkgY67Lr6OUUMFtZakZEt0vLVDY/1LKlgkHNprhb74K+7s5loq9Nx5 Mc5y6uUX2vfq0IOPbajoDDL3WfY1nqehAz4sZw9rXk57Q4WPbp27WM694GnN 30CFnXuUhVnO18mZD3lHhWfjgQms991idt2deE+FVIPuDtb4d8OFXNybqJAv enCENb9SRSuRnmbMRw/datb8y5pCX9m24vMiB9zM0BUBjwKq26iwaYarmRV/ peRPRd0OKlyaNuSmoF+82th7s5MKJeMruQm61ntvvEQ3vu/NvabN6DciqZDY g/vhvtFtE/p9xbsJjl4qWBfEV+ujW1yW3gjoo0K8D/sXHXQHj/H2b/24v9cz ejTRPcV+vPsGqXB5g2+qGrrf6c6TliEqGDEzJZTRH/59PGLxkQq7b+odkUd/ tXFoUR2mgqHEuqNS6LGJuMicESrQL2RIiqMn0l/oiX7BfLn1NX0Vem5EM3P+ Gz4f7v5LAL0Q72nr+4MKEbwv33Gj2fVyFj+OUWFp53Z/djRfpJDb219Yzz78 t3EG819Q2WoVmaSC3Thd4xd6RUtofekU5u/HR0u/ocWkf6pkzFBhTuqhSD9a 8em7aY9/VCg8pfa8Gt1lOjH4dwHPv9lc+GMBVn1e1RDPZg3bvaT5StCjHfty H3BYQ0HVnOtVdP6vX3ZsfNZwMmm/6Sm0U+CqTZf4reEPBMr5oLkWN23YuMwa ih9/feOGPigQ+ddGyBpOOHoc3IaWk191M22VNbxe9G9j1ae2ok2XlNZYwzys 7hNFR+jsC3m21hoagmRu86I/UG46fpSwBsFnM2njWP9ydm9aoi5rDZ8+7Sp/ gpa8uHdnrbo1nHKN0bREv18TYb5D0xp2BcRe00eHXC3Q+K5lDYWHl3fKo/vu jHOt0LOGCC7NTG70lbrw+3s2W8PqZ8ERL7Fer/2XLzBthe9Lqv2lja6PeDsT bW0Nr658G5VGB/KNfxDbag3RaaWFy9Bdqw0fwzZrCM66HzOM90Wq1tuD5xnW IO++oyoFvdLjZ6WsqzXoUn7pfMX7iWfBdjHzgDX8F2jj0I7+d+kOWXnQGrx8 NphVoYefe1ZxelhDvMLbrBR0+epP1Z+PWMOK14vaJuhddV0vC05ZQ9Rm6aXR eB/mbnzxRjnJGq52/mGfxfs49ak0f95Fa1ju3HGzD33OPtRGItka+n3r5WrQ fiGbGwTSrOH3rv1XL6AtOsre/bhiDf+6InKl0V/+u91UfNMapoNH/5jgfa/x OblDu8oadPzVn+zBfmKoUaQ8rxrn79/xxwR9seJiumiNNezguC8ijZ5KSNw9 88oaJEKDuoewP3m06fyHirfWcFtpy70DaJPEiDFKpzUI33qeu58N73ej41y0 MWsI2vVgFywwiXvSNj1vCRtY/qVRNgv7rRe7ntDm19nAQn/4o+NoqY3yh89L 2YBl9KK8FbqrYuHqnfU2sFpo8OrELJNYfyri/aFgAxfVl/40R6vpC/Qd0bWB YyvWKQ5jfzfTWx/hY2cD3gnFC8ummCRGwbT5eJgNRD6dKmPH/pKZWF7xvs8G Lhz35b85hP3+J/eBWdOt8Mkn3HpNK5OccFfaapO/FQaZ3OlCL5lk4fEx7kl2 W5DZc2RXNX5P+M2O//M4ZAtn9E7fsMzH7w2eKVOdV7Yw8t1JXv4y9vMWAk3y MnZgHSWj0R7HJOd9d1/+EmkH4jHNX9TPMMnhwxrFbB/s4CVtxmHfMSbRo29e MmyxDQ41JiaXHWQScfc9mZOF22BPt5R47C4mWbtxiakyBw1S/4wrmzgwydMB q7xJ9No7G5sl0HvTE7mectJgcc/n83/tmSRXQPrtVi4anBDktnqMVpo0cTzK S4PTDyXe6aI3VQW7lyynQQnj0kptOpPs3Dkbpy9BA+O4mVyTbUySEf+zdYsu DYpG63+l22A829oGF9AeoWziYWhZ4cc/Huvh78tWO7uj71wK59YwoMHDPx+X aaOfXRY1kjCiAZvn90PvrJlkMNcodwrw/X/D2peiNz6K9r2xFef/6H3yf1ZM 4hXofWa/LQ10Rf0Mj6KLDelx4nY0yLYY/+WENngqlpe0Dec/fzhbAU2tLuo8 Y0+DynSPzw2WTOL9ttXEyZkGY4ckldei7w9ILeN2o8H805T4KnMmcXqb7FWJ flzTLXoHPVvGW+9/kAZX+UTupaFN4ifDP7nTQGVh/zofdP3mutlqTxpEzdow JdG96Uc/BfvQwO2K58ezZkzC5fjsyUQQDb49aZNw2sIkN4nW2lunaaBoHMVm hrZRLjjpEkyDoTUcM5roRPYkzaYzNJgK2y4hiBYvcSsoCqOBvL++VZ0pfn8J ClzyiKKB6Hk9WWP0jvqdXv1JNDhaS7r1KEzSImvhduMiDbz+ND3ZgLYO1dzr fQnjrTJ+sBK9SY/Hfi6ZBqHx14YnAPMx76Hhqss02B9qRr+HHgwV4rXLpkH+ aTBSRx/Sry14dosGjl6bbIwJ/v1iSU7kbRq8dKd9VEM7j13JtLlDg+ap3kRp tNWNEwndRTQ4f3+rCidaSUQmYPoeDYR0ld0aTJhkbOy0heojGjyv427fj/bP 1/x8pYYGLzj+y0k3xvh5K2KdXtKg3O/0rXj0LW9TNaFXNFAuKX8VgR7UcgiI qKUBkDmto+itz/14vV7TYHPC5tEt6PVdj1T1G2lw+3lbxcRmJjE2gpZxtGbZ zeFRtHN2/clbTTTYYRQvN4COd+t+vq6FBhuuhXW8Rf8Zn6NzttNge+qNFfno Jl6Tk809+Pf7P0b3oL9514qdY9IgUc5Yh4HmarJ7btZLA9Vgt6StaKPUfTzl fTRI36h81gidv/5sRvYgDTa5KumJoc8Yvaw8PEyDNVJhEz1GuD5HrLm5JmhQ 3M+R7okWB6pVI/rFf8fPu6IFRKxiL0/SwNPVPHkX+ke5Ob/yNA26yjiGbNH3 OCnLabM0iNttf1QbrXtFf3XGAg3qnpo7sKM3+ug5H1ikwbLVR+LmNzHJKlPd dBU2OtgPXG3/jZ4d0RJ/voQOP74L3fyGrtBWk/rESYf3+89u7kDDWzl5NX46 XKrMlixGa2TLesygx742XbqFljm2vrBKgA4nt92XyEezr5ZWdhCkg9DkMc8s 9CtXcfVAYTrML9EfO48u0xXzpaygg4utDVssOp9nbQmfCB2qdT5s+A8dc3eV dtZKOmSrnL19Bm09J6z/YjUd8iL6r/qgjd4JBZ5bQ4dAT1dbb7TKteWPHdfS 4aqVgaAnepnFMqMRMTqcvVH12hXdlMRDBCTp4PT0ovx2dJUbd1g72mvb9FFH dIk+V3W2FB02UwJe09EX+zi2aMrQgW3q+aOtaIbiooWTHB26gu4HbkGPcmRq rdhAB5FVPacp6OB+Pcn3aEvZswkEnXvp6LS5PB2ezBmNGqF1j/INLVGgQ2ag ueomdL1VfsMzdGljRbgBeuxf33VdJTp88G3bq4s+23Uq4Rf68dGjn7XRK++L ni5SxvkV7QvWQm/ysLXfoEqHrw7aTHX0O9MvxkPoMR/+62ro/ev+U8xSo4Oz zsbTquiolqdsohp00JdcvlsZvbbI+XsTumimxU0JfSd6qvO8Jh3Ch16eUUQT 18QaKy3cj4cD+Qrols0qxZzadDhjJzkojz64uj6jCr219LQiy7O/DkQF69Dh V/5E+Eb0uYbFYwa6dLiYdOb7BrRkQeaeKbR+5yp3lkvO6lPv6dHhe2/5Tzm0 2e5WHW99Orzh3hvLcqeej7SCAR1GnrJps+wlzC/wCe3mkvldFv3vW/7MVUM6 HNmpUMZyYq3px12b6KC+LDeBZbmc/verjejQ389+iuVHp4MqWtEVOubHWbZ2 WpWfsJkO3H4HTrPcr1GaZGNMB0F252SWj/HbneE2oYOs2bpnLHMOf/GoQedf LZpmOa3qP8dQgvGe4jBhzU8pUwaMgA4nDNamsvzM/5nyDPoKfPnHMo22Y/V9 CsYzc8SfFf9HpWl2H1M6tNXkzLN8cmnSmNIWOvzkDb3EWj/eQZWeYfRrdbZN rPW9UlH/KteMDv8ypMZZVk9xK9lrTgfVks6HrP154cOWJWaB8XStP8fav1E5 A7+LlnQ4P7bLjbXfpxdb99lZYT4WmniooAV7fGz4qHTIEMj+f37oJBSsD7fG 9d//tImVT3WeWwRNbOgwvM53hSZ6p9nAnz9oa7G4A6z8C/uzqvmYLR36PHq0 Wfkq0lb6VNWODhuil97XY53nu3Y3v6CHgsMorPxuOBAV6kLDfInedp51Hta+ n1alO9Ah4P7DLlM0X6uMF68jHUCqrM4MPd9pm1+Nji01fWXB2p+hG5JaTnRY UfTlmzU6b5qxXGQHHSLCm4Yd0ClzZ23eos9XXKI6sfJ9sSg6Yic+3/Gwwpn1 /3N4udimdtHh2Cq2+j1otXVl4217Md+dBOM90FLrP6hc2EeH7WZKBw6jheQF Pc330+F4W4DFUfSkhvvQQxc63DZK0vdDl5utakl1o0PoG8maMLSp98n7zl50 cNUuDbqC1j6W+1PoMB3CblA0rrHy8eR75ddoB7g5eR3NHbYxz/AI5ovDp+u3 WetzqSNZzJcO7wpPFT5BOz3RO9nrT4cUPrpZP9qyyrU0+STWm6tlbR/QBq/i x7YG0OFh2uXjI2jxxmH3Z4GYbzsed4yjBz+kbs8+jft9rYZwYv334psx2H8W 4z1RkKCK1gxNF1YIx/pRke3Fui9mJ42+/kQH8i9hGKKj+sIyQyPx/Dwc2W6O vn6PbyE7Gvfv4QHRveheJ8mavgt0aGqx9riItrtubrsrgw62r8/oc+H9Jrpm dINsJj4v8HZ8Gbr3fNzCV/SPX3Hlomivk43FQVl02Je95cQGdDR1x4qMa3SI tH+ebI6u+und2ZVPB4rK6rMxaM3NyS5O9+ngq+FStwbv94zy1k9CD3A/0iKz ZNCcuiIeb9HT6/aGKqE7VC8ehTK8X6rXuG9GB0slnlZ6jPX773jlfnQ9+/mU hUo6RG2xv3wbvf91xOv8NxjvEc4nVOxHEp1OaM4M4XnNvkbNx/6l0VSRXv2B Dj3ixU2laEH1Ad9zH+mgRok48Bx9gdvmntRnOqwU33GnCx1Xvl7dapQOy1Rr XvNj//SfWItK+hgdfHRalP3QQf0aCkZ/6RAEP+xssR876D4mGbrSHpqvcqyX wn6vbpmfhriFPSwxDiDrsD99kWX0xcXPHi6LTxMT7Je1Za8+T8i3h43f3cR5 adjfJJkZe7Tbw7dyywMljkzSljrV78jhAMtNz/k67mCSoSTIVtB1gKbNT/sY e3F//d9zFhxwANeDb/d8cmWSHLvZGIFUB6Bt8X6WdQj75ecqmlF1DnBCbIBz +jDGs+Z62K1pB7AdeHT0rg+TUA49/PFQ3hHUQo3f0k7gemXzsns7OcLhq7te WZ9kki37mk/qbXeEbN6Lz53Qv6XSv7E5O8L18dclrujdOQrtKTsc4aqiYUgQ WiHP8ubz3Y6QO/WrrBBdXfifncgBR1hhWJrPFcAkEw+WZFb4OELn28snK9CM t3+0eWMdwaKi+BrvKfw+LKP/aUSLTnq6iaADcworU+Mc4VC6jvQ6dEbADqrc eUfgd5sN1UAPyj7eSxIc4e4duUEntFdwYKx/iiO82/dxfS46RHWmfyjHEYKb eUu0gpgkYc22vJu5jhDZZXbSCH2No8DT57ojcJyJ1TZD13Q7Tc3nOcJeEfVU Bponqox3zU1HuJ0/8jcAfbHfX8furiMYd/+0eoIuSJiKrahwBAfjsVGj01hf w7/8OfHEEZb4/1Pcghb07/dUfeoIB19Ku1mjT+6sp1575gg+3DdqnNFmG67w RlU5AiksUvdHf6jYEkuvdQTXXP6nd9ASwxdjRpsdgXF7181Vwdj/dEXP5rQ4 wn+ZqQLr0JFvgz12tTpCWMS4pyz62z13q/dtjlCYwi6kga44vYnnQacjRP++ yUtFbxf+EB3a5wi9rifun0Jf3KwZveqLI1zK0RpuR0tcvXJpAE2d9B9mom8s 4bl286sjnA542j+ELq/tL9/03RFgzOnRD3Q/7fzXvT8dYbd/L89S/L5VOjhi WzDtCGPdbGpa6BcXslYasDPALy8oOgq9dZxHZgkHAwxFBeLOodvt/VTfoH1F ayIT0aOrbSx2L2VAT3iBawZaMHc2IIyHAZKWx6uK0DvLHJj1ggx4JUpf2oqe 7OfN3SHOgG2iULk6BPsT6oodohIMqD0yFSGOtr4vJtSMpq2bNZVC50Yrh1hJ MoCiOnFnI9pew3anvgwDIqqbNXTRpWcTV4jKMyA23e4PDd3/7fLrJvTt6nOO jmg+p5yw8woMsPdQLdyOdlUqHeNQYuD5zjPZixZubX0zocIADac4scNoX7nV EU1aGH9bXFoE+kq81Kbz2gx4sOVVbBS6flb+l6UOA6b2BfvHoqXfGex7rssA 5i13wwR0o/9Oo7sGDKjuZpzIQKvVZU2eM2EAiPy6V4zeqZl/y5Iw4MqN20al 6KjMuy4cwIBx4b/PH7Dm7/O8MYjCgMsRex8+RsevGbrtacaAZWtcHWrQPzzl 3Cytcf110ve0owMXnh5eRHf/uBzQiWa/xDjxyIYBsjsiz3WjVz2NCpe3Re/d kNOHNhH8co2bhm6sjvjMen9pUV8dgwETD3/JT6HXWFp8DnViwI0TZ4emWevP 7P+uv50BqyzWpsygyziF5gucGdBP8fg6hx5wOi4Ws4sBPpSHtktC8fvkr952 KxcG8NVcnhVAVyQ07mVzZYB7cYiDINpMzsO9HD22IvbmcrSzbbq/ghvOx3kF ZQX67NW/l3gOMYA7WkFlNVpAJzmzCt3VdcB5DTq1XuV6oAcD/rQ0h6xF3/q1 p3TUkwGVXVsrxNEtW6qa6r0ZoNYx/k0KvbvLuSvsCAO8Vk1+kUYPe/8aMDjK AGENvQ8y6LmU9T9v+jBAlyeqWhYtOxq5LPY4A/vzM0by6LvB60QpJxigWVzO r4A2EC6T+IMmx0w7WN66aUTZ058BUarWO5XQfuep1tRABrzX2i2pim5LdB4T OsUAkZnG9yzrpBy62IVe8zcnUA09lfVfz6HTDEhv9ixXRzvmJoeoBzOgVNnN TgP9IP/6+hl0TdurPpb9iqu9okIYICRbP6rJev/9JkG7UAZ83XbETYv1/vKB UtEwBiz0hHeznPx0zKkPLc7Db6XNGq/q31zeWQaIivPcY9nxlcBV73AG2B0J FtZhjfdafItOBAMGlx32ZvlEi+G5mkgG0PVfCOqy1rfDSv3cfwxYKazhxLIW c3urfRSelz/r01i+OOAeIBbNgM+Xs5pZnvjoL/4B3ZuWu1QPbT8a+bwwhgFv s3W0WS79funAsVgGKDg57WR5xa9cbsM43C93vtMsH58uuc12jgE8gQ4pLLf8 qdpWjz6jrVPIstZC42TCeawPlOIyli+yD6Rtv8CARmrdM5YnuMaMpOIZkDMd Uvn/8fn/DQyjdX90lf9//OUCkXcTGMDb3Xnn/+OvFFc4mciATJeQjP+Pv0ap wTiJAUfVG8/+f3wJQ9+lFxnw72uD6//Hl7Fa+Q7dtDnI+P/jb9hennwJ5/+u W/j/4yu6796dzABb87EB1nrYq/mzyaVg/bGtKGC5VCsy7xt62QXwZHmF/iWr +6kM+F0UIcfycaPc70FpDLBxjupm7UcLKUk0vcyAZB2bGJa1zKp0+NIZsPtb mwbLE1v7g9MzGFAYR/Fh7a89/Ye0SyYDrF8qLmW5lDH/UuEKA24FDSWz8uP4 XrFl5VlYzxZf57DyqcVVsSQ0G8+fNJsUy1qHDBiWVxmgsk8olZV/Ez5OWR3X MH/6Xh9j5au930FKdg7O/0hgByufSwP9Ph/MZUB4Jb8uy8fPXlSdvs6A/Vbf BlRY7/8vp/lpHgP48cOWZa24e/6RNxjw+PmZ48qs9198/0ykgAE3Pbu+K6KP 5fHZad3C/PQySt/Iyv97ZVe+o90XKl5uQJ986vot/zYD1jVwfpNDB7VVxIgX McD88aI86zxHch6u4byH98vuxgOsehAltHrFc/Q66DsoiY6RqNl/qgTrUX6t 6zr0BR3xhR+lDODM07Fl1ZNUt7cGnQ8Z8N/A40+r0Jd9A6KTyhiw3nXwmSg6 M1i2w+YRA7xLJ5NWoq8lnz5RVc6AzS5flFj1rPCl8t3CJ1gfgm2ll6Gfyp2X Da5mQGfpjBg7ulLD4LjeC8zHB3PX2dBVmz9VjaNL55YrLGJ9feW4ee/Bl1iP fwfJzKPfR36/bFfHgASe1G5WfR76tFVQ5h0D8uL+7h9Fc91Y9udVF8537e6+ 16z7RFrjU0I37o9b77U6Vv2+Yt+4o4cBzx1/7H2FPpScduMHE8+z17s3Vaz7 LULGXnSAAe3qvS6P0LGuurfdPuP5jfuQcB0tIL1nD8cEAyrUuZYEoj9lhlq9 Q2trnpPwRz9dnaudNskA/6/s2sfR3stHeJWnGbC9roPmjX634FtmP4vnnc2d tp91//RFLs9dYIBWyaSLJes+zrxTDfxO8Kww5bMw2oqy7x+XgBM4jPOeFESH jAgbvkO/YLKz86O/agfc2yHoBH+64wU40S8bKFePCzsBF/vB79PYbwQsdATn rXaCVWfKurvQfS5LDHjknKCg0D4sE12o4HS3cbMTRCh03lyJDu+4kRxj7AT9 CZGhQqz+JXI6iGLiBI09v+0F0AKDyZb3iRPQFHTGOdC+aa2DqaZOkDC/nXMS +ys9LrrIXisnEPYISGlCv/hoE/jdwQkoz+94x6J7simmvIedQGDbw9MT2C+e 5Xs9qZjlBJOnjwzEYH9avffi1um3TjCwbavIKuyH463dX7f9cQKhVZ8MU7D/ blbuOJCpvB1USwvEhv2Z5M509A2BndvhudorfZofk/x70M558Px24H1rlJh1 nElGdh/k93iyHV65de9ZeYxJ9l5Z1A39sh269gfx3MDvCZtm3ZAz4s4gll8y oHEU3z9WdGSjtTP8yvv9esIb92vJi6CyYGf43WXGXYnfI053Bm/vvOsMlT8W tMq8sD9QMx0RKXaG/Z8W8kvRP+9dX/8Ovd7MYF0xOuahezopcYYAmrPQTXRF 5fcouQfO4LqKIZyBlmyedRl77AwxcmdCQtDD00Jrwl85w9/zB7mp6ABCiSzs dYaVnTYDnzzxe0Jz7e7jfc5gyyd5fQj9VPaXtlG/M/xTyPTsR7Px5HxsGHAG GEld6ETHNbFtGf/gDHuupFu9RV9xqVqi/8UZDsVP7y5Fv4ggoS+nneGA5oqY cPQn/9XbL/x2BvmL4TmhaG6Pn2pOM86wMS/7WTB669ar/SOzznD6c/e/k+j2 lYvG/PPOUCO9J/swevRG5TydfQd8TLy8j4EWrDcOGhDcAUeHJz8ooVurS+cz lu+AX9KeZxTQl5/IhzoJ7YC7cVpiG9EyxcKR74R3gP1k9U4ZtE7q5wtPVu6A /3Vo5+FUbVEAwJU5VC+kZGwgKqRBkSwlIRUyncs97hFShpAi4ZUoCUnUEzLP SpOpyJCkQoWISiFljpJU0lvbn7/Pvc7Ze017+zTtbv4hgWY5RKRckaTgULx9 Ci86k+td3V4FCgJEjW52O7/RcflluktIEZ8/51XMB7TaeG1DLVqk9/qJTnTp 55tN2koU3K8wMOlA1zcGv121moLHJ2XFm9BfE1aP8qtTMFm1XqQavXWzv0Sl NgU+8kJFaWiGfWrAZysF4xKqwyno4FNnylV1KDBQCVZIRj99ErU/CSjgZiqT EtCWrIyCwO0U+Lv65Mei3U407tQ2pGB9aIxKKDqhXM73njkF7xVUmt3RFV0r dnlZUGBZ3rjXDd3Nu0pG2ZIC26zYRhf0yj0bauKsKPCWim1yRt/tNJx/nEWB q4TpuD1Zz1+vbA0OBcxdz2tW6N+6j17fdaFg+upk2Db0+Csw8HelwCm3RE0X PXSwrHi7GwVXHnx7rYPuvHjncpM7BdVa7Wra6Gq8jI56UuAxx2paAx16KvDF Kl8Kups+z1NBnxL/pfMNHTO5+t1qtF/O0YJ7xymYJfApfxWJx0vXSMMTFATZ 3dqnhN4jb2N8IJCCS6bxD5ajxao06lKDKZijpyoohRaxuKNxKISCcwEH/kii +fpVstaeoSA+UnB8MfrHfIUzlWcpGLwd2ieB7uCI6XWGUaDuwIyIolO4xioW X6SgwPmLqzD6aoyraheaP/r4WSF09Mq+a9nRFMSd3J8+h8TP5H2ARgwFL1ea 9wqgnZMbtCyuULCJ98ppXrQK5BZHJVIwOiC+9u+BNzpP3lS/NLpGgYTT/MBp tIPPm0GeJMwftmjDH3T8DWG548kUjBSpeU6hBaQPhzJpFJSW33v5E931cx2l nkOBXXPct3G0f6zxkSG0v/gHDvGitY4RmblYL/mKL76h9zhfrpLMx/jSJXe/ ou+1TipxF1Cg5tcYO4qOuVP+q/kuBVT9tuIhtOreVrHIQgou8JjrET8dGFEx KKJAJtu2eRA9a6nc/rJirI8i0x8DaPeooGfp9ygIvFpq2Y8WXB3fS9+n4E2L 97c+dPrjO38XlVHQHLI0mrhj+uO6iHJ8/kuzV5/RO912JhytpECg8LvXJ3S3 AKdItYqCq7vWyRIHpvu+6EfzOtANvei7b3J46IcULEj2UyWWMxJ206/F/Rgq nfMRfb93+Vmux1gfm81qe9CWp7RT7qEVRJtPE0eUuL9SeULB7PHzPMS/FF5q S9RTIP7PE6lutIs6Z/wDeqpjXU8X+q32l9zcBgoailrziB+Yiyza+pwCF/+q 7cSqnIRG/hcUWDXxixInu6wKeYl2XnD64wd0UJDhV4cmCjYoiUcSf4t4na3S TMF8V2UnYoe4A3aT6N2enkD8Kn1CvLqFgp/u/VLE+jdD6s+/omBl/MXf79HF 98VOW7RS0LXq4FvilY/TNsu2UaBtdbiCOK5JfbQPrbcvLZ14TmdV5u3XFAha 8oQTn+g3Yfu3Yz3EXjxKPDT+XlS/A39uYMQQs7kOP533hgKHtDV7iRuFpk+2 o4vfaeoQ60hEaKS9pUByjeda4ptLpUZc31Hw3+PnK4jlVfLSN3ZSAD0WUsTR mzVtuN5TsKJotjixt4l13aUPFOjbNAgTWx44tkGxm4LbN5VFiB978Q6Nop9E R84n3hQYk3qvhwLrErGFxDnn8Gb+kQLjTWXSxJKxt+ft6aUgUilYkfh8sm6t xCcKhNJc1hFP5b3w70Ln3ffUJXYrtluX95kCdlisKXFn9Ui/dx9+XqF1P/He xoDkrf0UXMtQ9yWubBe2EhjAfiyXG0m8tjdepAmtmK+VRZw6qlwTP0jBd86n KmLRqVI/xyEKWBY5ncTB/IZrVYcp2JZ8+g+xk8yBa9UjFOyK9dMl8W1TmjAP /4L74RY7kw8GG0KELEcpOPbjYQSxsnGab/8YBWsCrbuJ463UVe98pSAiu2we yTfh/VW9/t8oaP+gpkM8cvy92fzvFAy07kgntgtxF+xAh1V/bCd+EfWnIm2C gkaJqH9Ivt/OWrJGYxLznSVwlnjZndwerp8UVB1rriGOebD56lP0J6usmXo5 9sqKn/6N+VLrGEasxR3TFTxNwZfmZTdI/c3ZfKfP6C8FXy1zfxF3uDd9mc/F gtMPZQ1Jvfp2zJ9OmMUCg8/NgzP1fCtCspCHBW2ahgakH5z+nC9/gpcF/YMq 6cRm0vUrdflY4JI6NYv0j7HQORoN/Cyoum78kFiFc3Zf7xwWWMlm2ZJ+9Cc2 k5UnxIJ77+4+Jq5/9ojxFGZBQHnaetK/XDR4PP6IsEDhsLwY6W/Zc0+Fi//D gmH/4P5h9NJyv0c7JFhw1mzl8Bh53te4eqFFLOB69uEo6Z+VK0ubX6L5H7py kf5qF/Ojiy3Jgq2NU5Kk/ya4eE8flWYBI9HjOIFeKOmukbmMBceFvpv+Jvvj w+TwqbEgFy758+F88L8rbVOBDtvUo8aPHh5rF/Zdy4JbIjc/Eb9wNfPoV2dB j065pSD6iv12jfoNLBjYF2VA5tPyPSseXdRiAVXm5rWAnDdW9H+Q2skCzZyc dln0TfuM6Fdo2ajFZXJo+WRGL9KABS0tw0nyaJ4lHVl/DXH/D1S6LEM/m//M vduYBWo7JkUV0dZT+VNZZrg/34Uzybz2bPZYtI5mwbmye8+2oktOpjn9Rtc+ khwl859LpfXuQzsWjP7kWkjOB5GhWqbmDAs679s4bUfna/OFHXVggVPMmsUG 6L6s+N/Fh1iQPIdVa4rm+Nd2bvFhwYc7FzWcyLxfIZWhH8UCoaMsrUvoTR2D ibMuYnxlMpJi0Esv3L9cht7fL8h7GT0xyQpVv8QCk1Myzf+hE+vjXGQus6BS m/a/Rs4rRyTUJ+JZINAfPzsXfa56QUVGFn7fVf51FbrGTrCdp4IFYm/cfcbJ /l2IVs4dY8HJ2iO9bnheVLJSSN6/zAZWbU+2H0Nr8k+VPTa1gbdLC84fwfN2 Vb7bjwXBNjBVdE+DF8/7XZry7QJ3bGBxfbhLJDqS875zQZcNKG+0pUXxfnDr xObZPKK2YCUqqZiEdvv3VX2Sri08Osats8TtjU6Sr0jhUm9bCFvUnP8fmhY0 qSrNsIXL3bd6BfC+URjU4v272RaWrUlMcEIHjY3vWM7HhkZW094K9Ae/1kvv 0Y58GScr0do8JV1X+dkgUnDrZhV6cuGJgH8E2RDd5ju3Bn14y6zCaSE2XM8o r6xD254VWd7+DxuqNCS5mtAbpBVmR0qzIU3rc38Pus/A6sGP9WxwLpvvzIv3 ofSpOtuCDWxY3yJnz4fm3NT87bSRDWp3PWz40W0SMptaNdhw/sbzXYLo2k8f b93VZINb6bllIuiMYK8MT2BDRfjnG2Jo+8qI8MFdbBDYLb5hGVrG+69ymjEb nj+ZJ7Ec3aHo+YS1mw2S0oaTxKYXzPme7mEDv5JviQIa6CUns03ZkDz7saoy +f5U9hFHK9wfWflfaug3GjWs9/Zs2NAU90cb7WqTH5u5nw2yXKdfb0VPB8a8 cHNgw7eK0Ns66KW1DvpTjmygWQP7ddHO5rzqiw+yga9coEwPPeGhL7jvMBuW mdTp7kLPz60rrj3Bhk42d7oVOrXh5tcIfza43iqwt0avG/tvjUUAG8/PJ+Qo tOWmg2k9gWx4cOhIHAudWCt4gSuIDQP1PSfZaOUeIyfNUDZsbehcsR+tJ9Ug diOGDbPtRurc0L47zX4diMX9+9bDcUfne7W9l7+M8eFePEks9qQrN/YKG473 6i73OEzuaxMQcJUNXl+jjnihg5/Luhkns2GvzMaRY+hHQV6PBvLYsENttfm/ 6F/Xf+Sm57NBum1TC7FKu38UfZ0NKaFn951EX1Y9a9N0gw0Z7MG9p9BOb+PH Sm+xYZfIc53TaL6Nj6TPFbOh5vKiqTNo/X6JY4oP2bB2fsLnCLRJsOjkKDqu +L11JJolO8/vXg0bpJQNnxC7W/AF7q5lwwnDyKwL6Niq8ZAjTzCenM/URbKe uJexFc/ZMHyI53IMemR9g8S5F2woU3/wk3jyeV2c2Us2VCql2MaihfkqE3ub 2EAF9sheJvHwupEh1MoG4Vt2CVfQQUbnC63esmFdoaPbVXR47xkN+XeYv53P HhJfPhlUOoCWj6cXx6Nzi46XB7xnw/ysOdXEL5c6P0rrZgPPzyDBRLTcb71X X/rYUP1nmWcSiedlsCrtZ4P1E9d7xOvXbmkPGsD6Ce+dnYw2OLDunfgQG56+ OHCR+HCzfK/WFzZw9ArTU9AP8qbHz35nw+ndaelpaAXPsMe7J9ggJDv0njhy 48Kroj/YkF54WDIdTVet0UmaZIPhX8UI4ulW23NFv9mQmWJ/kPw9wymhz8Z/ ig3PNp29RtzIeKts+8OGa6p9TcTXhs43N0yz4T9BzuZMtM7s+9K9s2gQE17z hzj7sf5o7mwanmtrrs4i+R/RVO3BTUPrwRAW8QeJgQNTPDSIB7beJT65ZvFt UQEaotYf5GSjK6199LfNpaGkOuBSDnqlDPdigXk0BGQHFRFH9UQONqD3PKx7 Tcxxz4yi/qHBlVdySS56VvCrDg8xGgTzXl8mPmTIXN8oTkN4w5c7xE1zh/+d Qrf6Gb0gTo3jWREqQUN71DO+PPS2gnWHkyRpkHDmcSHO9a7QdVxCg+M1nSDi BZq7xFZJ0ZARW/kfcXeNfWmRNA183TEPiY3CRs77y9Bwp6avjfj2Xj96mywN 9qdPDxIHdVzkbpSjobcgcn4+eiBJuvWSPA3b8v7KE5s55mRTS2m4m1iiTrx0 tHJ37zIaJoO4zYjDCo3l8pbTsI/7Mof4q9/rrx4raOiI9XQnfsg7emVKgYYQ Yd5Q4samReKFiri+n5PRxK+TdKPdVtJwvGJPInG366F5Cko0PLvMl0U8tPlS eCd6Y6ncTeIJvjLBK8o0yHMSS4hntXw8s3cVDd9r/CuJhVNEeARW0yAqX/GY eKH7xlOV6MHrDo3Eclp2075raOhMd2shXiUQemKtCg0WOh3txBtf3ZzsRxcV 5XYSQ2r70VRVGtz03ncTGx2e/Y2lhuuT9/1EbLFllYfoWhqcQ4/2E3MEzYef of+91TZIfKjV/1CwOg1nWq8NE8fMkbNz2kDDnAe3RogfbH24z2ATDY/NFWZ+ X53Q0AuuzTTQrsEzz2t+LbanFD1UbjjzPp0Z2s88NfH5Qcdm3rfPy8lAWYuG 6PE5M+v5qnPhUTf6mDH/zHr/CJdsi99Cw+hDl5n9WJAlqC28lQbdH24z+yfl rX6vBj2wQnhmfxV1bTQCdGiopURn9n/Lm/y1I4D5U8S+RKyf/epGpi4NMWYp M/E0PTq9ym4bDQbtewKIneaZKLzYTkNleJ8Dscdb37RQPRrMV7+yIj6RkyKn u4MGy4TVRsRR279J3tbH7zdLrSEu9bk8L8aQBpWPAkMkP2v0KsKNjbAe95h1 EDf+0yfIu4uGBHOBupl8z9vMc8yYBtbi+ynEwh/eTlrtpaGwXncP8cLrvMfm m9DQYDOhQSzvp/KtDt1oulieeKPYyeHNZjSssc4bI/XHMVjWvcQC812cL5wY Qqp/96Afhfe5E8tVM+L5ljS0vZM3Je7SSjbYYk3DL/WrosT2qtIFtjb4/vk5 UaQfbHMtq1tuS8O6CSN34mU5Nt1DaHWHHbuIPy69Kh5A0yDzUp+b2HGhhH8i Q0P82GkX0n/09xXFOtrT4ERPbCdWiLIoWLOfhmWba5YQfxKM6S53oCGYfeQJ 6V/Of+Ybdh7A93dQlCY+9HHOQll3GuTaVDJJvzSSz1X9jOb2C/AmVqYNDQsO 08BTvHob8WDbWX8dTxpczG+8If3Y9RlPj503DS2Hd/ITu9+eLkj2o0Gzeolu KvrIya+GS8/SYJSUonuN1GeNytx36H0fd8wi9hV0aboSSoNWlHMlmTeB0T0s kTDsN2uVtYlD01tcJsOx3tdmqiWQfl5XFNEYTUN9ffnfOPST+Sde+l3DfCwx ATIfjS2KYzck0TCibDBK5mdj3DdqFO14ozaJuGWpa7djCg0Xp6k/l0i9rGd/ M0mnYRHVdTsaPW6tI66YS8O15AL+KLRsCjfVXEjDVJ0qK4y8r0VRaWIRDUxz yrdzh8n/Kx+UdC7GeSIaFU4c5NX4ZqqEBu1L3WWhJH7b42iFMszPLQclzpJ5 80nF4Xg1rv+80V1yvlBbzTos+xzroWPigj9at/hmiEsfrn/IsscVPRn7baN6 P+bz60UM8Q3vjX2T6AYer04XUp/qZUZnBmnI9B9sO0T2N//xvJQRGpL9eWqd 0fmpnXGt4zhfTJdccEAvihS+oTvLDhz6oM0GPerg3CohaQenO6LMDNGbfjON 7gZ2wNk97ErOrxNnfvTk+9lBt8bDwAk8Pxv/bkyOzbEDxyj3JU/Rqvy3TkW3 2UER9dAyEb0jWALu83Cg8NI5L1f01uM/omdLcWAqm9tLB/3VOcNbewMHeBS/ 7JyPdk23dp69hwNtC066fcT7wrqW/AIpRw6kxDlbPEAXTjeGKAdyYLxiVyq5 T5yWji6IiOXAkrkdGsfRi0JZg375HDgUnq1Jo693Bbt3ou8Vr2lko7dpFYzp XudAZMQUQ+w2wj0pcIMDP+x9wmzR1ebXea4UcKDpTXcnC+0qzyVz5zYH1LZe jbVCV97LMBks4YD6uRZNU7Tz8GihzSMOvDV65LQD3fj0YGQJ+k6NgCjxhuxu J/FaDhjnRFbooWfvb5F4jp5qYRYTJ7wuPr6tjgOfMhRebEM/fxiorfSMA3G5 a40AvfGq8KOJFxzYf+Wkhxb5vE9I4r6XHJC0WrKCmNti+uhN9LprP9o10S/m jSocauLA3ipvPeJDIc2h75o5QJmdktqMTvS4alzTyoEtVM/rjWienStbLr7l AHdtXZA62tL2rd8E+un+0c3EWZ5R8jbvOGA06TC2Fm2UMOm+vJMDLdwbGOIL Y3WCxe850BznoaeGlkw4qPO2mwM+BywWq6DVxnJzFfo5cLSkaUoJHcRnZ3oe XeL4Xzlx8xLRyS/o5qncQOJj+id2lA5w4NunolnE9+N3fdg1xIHYpINCK9H6 +kPinl84sMBAc40C2iZ+zan73zmwLS0kdyk6cL1awOIJDvRaePkSJzeoH/dB Tycm6xN/+qvhue4HB9jqVT3yaA+HbUzeJAfOB/0jTxy8xko3/jfG99jnLFl0 fsXJWSdmMaBkpfJJisTX+vSf12jHfRplxGNjIT83zmagOfNkNPHG5efHvqK/ r23RIa4Mje06xMPArNGARHIffmWaW8XiZyCnssVBEj3d03xKU4SBJ3YWyxah TaJlMi+jN4hzzyZOgYNPv6IVU4c/SKD1EqcX5M1lYOOy40nE5y2V0pfMZ0D2 k7Ms8aIngbVTCxiQi0pXXkji7/NkwFqUgYx5UiLEZSvE5hWihfqffxFH2wXl WLmJMbAobKiQOFOrpe+dOAN6OZN6xOtuKAlVLGJgwt/CXYzsj6236pLFDOwa ijQnbp1Tsc8H3anBo0Xsd8A8QVWSgX16qQLElXL/rklewkCMZV6mKHrPpZa9 p2TwfYSeDi8g8dGV9X6HtvS400Y89uXgf5tlcb3VrVXEMcZ/P4yhT39/epn4 Da+yl708A7S483ZiZ99/Y7Yvx/0TOpj1Dzqd5j2bhZ692/YScZfe+eNCKxio vxH9LzHrnyt0M3p2RJ01sXHujZX7FRm4VG05lzg0av2Sx+j+hczUfPSjY/dE Vq1k4Paf6wPEW7fXfv2KjtKaV0e89u27siBlBoTPDocQu1fvL/iEvhQw5xhx bnZ/itEqBtx9DzoRLz/6/cyC1QxIrh/eSbxwrohp6hoGnr8UnEv8S2dLb5Ua A0eWhGbOI/mkUN22Yi0Dl7nLrxIfETZ4eg7d1Kx+gXjo9b4CU3UGwno/+BK/ 93Q53rWOgYtv9fYSS1mPuexYz4CU2L87iK23+tA56PSMn1rETXNOb/fcwED8 hQIl4pq0qyKzNBgojZASIOYKk+NyRFemWXERa3tkfq1DZ4Y0Tc5FF2253Ra1 iQEup7MDxF+Xbno6jh6Eqh5iVcEHZdab8fPJmu+Is189SZHTZCAwa/AF8cf7 e2OC0aKrlj0jlk99daYPfXAo7hHxVfcul5taDBh16d0nbjM/QIttYcB4zLeI WExr2MQXPXty8BZxBP/PDaDNgHdqZM7M9z0bAhLRMaZ/Mmae/ybl0S/0cHxq 6sz77zgmYr2VgXlHApOIawqMLArRoXVRCcQfTn/7eFiHgQd3ra8QT1kleCsD A3zDP6OJ13GNXErSZSD3SG048aFsnTti2xmoThw5R5xicrHpnB4DN7T3hxG/ nuwem96B9fpdJpJ4vP78qVJ9Bsx+bbhIPC9l/T/eOxlw+ikVS6x89F2yigGu j2qOI9Y3PKPWj371r/XM+5rfYfnqGzLA7+48sx57adXKNPTZlryZ9QaMte2l jfB9yuvzicNs8q/cRytJ5t4k/u/RyfeLdjGglnrvLvHdOKXDzejAPu9y4mru 6SI1Y8zfkzLVxC/cmqYj0OY/ftUSD+qeiDTYjfW4wfgl8dKB+uvlexgoat/d R6xmnvJdci8DJSbhI8RbHxzV9kVTIn/GialomQZ1Ewba5xydTfIrStNjKMsU 92e6TJb4Wrreel4zXM+584rE+XMX+9ujNavOqxI/7q4Skt7HwNs+OSCeDhNd FW2O/ZkrYT/xj9XLdH+gD9tVuhGPNqpb2Vpg/GiZmXrpWmB2WsGSAZPXZyJm 8v9q1Jt7VgwYLuS/T1y2JXlM1pqBp7Xfa4kLOwv4Q9CF+6SbiTOXPl+3l2Jg S8rCIeJzuSLhPSwGFnIK5Eg9BxlLpxrYMDBpYK9C7DeyuuQ6evmu3VuIXdWN P/rYMvBw8zNr4j33wrYI0wyoijvEEIs95R9ezzDA6zYuTvqTiKsE91X00RPS isR8cxUX/0X3SwVsIv5hqr/jiT0De4rf2xB3tAcnsh0YEE9SzSBO6p+158wB Brq7P+qS/qksOHWjzY2BuWqpqaQ/m1XuG9Z0Z/B+OFZK7OeTt+oa+qmb10vi J72sbIfDDHxZwDuL9Hfn6tKUMQ/MLw13e+KsEz4xQt4MiBzapELmx/KRr8d1 /BiocRjtI/PHOMOoJBUdeWcpH5lX3rapE7wnsN5tgpYRP3xqeqQe3WH0hCa2 z7rpSgVg/Eu82oiTOe52R05i/90t9ZLMR+nmfr2sM9gPzeb2Ss7006jX3GcZ 2Gtmz0vm7VzDja4ctMy7jhXEXBVBlxaHMnBIe/MB4o+5S7rPn2Nge232IHF+ 0O5/PcKxX33U+U3m9xb1W6Wbo3G/bYrXk/OA7UVflfpEzN/dl4SWo4GHFaV2 jQGNS7UaxMt9tL7GoC++lHYgHrKdLmQnMdBXrFFOfGJlsPaXZAbs88U9V5D+ VHHBeEE6Aye20u/JeaZ9OPOQdS4DblbbXpHzj6XRq8yPRQz0dlnLkvNVwo8m L7NGBj79/P13Czpn9JWJUS8DKrPUHxqhPT9mlm+YZoD7wmg4Ob+G1C8KPCZu D8L75e8fJP2iwLohV8Ueki/kG/mhB94lqhzcaQ+FSr/2hKHruYJ7/Gl7YEkk VpLz9UGZTYrBPvawaLVTQhbJD7WIBx8i7SFESSbkLnpiy82Patn24DDXa3sV yV8lCfko9CKlMg/iDPFA9hf0tU9jicTmI7tar+fYQ8VquUniW0mfHyvn2cM6 ibN51aQeZsvmLb9hD7LjPnNr0N2PIzwX3bUHGYPbNbVozbvj133QLX72X4gv JtsMtBI7/Fn8mMTjuNL+2EJ7MNH95k6cqPzIfEGxPfDv6ZSoI/MvYkpD+J49 lO/Ic3yCLji+39sFzePHfYGYz+npzafo5192lBAXbv1P6dx9e4gKOjfnKXrB 6LolfOX2kHhszg3iQ2+vWjmihfrvtBJX1c2KqUHL2O/8S+yR8lz49AN7qDVa bfKM9KuIjYbd6LS8AF9iGb/EEN0Ke7j1vSSZ+JgTT3Uy+qp8Zx1xg5nL9F/0 H8XhUeL/AU4E3m8= "]]}, Annotation[#, "Charting`Private`Tag$104912#1"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwc13c8ld8fAHArO9mSLYXIvBehzieuEZe4RtFAw9YQKVlFCNkjiSijpBKS 6KvUNTLickP2RWmgZRf9jt9fXu+X5z7Pec75rEfu2GnKSRYmJiY/Diam9b+K RfW6PRb391TqWsQ7OLxH+5ae83ppxyDyAwJTutt71B4rFKSjnYUyj9XYpvq9 RxttQVVKuwQl5Q1v/BD1Hqk97Y3m136GJsy53bvK36M9U3IEbu1mVD3Ocomf qRf11Oj56xe3IHo0xwlTrl7kGbe/3Fu8FWWkH2ZxEuxFKTtDVdv+taP4IJOR zQq96NcuX0FTdxoaVrx0SMa0F5lGNHNzaPehnE8WLziu9iL+L93Kt6f7UP/G CylBCb1o0HbEXLe4Hz2SkDCipfWiM1vnoz3EB1B8BNtB0p1elN0kz9rybwh1 GUV/1a3vRefZX4aS3Bko73Sxy/NfvaiVvOX8Bu0pFBCTmJZl04ckpvte3c6a Qkxl70+FO/Yh3/gMHv2/U4hcnSPpfLgP8bXyF5xq/Iwq/+0b++zRhyhmHO19 B76ie+8/u/mH9aHBvXNypSEz6HdUU9+x+33ovMSUu+LETzQ9x7lhbLEPSX8z SQgQ+YW2O/hmh/7tQ821hU8azH4hJusTMkLM/Wiz87G/h8p+oS/fLE9u5+5H tTeGU5IDf6PDfxS8f0j0o2Oehs+GS36jwNvcO2xk+xGPXs7QjoHfiLX3eOo9 hX50uO+gYuOeOcRlw/TMeGc/+idCf7HMMY/cQm9c2ranH937qDVuqj+Pbm6/ Xkc26kc2T1M40n3nUfheNyM/0350x34/RY02j1r05l1vWvcjC4VHQZdYF9CZ 5+liJZR+9Ps3b24LcQE9Slaxf+jYj0hprVPHbi4gHb33d4uP9qPpY8oby9sX 0N5jWj3Zx/pRhlas1uraAnp5TqUx2r0f7WGZOmChuYisH2y95ufdjz7RTEKz ji+in7d+7bQ+1Y8SCwrvTGYsogvv+V4p+fcj3bOsLZoti+i0rhN5NbAfjcGx mbAVfL3WtbG2i/0olr9BsF11CR1itfFtTO1Hb1vcRt8cWkJne4Umksv6Efdl lrK6uCUkkJ0q4tnUj67/NDZ58HkJnR9pP7hrpR+ldjcFxRUuo895XRtPHvuA ctLbh8wl/6C2UcLFDsIAerS5v7iRZw25iNz8qsoYRN+7Lpz7T38NvVnNyIK/ g0jjmjg89VpDKqkzpYfFhlDFsvOHwuY1xJTRf+Oh1RB6NjDMExX5Dyl+G2h+ VDuEXN+d1SsIZYKXe4wL+DOHkXdyUK7LPDNcUt5Q5GA7imz1OjJO8rLAlFJy erHvKNIbk0/02coCyr9PwZ+YUcSu8S4syJYFonYa6TyuH0V3OxVckx6yQB6b day06BiKCwo+mEFlgTL61o6erWPIX6bLJmeQBbZ+1zsQpzmG4PSlvSVcrEB9 mD6xQh5DQ3zd8i9PsgKHuUXtVOQYelOtKNEYwgp8mz78LkwZQ6VHQ4Xa0lhh n9hi97HbYyiFvYeHVsoKtzqTSHIPx9CFR0psfQ2sEPYogDhWO4ZcHMP+DvWz gkHcg+TbLWPIdK1nbvw7K7S/+rTXpXcMqRUrz3xmZ4POTxo2D8fGkIh1+MdZ KTZg46z89HN8DP2dpw/PEdjgzY+rM4SPY2gyd0fviiUbrApaup2fGkMVM++b 2IPZ4Lt8xpW5b2PI+rrqPeleNhjp3Ws7PDeGiMQr+QozbLB/g9xJocUxJDnc d2MH2wZgTQ5sN1seQ19VI6/paG2A2MftsQ9Wx1BM+wdv68QN4OhlfuIoOwO9 4onZGWbKDl410oqnxRhIO45RMVzNAbaU22Y79BioV3WDfl8nB7QNONnZ6DPQ hU6lhq7PHODMW8AWYMhAL4TPdL7Zwgl3SzdaVwEDkW6vfbsfxgmLqg2EzfsY yL5KYtt5Uy5I8egV9nFi4Dh0yOLr5YZnqcqNOy8w0ObLF6U5v3PD0wM6LGzB DFS7NbeImZMHtOdv5/ddYqA1z8nKuV08cO2B4J/z4QwU89u/ayCXB7w3My1m RDPQDc5krpKTvHDAOeadXTr+vVbrJTS/ESYM2w41PWSge28THRN5+WDvwI8C 1ccMlOVqpzm8lQ8qFUXCk8sZKCBx6FMwhQ9MhdP+2FQykNrXWdvqx3xwQXn/ 56oaBiooEFLa6b0JyIuFPJxvGChZr58l5PImEPF0DjKjMlBY563h1hubgDDk fzaqkYGcV7eleTZvgumMF3yLzQwUpyr5z1aQH54e8xipb8f7E6vmff00Pxw7 YJnS/56B6nqS+wiX+IFWZPH0Ry8Dacn8Jg1F84P4g6Bj7P0MJFf9TEYljx+W q2ccdwzg/ZiA9y3t/JATyZlvP8JANcgO2HYIAL/J1UKtTwykHv/04QOiAISK LJtsnWKg4l4xCbu9AmCkp3lK4DMDZfgNzRccFAC7h2KUT18YyD/n5AMUIwDu 2YMe/jMMpLIYJHppUgBWeK5/EJpjICbYayn5UwCGPJ7nzWDTY7kj/lsVgB21 rCHUefz+W3K//BMVhFO0i+FeiwzUtfv1i6h9gsD8/np58goDFUXH/9zmKAj3 ZUUM7f4wUHCn/fbmY4JgH7GLIfiXgba6TSVxhQgCz57OC9dWcXxE8R5PfCQI Mbc8Ru2YxpFlx/ss9TpB2HEhV/8ftqzo7fauZkEY48wrL2EeR29LNHWEGILA O7x79jvLOJJsc+S6ISQElxQqnh3ZMI5+Csnu2SUrBJFKm3/+xG46/MV/QFUI fqZQzCLZx9Hp2UtDkqZC0NCxaJHLMY5eCxQ8LrggBIVq3FWPuMZRlrP3pNFV IRD6T2BAhXsc+d7VFp9MEYL7kiBTjC1CbLqy/YEQZEYXcabyjCPPg98cHgwL QYtQt5vZxnFkWFAVR/4qBHf/ecU/xBb4GvpyZkEIvpb/6uXnG0e1l/iVNfiF YaZ4if4Oe+Nt4t8qI2FgzuQNUOIfR+NTaxqO+4UBWWRXBWFXa7ScXDwkDMM/ LohTsV1fO3fuChSGzCIVir3AOCLwKLANXhYGTs+57Tewuexn9EIShUEi+4/c B+yKj+F36kuEwVYlOYEiOI5i1Pb1uVQJw1jbn79x2IeDBHmZG4RByO9Yxits jVeDcKdDGFgUVR1/Y2/gKgo0HhAGdrt6tFVoHA3Yniqd/CQMMhmXKDbYj27q jl79LQzOH98kBmMfVG01b+EVgWJfz6tN2PwSmdFq4iLg+CD4/hR2C9cxavo2 EYgYKhdkFx5HEUs7Wf5oioDnK6cGOWy9qWXktkcErgtSn+pj/3jfGNpsIQLb 3rv+sMG+R02p23lABNhLys+ewHatPLKcdlwE2pU09AOxN99R1l05LQLib50s IrG7kucDXENEoL6t6E4idmx4Q0VTrAis2sQZZ2HDqes/VDNE4OHhSztzsZcO O6mlFYiA6/BX13zscsttvssPReBSpfnIuj31f953qRUB6xqW4jxsWeX/phqb RECyMaomG7tf7No21R4R2FqrJ5qKnczucDx1VATSrka/jME2n5ctWPomAld2 0KuCsZkmp0eOLonAePPVBW/smu4ayUY2UTh+ezXqIPaZhihnFQFRsJK85WqM rVRucyNFShTcBl5eU8Eey5PsXVQWhZKyRiYB7BvXPwsd1RGF+/e4m37j/bYJ qbKlGomCH8uGgR5sTp+IpB37RWEwnrD7CfYrJ3JH8iFRWCCI/ojHvmC+mWfR QxToett+H8fW0J00PxIgCpFbB013YX/eVh79JkIUPvY9/saDfYDVnCU5WxR0 1hJ23MfxwvdLCBaKRMFMMrTxHHbT2Gjo4QpRoHkcqjTA1qkPWlZqEwVief61 Nzg+Z8uMdZP6ROHVwrh/JHZxzqbA+QlRuMbVWg7YohdLfjT8FYWgX6qqlTj+ 33mcU1PiEoMXJy94e2JHOyLfRBExqPzK8W8L9oJ235SzmhjsH4tSvbBpHPXO so/+dhGDL0yJRYI43xKHuyWdfcWAw3/nnQqcn6btec6vLojBXsOHS/uxq+/r 9CakiIEsQfbpFd5xlHnCvWPbGzHwZNt/oQXnv7WdFk9CpxjkZgba2GGzG62Z /xoUg9QHzNGDuH6cl8mk1s+JgV3fAvck5zhyHGisO7B9M/gy02Le4/pDMD52 97PmZig74PXUHluwbC3u4u7NIFDy8yYN16t3obrOOfabwWafdRKVbRyZyd1f GrmyGYJFzyom4Xqn55lAdB/dDJ3T/514huunKE1JavHrZigYdjAUxJ7b1cgW u7AZWi9epHnjelvOs9Zzf6M4XOavJIrgeqz8+LT/jIE4HNSA79ZLDLRlgfI4 4IY4RGweCnD8xUBLR79nbigUB0b4X6vrP/E80BwflvlYHGzObvna8IOBUrOp VjVN4jDInu+r8J2BeHbrTP+ZEwc2q5m7774x0N9IceVI2y1w7ebtrTWTDDQq MHYnhVsCynyeP2LQ8fMuTNhKikkAI5rlYm0PAzmOfGIq2SoBL1HWw+RuBnpX OnP0haEE/FDSPUDswvOG8Z8tU6ckQF0n9JlLGwNlB4qmGfZIQMtPDrZdDQxk 94EcOZUjCbyt9CCmBwyUiGy0/O9JgtEea8uY+wzUWmTH+FslCde2mmXw3GMg I39nJPhOEhTC1RN5ixhIg8fzjyGTFMw6CEv/yGOgjbsjz6WekAJ2i20ce1IZ qDn/+fHdO6Xh8ds9kYvnGUjp8vUXv/Sk4c6GVEdyIO73bm4i90jSEKvfu5p3 joGs5bmaBQ9LQ1Wfw9vdZ/D+3T2443OcNIxH7zrs5sVAk8WLP1I/S0PBJolK OIT77UNi2Oe7MiBVt1vt2G4Gyh062L7vuixoupz5Dn/G0CsZ0ip7mixUqNbs 3Iznu/Fj6mrUG7IQc03Kc2ZhDCl92ZC8p1AWnnpe7E75hefH+Qo77TpZKC9m jX79ZQw18W0clPwiC+Nvah++6RtDs9Dw5TtJDtbkv9iaVYwhVKTMkflXDvQN 0l56uI0hfo8WiS4WeYh2NfwYfRQ/T8lDg5tLHrqbeZrvHhpDUWWFTmEi8jA5 7dXQ6zCGWitlytzV5IEhY14gZzGG7F+L2Oq6ysOZsKAkS60x5DnKnNP/Rh6m zQ6fnWPC87X4gJpE/FZgMDNkItVH0b3u7OT5NQVw0af8x35pGJ3S3TXKmbod zjO80vW8BlHuwZ3W/0kpwZOq5l+niB9QSr3GYlOiMpQ9rfI8JdCHiF1C17lk VMDjHKkk9T86ytvOfqQgXRW8TP4cXCjuRtVK/eL+ymqw29AhOyKtC5W/ITNK 1NWgMq+M+CG+C8//DfeGiWrAN93HpxPVhfLSS3X3GanBu10CMX8DulA0U6iD 7CE1+CxdvfLCsQs59sulvEtQg4NFfqqbJLrQQowPp8oPNbjd52Yqbd2JdKfW Fiaq1eGAtpOb+s0ORHp5SOjxC3W4IdIzvzGxA1GyatSDX6tDXpzLpvnLHcjX zN+T/506XP72ZnDIqwPll3z8YPhRHRroZ2WF9DsQG8F9pJVLA4pPKXhIDrUj vzlyw1Y9DejcGEQu296OAlwv7ecy0IALgWcItyXaUXD7/eHZ3Rrw7rBd703+ dhRbyL7y3FgD9jztNi9bacPfv6+0bPZrQFXiqWndzjbUW6VdGOKuAUrPH9n+ utiG9gRuiXmfrgGX+8/lz71vRbfy5WOWszRA5IrgQ6W2VrTStiNGKkcDSCGx i+6vWlG1vEHMyQLsV117WR60IrWuQzHzDzWggNcuqTKiFUmp5MaINGvA0+FY dSa1VvR3TCbWYVkDJJaLnxGT3yJnXqXYi3/xer541T2KfotqdDVic/9pwF3N T02aoW/xvA6xHzdownHylmkH77fom4FbbKCgJkz8C9kiavIWDWTeic1Q0YST z22tzv1tQc/J2669P6IJ8guvzsf7t6D8zAJtqqsmsLmVyrR7t6DYMamRiuOa MJ4RqypyvAU5BohqJ3tpgued7pOv7FrQXA7HsEWgJqzc+MR0idiCNL590XiV oAm7s8Q1wlaa0b1rj/pL6zSh4InLXGFcM0ru2RGZXa8Jo/l/3n+LbEZBUiU7 Yxs0YYn5TLl+aDMyfXL7yslmTQjP2GT043QzmuxPVpXt0YSRV2Vnah2akazS uYiMr5owR5hNb5ZvRllNukoR4lrwazqQu/R1E1p6PifsKqkFov/NXtnwXxM6 +PAJM8hoAQeZR83zWRPanK4y+E9BCy6SvvAalzWhm24yieEaWtAUkHrFOrMJ 3frLPhdmpgX8L13+1vg0oXyt3pehgVqwmnH4RINEE2LanlZ25IIWdKWrv/0j 2oRcxW2yd1/SgvujKR8NBZuQHFOr/2qEFriYJxB7OJvQnY7/toUmaMETP/2m /QuNqNCzKD7kLn6+ji1c7W5E9/MCDlyiaYFDorVpU1IjcrXlqc6ma0G6Xq9V cHwj2sx2R7imTwt4mVVKiTGNKNarkzY3rAUXdj+weh3WiNwJO8invmqByoHt z7RONSKF1lFwY9UG6b3c73ysG9FQyPnb4ezaUPFpS3+qRSNKU9+4lsulDZx+ /Z9fmTYilgz9uoFN2tDyvZ9bCzUihksG0V5SG177/W320GhEefMWO8yI2jBh w7csKdyIHO8xYk/qacMry2WVCv5GtPHQhalIA21gurdR3HpjIwp5VVT4aq82 aD76j+8meyM6FM8ko2+tDeqVIROXl6los1y10E4PbYivIPNfH6OiNLLcqmC2 Nuz9itzPVlIRXUqV/W8Oft4nOQfmJ1Qk+l1n08c8bTAPnbyd+YiKbqSQ5Z4V asMVn00GtPtUdKs3yORQuTa0GvzZFp1PRcWu767fbdaGhZbDL74lUtGU5ofM hFZtOORQSO1MoCIl1snbgR3a0CCV+6MmjooeFC0/MevRhtNLl4tuRlNR+VeF 3m8j2pB2e59sThgVPQ+4JE1Y0AbD5y7u109T0YpJtKLUsjYUfDXge+1HRYZi KRrsf7Vharb+7h8fKqp/XmzUz0yAZ+AfF+pJRa/XaO4hGwnwMsz/S50bFbXH Kj2mKhAg202ATdaBijY6a9c8VCRA2IznUoEdFVmr7GnI3EGAtAPSxUoUKqJ1 2PV4ahAgz9ZIjrSfinoFwxd5DQlgkJ6HKvdR0eit98jBjgBXJQOOn0ZUdGFn bW2IIwF6ixJG5PZQEX99HrHQiQCZ8fYPPhhSkdGoh8pvF7we5j5lJ30qKpRb EU3xJUD9ucH9WUT8PhUjKTWnCWB48Nb0OQIVvTd6wzvmTwDavsUXDtpUxH4i gUX9IgGEdn74oqRJRZ7F0rPtVwnAVZu9ceNOKmLSZfWaiyUAMzFiTFCVirKb pyYkEghgkX/rrZQKFbV+Lv/gnUqA/qqHnUbKVKSqYtzIeZsArKYexm+3URG1 ThE07hDA3cvQdVGBio6QeesOFBFg9+m0wB3YiX7vy4sf4Pc9+jH4tjwV/Xzs cYtUQ4B2wp4kqgwVxQFZzLeOADJqFzZuwZanaaSm1RPgV+ZdzwBpKrL/tRwz TiXA9uoD93SlqGj6yggLdwsBel7LRedLUtFVoTehmm0E+O+LizYfdjUh4VwE jQCeOg9nF7fg82k8M1tCJ8CHy7/nz2FPOTh4dfbh+2lKvpwTx/EdJO0iPUKA pvGAa2zY5RysAyYMAjz9jxaZtpmK9t2YsvebJMDyA28tRezg5+UWL74SYED5 Vt5hMSoStMhonJghwDXlAw5rojg+By4Cz08CcEukVRRik3yO1mnNEUDy+3DF fuyhP0Y6zosEcL7eQfknQkUBCYpPLq8Q4NChPUmV2BuleFXvrxLgi+zWk77Y e/a8l1tiJUI5iYv2TRjH07vnt2Q4iPC5b8q1Avu0S56YGTcREtrmQkOxOX9c ST21kQhZaRLbrLDzIzw2ZvIT4YKrqZ0c9i4Bcux/QkS4LH10w4oQFXUXaLB+ FCWCV6CFXh+2t5ZIGO8WIrxp/vm5Bpv1zfKSthQRrmrtEr6NLbwqXU2WJYIC 8Q5/HPZ2XdK5k1uJIEjdffAitu5ZL42w7UTYoLD5sy+2+YPEmUxlIrh5Gf53 Atv5Y2XpY1UidARV0V2xfWQ+eLSoE+Et8zUVN+wQpzUFhhYRDGIb6k9iJ6Zt HV8mEoHH+UT8Kez8DvPbgruIUJd2PvES9hOOU4dVDInwR/ovNQH79d40cRIi gnnFosodbPqlmt7DRkTo4fN5VYf98elwWqAJER6IXwz/gL3wncU20ZwIM9XB 7n+wOXco8ZVYEkE/qdV/fb/ET1i1vbQmgqjS6wJL7B15/rH9tkSonXj+4yK2 YX+WyU97IjCYuI6UYVsJ/sfCfZAI8Tc3TI5jHyWPv5Q/RITOErZIKXyeZ6I5 Qg2OEqH0j5PuYezLr1T17d3w+kgH1/KwCwlBVVc9iKBbl/5cA8dL9albZ/O8 ifAi0f9eOHbzvQa1Z35EaLqrd7sb+6sk7/3P54hgZlaeHYXjUX1DQa5lBBFU tM+c34zjGVCT84lIIux9X3swBpty8ZtYaDQRKvcTd65gB8wQUx8lEOFGU3PB N5wfte9bowWy8f5OKp1exfnUvumH8Y5bRBhcWLoRj/NveJ8Is/FtfP6VUflS OD+Z6l0uBRQRYUJbAFnh/DUpnjvd94QI/MtJgQNyVOQ4Jr7zRxUR9NJ7zWNw /ntuQV85a4jQ1gyfdLfi/E+8dkK/ngjMrrcDC3G96Dov7ZTbSoSdeQoFpYpU dMjM3Oj4BBG4b7Ktearh87rNuG/6iQiWTqkJe9WpKHkpWGDHFxxfehEmUhpU 1HT/4diPWSLczgH1EVzvtHiFwsNWiOC4JebxVVwvuWnDddkCOsC0g9TqtZuK Pw+CtoYK68A+AVAIwPUXrvDHu4rpAHnQPv4yrs/ntY2dFaV04GT94YtFe6mI kXFvqUpJB77hLycBUyqqcT5H7EI6UPvvc8pFXO/tKnlzK4104NGGsk+VNlQ0 y1PMlmWiAxERD1V/2lKRwn/9PUcsdcAEnl0NsMfrl9nj/81RB8am3hnmOVGR xyTnY/ZTOvBEW4AUcgL301N5Srtv6QDPo+QtB0JwfEYLsLjc1gE7Yb9aPtzv VnKjBiPu6MA9rl+pb8Nxf+nwTqTe0wH6FuZP5pFUdG+n7pzlUx2w3Ww/5If7 p8FM50vndzqgeK7Xcn82Fbn6Mh+4wKQLf5Y8dx5/juMjKkDjJqsueBul7Air w/Xr1hTXC3Zd8D/Oq3DrPypSbu948Y9XF5wvRLMxGqjol8pN+RhxXbBgqdqX 2EpFUd+0ZjO0dCHM18o7cIiK7nufuFp5QhcEwtRFvVnwvFNgyZXvoQt8K36E Z2yNKL9P63qCty6oR+LvI45GdIPEnHHyjC48iJvlesiD5yfpvEKxEF24eTXM W1QEz0/dfW8upemCNNOk4iElfD99SxbSa11IIR28eNcGzz9cWuF0GT2IPeLR 8KWkEaV+cTKpkNeDs5emJZ6XNqKYt5d5krfpQVr5fEjcw0Z05hoty1JFD/hs SNbalY3ImOts+WsdPZh4nrIpt74RfeYsZ5Rb6YFG+JJ41/tGpM2pRrp+SQ9+ DvJVl21oQi3sO7hM+/SgTUEpaQOeP99+SOGyz9sFWws/Gt052ox27mcu4T2o D9ypFtYph1qQ182xWjc5A+iMPWzOdvUt4oht9nEbNgDSYdkI47JWNNDTX/Yk wxAi2S33/f3QhqLmnU7kHdkN0jSRC7CjA6U8H68hbt4DXKEazsye79B5u8FI r/E9sBiUaxD8shMlWa6NzNxD0HBX5ojj1S604Vy6D58mwKZtd0WmttCQ+gOG fEAGwAFrzSy/pzQUV1WhpP4boHWK7pNs2I3+Td84L7h/L0Q66DYMVXcjV/5n /95U7IW0Lp+7N9R60C82p77WTUZQZmPJ/ye5B53xLVQ5KmAEhnxG9JjUHjTb 8z38p6AR/BzfmyGU3oO+3olW2ixqBGfnvTYqZfWgcai6eFLSCG5QazpJuT2o O2STJJOyEZxxM/ewut+Dnsw1uhKNjCCXoOOc/Qrff1Lr6+0AI3Ah+JgJTfeg 0vy8UZXzRmBm4dFwYKYHfTzM/f5ZkBEM9qzp5Mz2IOf3jJedwUZwKNpPWOZn DzJuSs74F2EED+RM07cs9CDRe7Pgct0Ink19jh3714Ne+JRmSRcbgcCIbmWJ IB0tKIpeLy0xAqYrjT5tQnSkOXn5is59I/g8KSs1K0xHxYed/KzLjOAEjcVb Q4yOkqw4jcMqjGC282XpPQk6OqbuPjtcbwTuDwJrPRToiPO3nElunxFsEHlS KEOko5j65iS+D0bwQS9rjl+Hjtjj/AbCB4xASrrvCLMuHbHJPT99bNgIcgQ0 Qkb16Ih5v81NxQkj8Fr89ynZkI5WSsO+P5k1AmbH6sAWYzqaOTaY3bTBGIS2 vsqMs6UjX7XLk7ocxnDNL1LAhUJH08vb1e9zGkNlwEiRlh0dfU32p8bzGAOX iq9Enz0dfarn+m4jYAxhcgf1RQ7S0dgWPdKgpDHsdvlu4X6Ujrq702e/axvD zSMjtEPedLQaqugfQTSGT1eb2bb60JGScu08v64xDAQbKH/BDgsf/aupbwzG EX2m/n50pKy6gycAjEH2k2Bf0Bk6irj6UnGJbAyLbq+P2Zyno516X12Z3I1h Y4TIqO5lOjo4ETKZ7GEMP9U1zg5jX0nc5CnnZQzHIr4vXr5CR/2ThNNGvsbA bfZ6ojmSjqJSwkOj/I0BxK7omkXT0cBX4Zuc4cawYVfWR6F4OorNRT38N4wh OPAo76c0Olo6wFsWnW0Mz3Ulct3S6chD8EPU35vGIHfrr9kQtmmMv87nXGOw KX89/S6DjjacLcp+edcYlkdPn7+fhddD4nE99dgYUnK6SrVz6OjXWp/eZLkx WFiafc/HdnteKOBcYQxqiGCz8RYdgdqeNyZPjUFblc1zAvuf2NntUnX4/m8i fkfl0VHIt97ptiZjSOyYz84twOdVdLdxb4sxZIT/q/6Lfcj1TN6zt8YQdarl l/MdOtJ/z2Vzt90YngopNwvfpaPlesPK4G5jCOKTmAotpKPzqXcuKo8Yw8ld lK3bS/D5kk9Tbo8ag+Tn3buDsB04DFVEGMbgpa18oRmbEPJ+iGnSGIwSrtue vIff5yQn9H/B+8s4l5l5n45O7zrFHjNvDGl01YTOB3QU16O4WXIRO8/h8OYy nA9+DOUnS8bQn/FL2RV7qMDeavAPjr+ppPppbAtug3R1FhLsoVylLz+ko5OF c0VUVhKwbgnN0n+E42HPo2dOG0igGDrvFIz9zF9uMJKTBFZH/EYWsBUGOeT7 +Uhw87+c6YnHdIQCG7T9+Ekw/6O2QrKcjpw3XTJhESTBJNeJYHvsFONZT1UR ElQUHtjUgL32gP44QoIEQrRBx8QndCRumtggIkWCnYNuGi+xCWNmPaXSJLBZ Dtr4HdtHuG6BLkcC7zzHHssKHG8hBbuVlUjwRuRr+jL2b9FD++uV8XrzV1Pk K+mI74mwm50KCVycCtMtsE0+xkSFqpEgZ/XBgyxs1/C9mYIaJBiRvP7qBXaI +J+SEk0SRPQwD41hV1idaqMRSPD7S5Hi9io6ejelOOyuQ4JNUg4HzbC/XGbM /tElgUpiVrIHtmy1veB2AxLsJr/fXIR9XdrAKXgvCSiRKknCT+noXs2c9yZj EgSa+rKqYVMpj0IKSSQIiTO4bIq9Ei2X/86MBLveJ90MwBaVG3xyfB8J7jk8 14nD1qxLf7NkQQKRF8XDedie3zmm5K1J8OiruFUjduS1hqVn+/Hvv5mI9mHn bb3EbWVLgnCjK9+msGv/I0iOU0hgOCPXsYj9/sDsziB7EtwdDKpjr6ajHz9L EK8jCVx/9lYLY/MmuNkWHCBB4YbUl3LYRq/oAW3OJNhr7rGih73l8SNFp8Mk mGju+GeE/Ss3duDTERKkPbsuScZuTTh2PcCFBEeN523ssQsuGQKLGwmG4im5 h7AveIv+TjpGAkLxb+Zj2DZOP4qkTpBA9tb2cA9sJfPWgw9OkmDBZ5eILzaT biHPLg8SlHAGU09j928Lq2/yJEGnk851f+zHwgfP2nuToNzgxekA7GhWLYVx H3we4U6+gdhHf/H0nfYjgfzXQ5Hr1mF8vLZ6igRUHYGn69fzdb00jD9DArJw M/O56vX6m/19sz/e/+1tXmew/3t47k7xORKks/vMrK8n/ZaVAyGQBLl75xI8 sX3jFTlfnyfBDucq8+PYpGDmuv0XSBDavCR7BFvSa9Bv+CIJXs7ziTpizx14 KutziQSrJiQla+w206SepRAS6PJ9OmCCfYfoFR0dhs8je2+RAXawgvEu4QgS uCkW8mtiU4Skpgsuk0BpxvnmNuwdLIt56pH4vIQrjcSxP4yWsllG43xbvvRj FZ93+buoZ/0xJDhLj16YxY7976i3+zUSGFt6SI5i6+UIdl1OIMHzzqGWF9j8 cdNXNiWSIPEuj00p9ucLTcTcJBKM3TZeysTOcgzOqUklQaoiy0M/7FMm9tam 6STok5evPYBtSlBjpmfg520P+wLYCwLj7t9v4OvLJcv5sd8xvRAPvUkCD9sl s0WcL8XfM9q5b5FAW92IdRjboWOf1vbbJDjpRvm4nk9VsU9WDxeRYOV6vctO 7ISg+PKvxTg/rd0lNmKfcD95/MI9HC9BX/5+w/krRBJ/m/aAhL+nNmiXYPv/ i0hvfUICFsKbQCFsi1lns4OVJCjbccN7GtcPuWHCyscqEiARnVgqdlftZxfm GhLwOwPyx1Y/b6OiV0+C205Pi9/gekQOOKH94CUJhG1usGZje/pfMJBuIEHQ nfslftj5p/It2aj4/TiimoSxBT1++HS9JcG3DmsPZ1z/Fg4kl3m+x/HpP3D+ Da6ngo6FVYO9JGgQ7fS6jq1uX/PCup8EwYYF9xyxPW3G2gmDJLjaxMkzhev1 gLnGDBODBL7mfD7/cD2v39W1M3sax/+XbR/4cD8Y0J0k8s7i9X+bLOsopaNF 4tLu8O+4fv9UosVja2jJWp/8RYL6L5687Nh3dpw5pblEAk6mjw6/cL+JluB/ /JbVBKafZweWFtOR1ep+jZUt2MOBqzdx/xMdtDmbIGkCnePp23Zjj9TYVkhL m8ASt0D8SD6OhwA7grGcCXjWdG2SwU785qiXoGgC0jIGvFm4v3Z9OALSBBOQ N+FWP477M6Xax8bIygTyuxU2nsb9fku6bwrd2gRKtwQ8WcbzwfhZv253GxOQ +i8xPxLbf+dp+3g7E9ibQHPNSKWjtEL/g3QnExAbNAgsT6YjeupFV3d3E+Cw /GvRmEBHB07HnIkLN4Fd9jV3faNwvBx+zc5y2QRYSimVX/G8cmbf6q2LV0xA /TKvpid23NZzbz2vmkB7qvMFNzzf1PcdlTeLNwEDuddgFUFH20GHzpplAify 63i4Q3A+83/UDX2Er1+Qk5M4R0epFUb/Tg+bQKRA0NxjFzo6PJerMzZiAk5s OWWbsLfpLPvZjJmAg0fQ91N4nqt5/nhIY8IEvl3rFFU9QkfDryRrf342gY7X Ogv5zrgedi4EnJszAe7B/H2BDrgefSv9ep7HFOx2b+9qtcD5qSDUG7rLFFTu 0Op2E/B8d0Xis1OuKYgdS/EKX+tBt8pLzONXTIG9bUvxy+Ye9Oetz2Scixlw 7hZK0rzWgwIETVoqXptBEcu2l8iiB0mr3llRlzGHLZ+CW29u6kFVGrqelyLN IcT98oFwWje6xG6jIMkwB0lNwkm+m93oCE+Y0kfDfdC0ZebXqns32vFnwiMk fx8UxjWViBK6kfKLjnnP1X2Q9LFG15urGwl7fq/feswCkk6U/5sYoyHONat/ OcctwPliqMtB7NW0MiR80gJsRH+JdozS0KeXXq/YPC0g0Wkh4dkIDdWITTZ8 9LOAtMPemclDNHSouZ9achH//sPadrt+Grqz/XWrSooFrCRxhm/poiGNj+m9 2q8s4GX8zU+Vr2iI0SlUU9hgAf2bj9QDdmptarbIGwvwXl341vGShuaSkg8v NlrAasRT8y/1NPRMP2G8ts0Crl4K41T4j4b2JEfO7u2zgDU9izv3n9OQpYE/ u82sBZiPaprNV9DQ320/p159twCTKfWhBOwy/jNvNX9awAOaSrMCNt8nvwSh OQu4ayB/2+EJDXUnewn2LVtAzIrKgbrHNHTwk6v00Q2W0D/qMpVZRkPuKft1 fCUt4eqX7+6JxTT0+lCdzV8pSyi4NNKuhC2zXdEnQcYSGt56Z70poqH+2rXb ZfKWcEBqr/NKIQ1ZTD7kmlGyhBB9hUzfuzSkpss77Ee0hH0SDWPH82locagl 8rS1Jei76qfk3qQh+xJC3r/9lqDTlxRKwi4/m1+TZGsJZaIlHd+yacib/cLM Y3tL+O3174YB9pC64oEfzpYwfHj74GgWDb26cnXHWQ/8/yUmZoMMGopVMqL5 R+D1h1qcMUimIWWWz/D5siUU/7Z//zuJhloHr5cfibQESZOOpDLsjUkfksyj LeFZ7Ac2GezU+TPW0gmWsDQmPcuRSEO5r2+3vc2yhP/eWVV+iaehisOrjbKP LUGipPjZdAwN2encJWaWW8KfEqGqx9hzm/YV8VRYwmT7KbZz2Lpv0qMWqixh w8+H+SvRNPRCWdW4vdYSUsKjGjdiNy04vwpqsoQYe90K4ygaGkyuqX03bAmC bpWFMxE0pGRhefz4qCU8FX7dVI0dwDrCszRmCbKdv8wjsPnOsx6Rm7SEU+fc /YSxjQ5Z/zv31RL+/bEg7A2nodJtk8bii5awLeN+SVko3v+R89MPlyzB8j7z 60vYpBtcGUYrlnC+UsXAEnuEW/2Tz6ol6IYX7PsWQkOCPy7G1rOS4WtcE10d O7h2U8dxfjJ0TsoltwbTUPO5O4FLAmRo7BK5fhtbeCdR+roQGe7auEwFYD+6 7Xy6WpQMT6riKmWxx6OKBLikyPDH1bMk5CKOl/0Gjo+UyXAu6eQnkws0tGXS fXTJiAxXb9txS52nIYVf4srRJHy9cq7AWiAN7WTq8BcyJYOe7rPTo9ggqc2u to8MeReX1e9in7T/p3p8P3bl2n9q2OXUrOCOQ2TwOWe+4hBAQ7XdFlTnI2R4 qPPrmCH2m7HVjZ+PkiGaPCK7Fbv37/EClmNkYFXmvfXzHA39IWi06HqS4c6J zIRUbNOiFpE7AWRYbdm9e9KfhmwqL7monydDwLWs6U5spwa1+y+CyKBd7/G9 Dtt3ON2wL5gMB/YvzaZjp4i4Hee9TAYPq8puC+ybW4UfZl8hg9xi9pZd2IWa zQvbo8jgFM3/VBG72mpn3N4YMsDvXYwN2ENXl8vPXydDOLejUNNZXK/SylZY k8gQNpM2XY39vcCFlJJMxt+TwWL3sFnqG/sepJFhbb7TLR5baSFlbSybDDlP TjU6YGuxmZifysHrs2lT2odtILiU8ucWGX7d/zJkiG2tdnSbaD4Z/tIWdbZh n3PfQbYsJsOJKPXHy2dwfYgU+/ZfCRne2oTDD2z+ArY4jftkMHtjLTaFXTY4 0ixShvf/Ml/Ge+yVpTb32Idk6Puv06AD21z0+YY/j8g4RysUG7EnbdKMx56Q oft82Lun2FqnIsYplWSYSdK79gg7It7vcmMVGbSYq2NLsKWazF6WPiMD95Nb DjexfScIR6Wek+FwZ698OnYtk/xqUi0Z7DacJyRiOxr81Q/8D++Hz1WFSOzC g18+TNWTYbNLE0sY9q/A3gvOr8hQ95Nr20VsSHsj1tFABolMQnwAdmJ5eTV6 QwapQ6rEM9hDHbkOFVQyJFv3yfti7/gWN6fQRAalUAl7T+zmbSe1uN+SQfo5 x2U3bFFjCi2klQyeA5dCjmKfcEVnvrfh/DgqV3cIuyJUddOxDjKoW40YOmEz 5Yg/or8jA1vZDeYD2NY17FZmXWTQj9DhcsC+9f73t+c0MjR05NrZYX/9NRan 2kMG/6yqMVtsPf53yrfpZOAbdS23wY7eWdci0EsG46LY1/ux6Rb3PKL6cHx/ ERBbt7xnBvtiPxlKS8cfWmOfvXqlyGuADK8+jkWv+9Wd06ShQTLoZv0qWDff q8MT1sNkMK9dXVv34eF9VxpGyCC673Pu+v1KV3TkCGP4/QxvhK0/f0lM4VUx gwzC13/nr6/PlCjgIj6B419zjG19/emUtdX4STLckyaV2mOPn/52a+0jGY5b bEhxxNa43m9wdooMSyVczw9ih5U2Dkx8JsOysq78+v61N1dcdPxKhvGGc+1H sCU+3t789hs+L9eiZ67Y3izXnxnMkIFp7snEcewamWDHR7NkaPcJt/HAZt/t MS/7gwwVVb9XvbHtne3T036Soa127tsp7DtBe7XZf5NB3stzyznsH+lq3Rfm cD25T7gWhJ3Qycl/dJEMQ5GnFC9jD0zPP+pawu87XeIYja3EPWFlvEKGwkha Yzx2I+m/eKVVfN7dCcezsNeen+X4zWIFv0tbsp+s71e15WgUmxVsf6Z9/Pl6 fFZueybKbgUdj7rON2B/evjBXZ/LCj6ISYR0Y3cU7G26vMkKEq+Q/yxiN+VJ 5AkJWAGluECQBefvq5z5wCJBKzBfkzrHi12VcX/bWxErCOhh3ySPfeuawFV+ SSswCPv1yAY7M/rb4TtS+PnPB3iOYCdHNhIIMlawMj5S7oUdGXpx8oC8FViK FXZHYnufZRjfVrIC6eM6Z+uwdzk9YVEjWoGX5vk/urh+aTnGD7zUsQIHIZO3 5tiqdicrbPWsgCN2bsgJW9ZK/FiggRVcUfB4H4LNufdyw4u9VuBXXcPehN2r ZBthaW0F7RzzlidxPe7apnJweL8V7ErZ5hGM3Sq/QeO0rRVsWFhtTMKul3w+ mmpvBba/xazrsIv45dCAsxXMDvBEieB6H7D0Y9XTwwqS+5o9erEr2DaojHla QXja2dUZ7J/84gcPeFvB0c5t7RtwPzmlvLfCxM8KbtzdJayD7eWc4i5/zgqk EhmW2dhHX2h2DoZZQVh+I/LG/cs8wj/fOtMKxs/e9CLi/hadEN3RmGUFzcSL U3bYjTdurhhm4/0gPbjpj2305LW9yi0rKPucnF+OvXtckIvzjhW8KxNTVMf9 UotUebbhoRWcFqhj08H9VJJzzojQaAVPt3upe+P+LOalJFDYZAV9m2WPJ673 79bDo0ItVtDbdaGpApszofHS71YrsHidK/E3ZH1eyaqq6LICkXc3/ibj/t8u pr9dcwi/v4B3xJswGgpVjOBS+20FhEzeJovLeD4w5e1SlLMGh1O+C4N4frka s7OvWt4adtF1CJvwvKPaYj1iomANhNXUAiPsi/tSpo8rWoNMjy93KbYwWZQr f6c1FK3k8F+Kxf3fVtZos741qA0lv9sWR0NPDxGqOO2sgWkD38bc6zifzhy+ 8SXKGjo6dCO48Xzn46PxmGncGiZIakMBeN7UsTVk/mS6H8zf/Y1dq8b57n4k 5/d9bOsJoSutNCS+ndlIhdUGFOqqFnyHcb9N/N5jTLQB3reudXt/0VDlqMxG jhM2EDmw6Vb2hm7k1OLsPZJiA5qR7z/Kbu5GgcWaH2+9sYEcRY8gLxX8veFn wcH+ywaSpnc5HDLsRg7K/0wdFWyBXVdmk51VNxJ/N7/T1s4WuBPOct071I28 uRf1XC/bwuvMOLPtnt1IMzxbQOmKLfSdJs0cxF76bfD1O3bOqnhAPHb0cERO eJQt6BixbPuBfbecey0vxhY4G3cK1Xh1oyFH6TfD122Bq2+rpJFPN7K+a2J1 6KYt8LSq1u45he9vmO7mWGkLH8VM/vaf60Y3a3om+atsIc1d8BNTQDdiIwp5 tmEv9S5UKmH37kw9BdW2EG2z9icIO0Qm+dKO57ZgJdhvKBLYjVpYEjLW6m1h 2UY/wuJ8N3J9G/m2uNUWhFv7mPMvdKNkx3OaiwxbOG+9nLIQ0o06jZRtG8Zt Qa2iVXtLaDfiUx89Ez9hC+0HfKt2Y1/nsCyX+WgLrq0KlCjsuBp5dfPPtrBn MfbfprBudHVLt2r2rC3olwttlQvvRsEjGkoGf/B6yIPpOy53o9rWT2Yb/trC jsYeQQvs5epbHp3YDyNenvbCvpDEWXJ8zRbypAKbSrADYWxbAjMFRsOCpuSv dKMzd5K2DnNQIFS/Y0kwshuddJ+VDhemgFWGi+tAVDdiCSUkmYhQ4Ir4GTSP nZ8W/I9HlAI6jHdrm67i/X/FPnZDjAIccdHSJtgUCZmCii0U+H5i3/hD7D1d +7d+kqXAzc3nwy5GdyNR/SeKVjspUEjbqbAc042qbBazhNQooO59Wpg/thvZ euzmHMC2Sr/4cTt2Qvrbz+4aFFBmLCjbY7N8Z9yP0KaAhTbT7ofYs3cFVat2 USB9S2Gi07Vu1LwxQEPClAKa/0ZWbsZ1I3bVA5Z0bCmzm9QybFMLfffrZhS4 OpBxrh67KZrp1j9zCuTudr7MWPe/BI5JSwr08l05vD0e+2fRSJktBeT8H4g8 wKa+70vYc4QCN9SYnuUn4PiZqy1ZxH5UPKX5GJskmPe6/CgFPq88SP0Pm2p9 YknelQKTsaMbBtbd/OM4x3EKyPpFVApc70ZvnnMZdHlSQCVji0YI9utcgy9u ARSoliV2707sRv0qGfk7AilQZm7NZoE9+3z2wG9szYs+mx2xxXsLmqKC8H62 tn3ywz7Dx1lYEkyBYvYPkrewpcPpR2ciKHA+ivb7FzZho5po9WUK5K0Y7FvF tsiJ6Qi7QoFjQeKXOZJwfDzTN+SPosC+tf03JLDbv+eLa8dQwDP+1kkj7GBX P/qF6xQ44rc7Mg47ebYpfm8iBZJ1x1nTsItDZI25k/B5DkV65GDTbvQ8yUmm wDaFsb4H2Eq0XUn1adgVM0fasPe4pJnGpFNA0N57sRvbfmZ6dX8GBQgPlAIG sMO58n0ZmRQ4M5Eg9gW7dy+7BdtNCnQfmmTfkNyNpjtdmDuw3WJd6niwWY4+ r8nIoQBd381OEHtnsK+iYi4FqJlb1GSwoyq62SzyKRA25ZCki6299fbLpGIK iFsHcB5fv19NhpxlCQVebNAp9sAutE6IZL+H93c6V8UXWzj4olnofQrcNQyZ CcCe67Lr9C6jwNPrOtZXscvcLTS3P6TANc8Z5WvYJ/5CGgP7yMErMwnY7xXV Dhx8TIH7HsdU07GrwzhHTSrw/nfXXyvAPiX8D5grKfB8QrmoEHt76fydF9iE z6X3SrAz34+7az+lgPczbs+H2NY+H1pmsQc2L20tx2Zn7tpRWk2Bh1u2tFRg B6n+NytbQ4Fd5VJvn2FrvK60GcK+tJF/ey325wOlFVnPKTBRctDnBfbByKzz fHUU6NvG9/gVNr94Yv9b7B+0+IevsVseRelffUEBY/LldCq23sDZtT//UWC/ wbxEC/aP056uz+opkBkU9eIt9r0NLq/9X+J4EHho0obtmuOgoPaKAqk+Qc/a sTdrkqO/YIt8/SbwDruryehzYQOuH98FHTqxYw/vsnB9TQG9sbmILmz4pV4m 8YYCn6RuZtCwl2O28/Vh9/LwpHVjV0hJnUmlUqCO1+ZiD7Z3pVC3VSMFtCPP mtOx5fdxE7ia8HnRgpjeYw+MMGVSsfOcfQrWnRqwuBjeTIHtEfYqvdgW3LNO Bi0U8Ck0yFs3S/5k3QK2h7LyyrpriYNSFW8psHxmG+rD9m+jhfu14vo6pOe3 7h1uLQylNgpUvfOJWvf4Qr3xJPafkqb/OyfhadHtdgoItdqeWre9fBnHoQ4K GGaK7F03b80dL9F3uH76bVldfx7VKruNhq32xPPOukMmknZe76TAYAOn5roJ F6OTzLso4MXEen/9fab5Qn+y0vB5d7hwr7uw8JzdS+zsa4oO6/txWN/7aXA3 rq8Zx66t75dwl6uYTg8FgmzES9b3s/3kgYs/sR9I2D9a3+/dKaTdnu8p0O8W dHH9fOxt277L9FLA6ceI8fr5eQtQ7vRhf2xsXVo/38wUFw6zfhwvdGv51vX8 sP30fA37Y89C5nq8vBHw863+gJ9/z2ihaT1+UoJp2wYpwHroY8Cb9XimMEcN Y0f+s0xvwJYUjNXJGML5y3Y+7yX2vtSMHLYRXM9rtc/VYd9JLT85MUaBrTla MuvxX0PR3ZzDoEA0Z0rGY+xOwfpWyjgFaJ9/LpRh/01tU389QQGDawPB6/nl kPZpOf8TBRzmt8bmYPva+ZUdnML1vtj/wA3sK0JzR/k/43zqZRHMwH6UxkwN /0IBIwLHvkRsznTJxKPT+LxXr70Mx5a2vwuiMxQ4WNbx5RI2UXjH7w7sY9ey /gVhH0vXPbj7OwXI9oyZ09h16RR5yV+4vrwz6T2K3W3/gd6DfSm18ojzer4K u8bE/8b96Ppsl8P6eWX4Ta/M4f26/z2YvF4/MmKrPyxSYAub2Ijeer1z2OSV soT7NecUVXs93kQyJfYt43pGastSW8/njLsRNSv4/x9/Mytgy2XWW2StUsBX p/7zRmx65tyIPasdvLNY4RjB9fdV08+dkmx28F9pqXIfdtnCbMgE9rOcJEIX 9lXHL1v82e1gU5gC+2tsHdERxyQuO+ByepZdiJ2V0fzu7SY7mM7ySjiJHdVI lUrhtwPptiemR7DPzDf4HhSwA9aqia/22OYOL7inBO1A45vmT2PsJeEnpmyi dnClsWpBFts5/Wb9Hkk7KPfW/96L+5kpNWsju5QdFD7xserA1ppLP9yBXfXY IPMNNo990sohGTs4z/Rp6jH2C6EonYvydhCt1ZAQs94v0/weVSrZQc5foykt bEYK5CkR7cBtoZkQjPvzmbcDWePYQQz1rlPYa0yBKbd07KBI3sr5OLbkmftR /Hr4+Yad+mRsR2tBnyV9O7gwyq4mhd3KPanbAng/Rac/1uF5oCoyhuZBtoM0 +7axaTxfGNXJtclZ2cFcCaf7KDbtVx11ELu1S3eQhj3r9uPZ/v12wLIzLaMa Wwmc8nQpdrCxm2IZjp37d4cPx0E7iJuhvdmIHR34jq3kOH7/mwqaMni++So5 evPMCTt4SYoK4cPeT/2uoX/SDuz9Y6tX8fy0WUjgSIe7HXjWVSwMYpeW2z39 7WUHL6pX72Vhd3zrPwln7GBzwvgYD7bwsYmmDyF24HM1YXkKz3MF1kuxvJl2 QOf7V3YWz3/7XqpqRjfbAZOk6d9VPL/Gbb4bUTpvB8vizlw2wd1or8fTmaeK 9pCQw9hWjufz5DwuFl9He9DmMHE08MP52LaszXXNHqZPcCZKunejkqS5a7W1 9tA+TJ1WdMH12lAzRvSLPUywxf3uOdiNfo9w3XGScADbLEM7EqUbzXgpnDCz cICMPQ/MrpK7UUDCPot9FxyAqt/XbGvWjc4WcltrlTqAhY5vor4RrjdFG5cb +x1gIdBtE8+ebjQiqzGZ9MEBbj8KVVnZjfv1LUqn04ADdHeco3zB9kjPKpoZ dICbHPOvmrFbIuUoIqMOAK5hslexrx0jPjjx0QG0z5K+MWPzyh45wvrLAXjs j7xgxd9LAjllDcDjCHds/EuU9HG873VZZed1hC7VxpYt2GFTArs6sO04RuZ4 sb9qB5U78TmC75Xjfj934X7Qvve2v4AjLEm3jtZiB631hhSKOUKTu3frfuxh N2Y9TgVHENguUXtZD58XZ9W5d9j3zHmJgdgWj9wfp29zBMFGWq0ndvVK23Y5 ReyswU/7sZPTMkX0d+Dnay2+ksY2blT57aPhCIeHKkLrdbvRfSXHR52GjjDB IEmwY1/pLUqP3e0IY4raT/7o4PyMmg/euwc787rNT2zesXSzSuQIHhVRD4aw z2T1jGUaOcImTd/uSmwddluho+aO8Kj3zsRx7NcTlhem7RxB8ufrTW1EXL9S co4W2TvChUjZ7gbsAPSNdNTBEV7Y9ufWYG/LiRPocnQEmRP2tsXYsZS3pZVO jmD5+JTSFWzrBtPh/3Vs3/FUvWEAwGVGdoqyEg0rklEqHiWrqMS9ugfXvVll RMvIHilpEC2R0JJQWZVIyCaFqH6FMio7UUi/5+3P7+eee+553/dZpxHIpMGH PTkXN6LfpRpt4fegQaGJ18ECbby+hK+qBb1/6t39bLTeu0bTq5400FqybioD nbiIYanqTYP4N9ezEtA74w7ZWfrSIDttT6IPujIgwzvejwZmidW+a9A5NjzJ S6JocPNdqdnDddhvD9XL9qBpq691Z6EXnI9Py4qmgWyuZnQG2r1e9tbGGHwe P//BRLTiFt0HDrE0qGJbb/RHX9Zwq75xngbO3Pc6AB0uUPtDOQXXM1HL804L +4WGmkIv+unEzr2taEXbc1ZpqTS4t2a2oAlddd327uI0GpzMKo+tQPPr9Dhy ZdDARbfzxn10PHOm9sMdGnjrzUVFonuiHKcu3aXBwb0GB0LQ67LKlfZk0eCq 9Fm7AHTbRExo7T0aVGym7TqIXhIroVOYQ4Oie1bZFPpGvnrauXzcPzU+CV30 eOf5RosCGtQ27Ty1Fr31749pnkIaxEjG8Kmje82f2AYV0eCUymM5JbTyJ5MF +5/QIMlwtEgc/YDf6diW5zToZbdcGFv72rDcMWHHz3oamL663FOA9smJrstu oMFF056Ih+hlc/5mzo00ULQPU81Fh6Qwjd800aDU7WHSHbT+B7VND1po4LWn sDEZnb+3WtXrLQ2iX4bWRaL33X1yV6mDBnctlUbC0OK/76/6gE5N/iMdgva9 nKi4/R0N5pJMzvqj17xlSSv/R4Nq8+lWL/Qdm1mB3h4aWDWqfN2LpmeOnLz2 mQadfWrn6WjeiR5emy94vkNbDW3RLhdqOSt6acDReKdgF3r564vTaQM0aG6X 4DJDtyjE+tt9pcHjP5HftqHDfIMnRb7RgCE52bkV/VHUeTzkOw0EJDpfGaKT d679Zj9Mg4z6PXLr0RbXldwlRrA+LEvcpoueHpbsq0f3W1Qc0UbbnZ3r1h+j gbDIl2+aaInG+k6pCRocGhzQUUFXyJTRX6G1QvdeW40+5PmwLeYn5nNNpsAq 8nwLrrRMTuJ+eZfPKaLPWrjWtv6mAaQ0GMuhFwq8+pw8jZ8/SG+QQV+u3TDH nqFByMY0B2l0upnQurFZGoS3cidLoVfN97Ms/kMD9WMuppLo7Oout9A5Gmx5 2DW7CF1okn9NiIMOvnJLIxeiN/LKFbWiv3S17BFHP6+KaUmeR4cj7EvqYug6 Y4pXhYsOXtUGs8LoT1s4fUx46WAheZNnAdqZ0zNWiI8Ou1t85ATQ38rbMlvR XBc0gR89AXc72fx0oO8OTeVDB3AsnFAWoEP/J773vOi5siDhMfTMFb9lxPMN d20NFaSDff7fKm70mbnHDiZCdDh0S2wlsXipor+QMB2u9/85y4W+FHwmoRVd AuUcxDKbp7KTReiQFmh3nBN9Y9apmi1KhyWOz+fmoVeW1HUri9Hh56OfscT3 jmvPjqKnjX/KE2tuTF1cLE6H751Pn3GgC6b51oYupEP0RhNnYv0nvttNJNBa 8QuJywLeuwgtwt+LuVL/V/O1ofGGbWGt6Cgu+zji2l85V5MX06Hbu82W2KpY qoAtSQeHBM7VxG/8IpqVpeiQotvFSWynN/h1FG2g5NE3h/5v0pa7eAkd/lNM e03MLiyTC11KB5G549XE/UeVN5hI08H1+EwlsafOhT1CMnQ46CxdTzw2MevV ii4M7+gkPpbvejJZlg6PkzXGiGcOv0pny9FhLlBWjPx+2Dr9Z8ry6P7UDcQ8 PzLejqI17+UdII59KDRetIwO88/szCQWOeQnGKpAhx+2/n3EiWu7V5ospwPV tGot2Z8lYxZGQop0uFXKiCJOzcunWtE6I0JdxIo+cseSleiwZm6zMdn/Oxon z7NX0EGorC+PWH1kLEt5JR0i3LlXkvN8mENVjaLNtl3IIC5R15gOWU2HaxU/ i8j5Gw1dljBRpkPsdLkViZeX2ZwaQiroc6NDxC2q7fuSVelgOueyjcTbr/EP q23V6JC0SHCMeNmTz0PC6nQonxvLIPHqbTbmF7GGDpz6vvIkni+K/Nq0SYMO BdHcA8TP2ufmTaKjLtYXkfgXdBGM27+WDqemBzwF0dpqC3cratFhq+kGayE0 9WPJ4v/QMjseGJB8ygpflbZLmw4LfQXVRdFmqVvy9fTocLR+KVOC1GcX84Ax dH6QTTDJ30tquwzuradDcH1K+mJ03xOHGjl9OqzQ3sO5BB351v8Dz2Y6GL+e WETqR6loLnfrFtx/fZ/TyuT6twW1Z7bS4cAq/SWqaKHrJWdNjekgHPj5vhra Xr1O6uk2OiRuqfmuQeqdea9auhkdaDPRj0n904mUtvWxokNL+5qrpJ7aWyxf qrKTDk0e0Ymm6Cgx5U+f0c9UTyeZo19f191P302HzbKX71mS9ZTsDjawocMQ tW8VjdSnnzE3BRl4Pn3SlDv6rhoPXztag/lw/AD61r4I9+sUnsejb/GkP9xo CVLVcqDDbMLa/kPkPO77PqA7YT25nD0YTOq7C/Us3RXzzaGOmYQOvtYh5+lG h4mE6wcvowPf2IbpuNPhvUfbCdK/jhrt2lqznw4n7azrb6APyG6rHfKkg6OZ THYO2qZtTdv6w3RwbjCvrUXvFszW5TyC+x+lbdmIttqqfLkerSOzueMV2vyB IuV4jA5f11/i6kAbnJHqjgzA+22fzulDr97GOdQUSgfb/lYbHuzPf/LbuF3i 6CBal1Fmir72Y0RU4QwdXrh/at2O3qQlIPsfOsr1/chOdFCugY7tOcyPPl49 O/T03dsu2xLowF3ZwL8f/Ss14OWKy3To2r+09DSZH07KnuzLwHh/+Ny8Dd1v 77LA/SnWNyuPVWQ++lIl4r6sBPdTXP1YMLpnzZPKDrTV89TaCPRHDpEQ81I6 2EVGhZxBt2cWj6qU00Fy36w8mb8qBxe0D73E/Nz6yKAZnR70MO3wazoE/fr2 RgXnOcdrf3VCv9JhoE8+fRi9vUUnJFjaDjz9PprX4bzaMnzfa6WFHQRaBnUU 47zcOO9FYGGQHRxtPvB1Cud3WnbXPUaOHRzkDUgxxvcBP0OjqLsf7GCp60Hq kOFrQ+GazYGfhPdCkFChd70R7veGIMnnm/dCBVf+juGtWN+MqjryPfaC1z3g Gt2G8wZkFZ1P2QsHfpRlzOD7zPTKls2SDXvhV2/Xf8/MsR9yJXZHze2FBY2q I0e3vzYU8GPd5dVkwGgh9+dRfB8KypelytBXG2o5JtFDY52C/msZkJB+QnoG /crT2uerFgOe1/aa8lhivrK36jXoMGBzinrQErSS1Yqq+I0MsJYOszZCG6z4 2iVjyoDbVxY/Oov2feMjtc6RAdv9X6ous3ptWByW4TqDPvaUr0cJzbGmPb+C yYAw95REZfTZkxt327AYoJpQNayFzt7MG3vUmQGlCrx+29ADt5Nnig4wwEZB 8+1+tFPQy4+b/BhQtMKtLRd9R/m3Go8/Ax7YcyzOR4+0qx5vRKed+WZdjA5Z Gy/pGMiA/QcflD9HX+ujdoUGM2BEk/dwC/rtrrHy8kgGnEp9pDSOtlohc9Pk PAOcnjlUaO4kf975PWVePAPGhvdZaqOXn3t6sQQ9eXxtqx568hfjpNYFBgxZ Le8wQKc0XPGQu8gAs07a4x3owcOSWpPJDDBZLtrthj71Qrzs5m0GCG+/Xp2M PuTXU+R0hwEz1g3fUtH2ag/zpO8yILf6pUA6WvPi7vT4LAZIiK0wuoPu2H8+ Ovg+Axzfno3JR68UE95h+4gB/Y02xxvQlUz+Tu4yBvTpX+KYRkdF7fRuRuec cfk1iza+m8R19TkDrmwJHvyLrhhXWKPxggF/18fW8uzC969o/ci9VQxQUFSi i6HL7nmo59RjfBjfer4K/WSqMZzewYAaL1rzbnSgjITk8k68Pmhulw1a34iR PYhWOTzdREM/ju1rD3/PgInu4TIKXSz7VzX7IwPOHvt41AVdsFWznaOXAStk QrT80XnnElSyxhiwd9vgj6vopo/uor7jDDCM75m6hh5UN5zU+8GA5nLnX6no 1Q3fy6smGECliIyko6/P37a3e4oBw63ij7LQZ8OnYqTm8PlmPC4+Rme/avT6 hLaIPrLvKbpOPnPPrb8MuLRCQv0Zmrd0l7z2PAoGj0gXPkcHT98t3MlNQeoX h+vVaM/D9r0nBCi4WmTV3IqOfaFVb7mAgthEGdd29B0x/gcSghTkFMf9fov+ klsQlC5EQUM6bfF7NDUoLFEqSkHhhcxV3WgLl/ItPxfj78VX3R1EK9NXpu1T pGC/5HfNebtxHr1/RVNWiYJstV3mnOgsbqHydvRqn/eOXGiVhz+6zVdSkFLi Fs6DVhMqV9RUpqCU1zuTH72mgro9u4YCxQ19bDH08JJmvUINCkIlRKzE0Tk+ W2oOalIwj99DdyFaQ075a89aCpT8y+Yk0JoBkyq12hSc5h/zkkJracTnJOlT 8LFBtVoOPR7NbbhzIwXSS/uj5dEPP/g1z99EAa9Hj9Ey9LpYx9HjmykIt772 QAGt3auqxQYKplvW+SihJzZefyFtREFuO8+SFej8BPE9bWhtG7kyYh34fdhs K3piBdcqtG7yy4I1JhQUs24dUEZPjm0wGUAnvXzxh7jQ7H77DVMKzJeonVVB 601emJIwp+Dhi4Fbquj1u1kbZrZT8L10WbE6+tft1tr8HRS8V32qswZdPGfK 8LakIGHmTh7xhuw1x7utKKj7E56qgdbnmy2p3k2B/UpgrEW/auz9et6agv4z 6+qJXRObFzP2UCA6zb9BC52gkOEzaEOBwZ99C9ahVw/EpRTYUlCR/vUgcWnO sboQGgWf99NaiL9vtFASs6NgNOBrrDY6glN79zv03haxz8RStbIhGXspsHZb sV4HbUwbe6tDUfDNQ7yT+J3Me+6/6D8DQ0q6aJ/PlWtr7CmILy/2Ir7mc/k0 w5GCpenLJom19CKKFZkURBWX6eiha/549A6id5taHyJ2rLQVL3Si4LFt5z3i iVhDw1AWBT++2fYQx+5W9jRjU/CSv3bRevQyqYVXxPZR4FaqZUJsebNvPMOZ glf8QynEXzxeyXu5UKCjCFXEgVpPdui6UrBS9+xXYtHfGQF/0eORHQIb0LfK ztyqcaPgi+UyZeJNJ/zexLtTsKPN1Zj49Q4WB7WfggDqvj2x+8Lt6koHKHik 8NOXeK5TmzGENt1vGEWcmCYXU+iB6z185gKxitv8/FBPCh6Ed10nfq4+3mXm RYFU24a7xLSJ90Li3hTw5F7NJY4Iz3XLPEjiw+8Rca5wZLmuL+afb8Q9YpM2 z+G/aOcy6QziD8k06dpDFDClKy8RH2KDWcJhCt68DDpFPF9Z5Sh1hIL5XKb+ xKkjC9OVjlKwRUzJmVi78E/TELpSa5ElcV1Q/0zhMQpa70ivI3ba2rI6zA/X m79+MfEk/1Nbc38Kbl3ymiT7GfcqM0I8gILhhKdviJdfOpv7Ht3Yr5hDXOzg /yEzEPfj7e1oYislNr/3cQpsMswY/87r23ZdvSAKjsfxqf07H3/587XBFLQ/ /fKSnP8tA/5nCSH4/Sie88SbeH58pUIpOHnQnEbsnvBy63AYBWEPDN+ReJuz y/MpCqdgJHbiEnGi/NWUsAgKMk+3WBOXZ3tNiUdR0MLH/5zE83TgRFMT+mTO DT9iLfPjt2Kjsb6JV6oRZ/SetOWMoeCOctY5kh/RcpmPxk5hvVOVWv8vvwZV Tt+PxfOhS38g+Tj55AF7/2kKQrzygond6GVi3XEUuHskPib5a37+3cFX5yjQ MneS0CTn7cgyjTuP+cYQuUny/4nagJxZPAVZYXbriFVrfzaWJVDQtfyZGakX QpxiarlJGP+0QZoauuWw6cCZZApmoXrearTAlqYy82sU/NVO8CT1bIuo7SWe FArOJfG1rUQ/ymabBKdSIP7wZyqpf0m9wZmeNyiQGJtZrIjeS8932n4b+09V 4mVZUl9WbFzPd4eCGqnQjzIkPn6Ui1SgF7QtX0688XxzqX4WBUdlktOXomVr v8mo3KdAYdT7pCS6W1+hc/4jCgQmMgZE0f7r1s8rR2c6CosQC6vtVA7Ix/x2 Y6wTIecrGxzwtQDj/2byUSH0xb8dS+qKcX/nurpIv9lReZ5xuhT7W5r7HtKv ii05PgjVYT1ynsodw/6200SS+yV6ye7sxFF0n8EatZB6jB+Gi98IeqGmfdBw AwWCiwZ0h9De4sUyzc1Y/+lWqQNoxbcHHc634fmEnxP5RPq706eP4t3YP/oO Rtahp2s8M96hB/h9hWrRbmun3dJ7sL9u2JZE+jdwLhpb+4UCSSPP1Er0eIYF 1+5+Chb5vr9Yiqb3F6w6N4Txtt5X4SF6mXecz4JpCsoKnW5dQj84voGTe6E9 5IXPL7NHP/++z7cUbcy16RuDzCvU2S5/CXuIzOlYuJfMKxs/lw4tsgd+PWu2 LZlXZuOOv5Wyh3Aut0FLdFpQ10SWnD0cU5QvNECfC47p361iD90GvKvl0V6h bQ3XjeyhZ7vny/c4r133FypYfsQeDHtWXF2PduTfVf74pj0olby1OIHza0FE 65GZN/YgsvZBSivO4xFjE9uUeB3gusqPREH0gBm9dErbAa7Eb9+xE+f993qV jE9sB7i4NlX4Er4vGMs0SuQkOsA+rVOBrRZYz75KHltV4QB5wpK/V6JL781N xPx0gND7siXH8H2jgmf00uxKR6g17tLsMMN6ZKbYI23rCOOFvQJ70IfDxs2X xzhC46bmpa34vjJZuUb4P3S99Uvn12h/fo/Xl046wrzcmtxX6JCEzwyhWEdI LB4xa0SfzGz1+BXnCCPRdTEv0ak1hWeaEhxhf2GT3mN0rejxlsBURwh9O8y6 jpa/wbX3TYEj7AgK6PUm97ctfJxS6AiMlbY2XuhX/PuXuhc5gurI4UoPdMSh pvezxY4gHnL8jjv6y9YrjitLHGFmqjCUjb7Tt8Y54IUjdF3g9KChNdUYB+Wb HUFP01HHkDxfl+Crr+h3L+obNqO7E8s08185wuKcYJdN6IQ/SuNmr3F9NjlX N6AnmkaOHGpzhJ3bjCS00cW+0YFV73F908uMldFGRXnRHgN4/2TWRQn0r6Qf ulpfHSH9hIj9QnTOEd2BX+jTNhPLxdEyWiUWJ747wmUndr4I2d/sapEbw46w pqipVwCdnf7xSvuEI5y0+BAxDy11VjDHaB4TwOPAzRGT14bNnjuZ8zmZ8Lu/ M34YfWJ7gmgz+viZkNAh9I/5UoftuZlwS9rN8Tu6KVJxvR8fExa/eKTSj44K 0H+RLcQELUWNPx/Ro87u7ZJLmZCYaHmqGW2+3UyrBX3s7orsJnT62tVnY6WZ IB40/1Uj2mauf9sfGSbkNQ8ubUA/vuRW0CPPhBf6as9q0BF1ron3VzBB55Dr uhdoCU0X661r8Xkm6noL0F6Lt+XMou9HZikTv5xVEijUYkLY5DnvfLR/7Zfy 1dpMKJr0mHmI/o/tvFZYjwkJHs4KeehbSftEOzcxwcRfLzULvX6G1eRtxoRr b1wZaWi33cUv9cyZcOpH1oPr6Iu3hcs4LJiQKisrQDyx52luwnYmrI6JLU1B 52VLxBdaMeHTwQidZPRqx+o9czZMmL2cTV1E0/Nld1TbMuG9+cOqJLLfAkeM z9OY4NLVrUn8pXCZznI7JtALngkkotNEAhebUEx4WerUEI+WLFfrPMNiwtpd S2POoE0kI1tobCbkmF/nIj7i1Vkrv48J5twW4XHo10tOPHngzIT8RyJhp9Fn D31KbnNjgt1Tm9On0LxKCY6y3kwI9jrdEY3WCRyg9aGTvC3diJ1fGezMPciE lSvWTkWhXwR9NzTyZYKqj/1S4pA2YwWXI0xojdrgHYGePDH1OTsQz6u7anso uubLtxPux5lw2+fleAj6ypaPykpBTFi6pOwq8aa5yoPJwUwYuXtpKBgdfjRh 5lQY7k/wx9QgtKCz+kK3E0z4HHFSI5CcX/mywuUxeF60770B6Bx5ib0f0U6L t6QQ734/nWp7igl3dtcJE1+0rlExjmPClKvBHz+0gtG+LQoJTBBKC+Q7hh5P pfV+QEeMzzYcRVfOmp+8fIEJ9jwHLxC7Fms2iSTh+lkKisTZGnN75y4xwSuj yPIIOvjM2Ozjy0zA1/alxFbfv1w/egXPP/TSwGH02K363sGrTLi3Qj2GWFfu iu/7FCZkyPo0H0LPD4qTuJTKBIW8pgzizs7QIuvrGC9JUgHEQUmuf2rT8LxW eK0kLhfUPlWcwYSDbaJxvuiEA6vUjmRiPkSXuxE71yxt1rjJhJ0ylDExb9S8 RbdvMSH0pSkH8Y6ZprSku0xYFD8X4UPuH2mdaJmF59MT7Ep8b0F7DM89JlgV v7MgFpD5z/toNhOs61UXE+tnOrHV7zPhwDH5PwfR+9W+2PaiBcNHvhDXbPq+ yTYX9+e8YhHxr0pvTaE8JvRxxtwgXmU5rliFdsqriiM+4fBbQOchE15deuNC XNgbNDeIDjdM30Pc58UxnvmICXf/WGwh3hbC1ylRwIT2y8rLiY/wnm5oQF/8 7LiQOPOs8POoQiZsWebFQ9y6OOHRpiImFPPY/PJGc19fdHsC3WaxcJBYe9WV q9nFWJ9uZXUR78uVOev8mAl+zUvaiRP00sJlnjDhcZBTA/GLMsWjreiFLiEV xOOmt93jnmL+Gh5+SqzwSsXeuIQJcS8M8ol32eXsnEW73Oy6TxzWtXZr/jMm NKTa3SHOcy/Q9SzFeuJyK4P40+h6FaUyrFd5tdeJhQNKZD+gf+q+uEZsMA/E Ep8zQTv33FXiFDHTX1wvsP7svnOZeFbB6tPhCibEHBP797laVstr1UomCJzi +vd9Ssv25Wf0wc6aVOLYJx2Pk6uYoLGYlU78ZIv9/T0vmVAxVH+L+Fvdp7QF 1bj/wvzZxEv27EusQDNWST0kNnvfF3O8hgm7+n4VE/vvO3B8XS0TuKeznhPf +T7k/R09KbqmlvjtYV92Rh0TkjvDXxPrRvmbL2xgwvCGq/3EroKzm+rR59Y4 /iBOSgzVjGxkQtPZsb/EE5knJH80MUFsR7Q0OV8ldYEF95qZwMcbrUK8p+DM HPsVE6J6rfWJH1Yl9r5uwf7WRLcn7rGU6ox9jfGoc9abWKw9uWHLG+yHQfHh xD596Y8etjJBmfXnLrEG34PwhLdMkLjB4ibxr/03S4zRwYQd3ovk/+XDVOYN hU4m/LAu0ic27r9cnvcOv/+i4ggxozpsXvN/TLjR9uMHsVNZYPzFj0zInhFc TPLRpeiIguMnjI9fohuIfW67Gw11MSGk7W048YmYXeELvjDh4VNbOZL/caEW Ym/QUdpPTInj/YxvXO1lwtatvIeIr7mtL1fuZ4J8xJ5a4gemy+aZfcP4Wl4U QerPB77RsKhRJsQ+M15G6lnP36+iO8awHgSN0on7pz6nLRxnQiNf8Hni8f63 z9N/YL1q0eUm9XJ+TRlH+SQThDcqTBKvO3ku7M8sE4aqfLlIvV0fdkq06g/e X3bKjNjAPzItbg7zzYt2jlgpf2OXEIcTmG29IUfquUamBkfKPCeoaKRMj5P8 jpKEp9xOQJVzl5N+IMW9z0GKxwks5F2ESb8YjMwJPIqWZwfbEydGbivQ4HWC betap4m/RBxWyeRzggc7xCAMHRXeLHFGwAmcVQ8Nkv70IiTmq6OoE3ifXlV3 kvSHude8JehewQZ10g8PhMgpLRFzgiuZMgnE4iEFjm/QNzOf28eiWcGf35gu dIK6Gv5p0k85ggxLNRc7QUf2TptzZL0BUwmcMk7w6ItMNOn3fzRDQtzQr5Nz +C6hSwa4DzSg5a1nY4k32IkbXZR1gk2vay9cJvGlpz6iLO8Exk/kc66iVX+y t+9e7gSnp7bzkHlDyreJK221E5gn7tC/Q87H/eaRzTpOsCK6IqME3aVz5GQa 2lJjr9UzdBPn1mtcuk4wn/PEb+Ksa10VtWhTk4zdZWQ9r6QX0tbjeVh+mk/m q1d6CQ+8NzqBg8/PhGp0Lm/o8HUjJzAZtxV/g/bMtHPntHKCJ4KBGWQeXNea nSvj4gRivccd5HC+LJhrilYJwfsF7VpCoSNlE3LPJDnBTGDc+Utk/jzJ+B6Y 7QRaVzVHyfuA+9BoAVXlBF9NY1lS+L7Abbq6Nf6DE7h0f6qmoalk9fCnP52A e8uVM5fRc5/fhOsLsWD0vKH8G7S7f2jiViUWWE5/5+Q3J/+/4rcObGZBUOX5 EgP0XOxC1QQbFlxiZbR4oFX4Z3PeerHgZ25Q7kW09fM9Q/reLIgW/WBxCR3o d081Fb27vr2XuLaXccf5IAs+8qYuvYJ2f/H4xpgPCxwu+4Ymo28f90tccIQF /RtkddPQSsPjAYaBLCiR46PfRcu++Wp8+wQLavNU9j1BLxY+38EVwwIDQfkP xMLmup5OaMtPRTZP0RxlEReWnGTBygftxiXoL1nSPadPscDatXpZKTo7wjLU J44F/Kru1eXm5O/XHjzekMAC0UU+zTVoHS+65UX0zp/dm2rRa+786RpHB/ye uku8TM5ifvYFFiw7KxpZh+YW+EyTS2JBYcOEZgO6oVtigvMyC36Vnj/ejLaP 91/TkMIC8NvZ0IYGbsZ5zVQWqG5N0m0n6/XbOJ6IDjLySSMetJ8rcLjOgpa5 3kNv0cdXR20eSWPBeGqLeCf6atm5HeKZLLCJfWjwAd05dOuAXRYLnIs+m/Sg S5xONpSgbw5+ziBOe7N/jcI9FvinBXJ8Jvv/WG38K5p236OY+FfUw4Dj9/H6 EAfFXrSUTOnJ1DwW5Emc6u1H0yzabn0pZMH7IjPpIfQCIx7HLUUsMK7tdiF+ rqezKA19nXdZHrHKiqRIqhjja2Xc1mH03782Tq8fsyDym6LrCPpOQeuS5yUs oLrtro6hfy9rjUt+wQIPI46yn+gcSW7j3+iJFNM5Ymdh7RlaBV6/WHvzJLpp 5sJ+8UoW/Jcz+5g4vX2PyakqFrjWW+VOoS3i3vw9VoPnJ8V/6jf62tTrQ9ZN LHDU2P97Fh3Gtd06Bx0c7Kf2h9xfpGKtQDMLCqY0mcTqqx6NlqOzym5WEJfS LnivbcH9qrl8cg79qWDPAdFWFkyJFXJy4Pt8ZXm9uSf6yYEwTeI7jVuVa9Ax alMOxD696wZC2/D39L8VEXMsknAdacd8yRpwm4defqSV1dTJAm1Nu2JONG/Y DiOVdxhP7PEu4m+nK5edQOtu1OfnQj/KyP+0+T0L9qm/sSM2fpPocP8DC1Yb qU0Qu2rZ7o37xIKDx+OkedB3R9t2WfSy4Mfnc+p8aH/tU3P30Y//XrIiNvPf lC3Wh9+X3HKQuO9vOl8nem1qUC7xchGfUrcBFpi2nFGdj05WF1CL/s4Ck2Fd cX70Ad9nnQNou7QD6sT6BT4xOwZZ8LbHyIy4Y9PbnoVDLLAKeR9ELLEj80r6 MD7fm2fdxGcOGPA9H2OB+hLbqwJo+5yxfMVxFry835hLrDaeyY5Bx7l9rySu C1hQavWDBUrJi4eJeU91HPlvAuPz6MpNC9BtDaeXG/1kQVP2SyviTFHDV5no r6KCLOItl2+qek6y4NvQiSji0NuHeqanWKDTAdXEVt9XnHf8xYIkW+G3xHIa nZtfoJ8sjegjLik0vHLqNwsy+B24BdG/qgR3Sc2wYBH9y0biav7nf46jK0f6 zYgvWh6+9wnd9i3Blli7rZP39iwLPJM+eRH7frn1TGcO4+UK/SqxePad5wlo d62hDOKHh7MqRtBlF3XvE49z5tTe/Yv5qt1bSpxQl9vAy8GGy7ctqonXJTxo 3od+ZefcTHxEoaBNdh4bPg/kfySW+FrYEYheNm+wlzg/r/j9W/ThureDxD8N S7rjOdmg8Lnx97/n5yv9Moz+7NHxl1i3uax/OxcbTkpd5hFCH3OsGOLhZsOW XXqixItXVo2y0WUSkouIC4de/ihDDx3MXkJMK6iZlOFhQ1DIlCzxVFDd7wC0 osMvBeLLxg2z7egLq3NXEK8XbPq7jpcN4X+klYk73jRzxqOv/zJQI/ZPbuEZ RqfrSmkQP1ZpW3CHD9c3PLSOePpxhxh7Phuu8KfqEeubf5CU4WfDHW9lfeLj HZ9k29F9nPEbiWcn+5QtFrDBaeevf5+HLBrWKRVkQ5f0ex1iuf9G1ksL4XrH P/27f2nm2EZ/9ArRlLXEjp4/DNrQBgni/57n77qfRlrCbNicBP+eN21m0vgc ukNn1b/1QMUv00H08/Mv/603zHrW8pYIG3YMaMgRL1s6t4tLlA10uel/+/e8 ++8eJ3RgePC//Z3ny8VYKobnY5S3gDh9PY+DH/p8B5OXeAsHn1MrWkmkloM4 4pyA61lxNrQ31UyQ81xOF9z/HW0XzxwmrpAT9jRbyIYE17x+Yu4csUOcEmwY fxrWSRzdIBVybBEbhHQ/PSYWbbDd+R4tqng2j/hafcIyWMyGp7++3/oXv3WC FfySbNAbzU8g/ljDMT9Fig0aImGuxPtrNnfOW8KGBshiEE9UB2a5og+HRlkR L6ie2KG5lA2SheY6xOurBuIrpNkgMl/6L8nHisoV+1bLsMH5Ru3ov/ytZGuf QSt7KvcQu1R8aKfJskFr9Z8K4oTyV9Lf5NhwY8PvSOLBZ8U3RZfj/pfs+0nq id+zn8eOot+f1e0h5nymZfYOrfa+pIl4SUn2twxFjLcjX24RmzxJ09BbwQb1 rIw9xGmFJx87rGbDqOFYKqlvqoVVsS/Qk/V8McSFBZz2q5TZ8DP8jTdxY37Q 3ChaeOHpzcTTD322Rqmygcs+9C2ptza5do1Za9jwQvrGH1KPhSv/eymkwYba oYxu4toO9nMfdJgiq4rYgNPrka4m7q/dgjjiVbbhV16sxfjdoLiYeHr6rss7 bXzegEhZXvR1k5k//BsxPkuWTpP+waDCpjzRRRmFbcQSPjxjzeh9XWIPiE9e EfmStIkN0VO8bsSHBhXrFAzYoDM60kz6lXHCjosbjNjw+uanJNLfvv2Xsma/ KRsiflr8IP3z2DHf4Cp0XPmSOuJ5ItsaFMzYsOtyfhqxFAzuf4em91lZEpuk 69/cbsGG/BNLMkk/Tnd9K73Gkg3135abkX5OjYjy/7DG+tfSd4D0+waOqM9B jmwwsf2t8AO9pSWBoxu91cZgYBz9+MYN2W1MNlw03plDfGtLGV3IiQ3FmW0b iMOiputTWGw4vTDAiswn6+b75pc6s0FQE7zJ/HJVxDGaw4MNcqdmTn5H75db vyrKjw0nPsZok3nKWvNMaddZNny72DjTgp7clPdF8w5+vviMI/n3RVbKkgrn 0dMOA0LENxeFOIygg6Y0npF51WZ4e/v9u/i896OkiR9c769WuYf5MWP6lsy7 npzy95Ry2MD6YrO9GN1TfcZXKp8Ntl3BKx+h9fMn7vuhG0Nvv3mIjk+jvrWj O9rKw4ghQHlfUgEbNmrVvnuATlGpshEvwvobtfJsHtruzKye4BM2yO/QH7+P zg3Yd8QDXdEYmkrM61qXV4feuL7YgrjA4LLyqadsMLThzMhGi4+uk+Z9xobI sL/W99AHPlylu6Crl3XNZaHLa+YlVqI5K/KziH1uNAtGlrJh+Io+J3H1GV3z HnSfxOB9Mv/LBaZEG5WxwVUuYS/xMVfuF2no851qPMSN1h5zf9Gn95fk3UH/ D3bMUJE= "]]}, Annotation[#, "Charting`Private`Tag$104912#2"]& ], TagBox[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], LineBox[CompressedData[" 1:eJwc2nc41d8fAHDZoyREVvamZF6r8zau7RpXhaQoI6QySiohCVFJQkX4SilF Gq69V0XXtS5lV0goK0n5Hb+/el7PdT/3nPNe5/M8SXqedPRiZGBgSGdjYNj4 V/5htU6XVcFefUZv5n37epDlStnm4xpXUVizTeeKcQ96H8d3VlsjDdm1BdSt q/WgLQ6gIqbxCPXfy2GX5+5Bu173xvJolKKny49Nz77vRs7OzEynhcrRFLtD QEdlN4r6s+dS53olcni9bfbEs270LbtZ39K7DtXmHak7f6Mb7Z2Q1OTUaEEn Dl1lubW/G3VRCEF6+a3I7vKg6TeLbuSbYFfsJ/QWcVqLBp7T70bJqhdV3q2/ RzZpdrFakt1oXjeA18y7E6k76A2uzHYhs8gWTjaNPuRgMycfeasL8UzRFB98 70OhHdT+u1e70EeHIQudfDritJeb7bvQhU5JL8X6CA2grt/rg699ulBGsxRT 6/onlNxzsW1qbxc6w1pz0dR7FKUmM1GS52norY3wGRaNCZTy6PXFZT8aEvne V/sgbQLZiG8eOuNJQwHXUrn01ibQk7b5rVyuNMT9licnsGkSNQmfcjthSUOO 5mzv+w58QyZ5j6W3KtLQR6NFyScXZhBb8siOC9Od6IzIhLf8+E/Ucjihbev5 TrRzmpgYsn0eTezjTAgK6UQt5Xkv6sznkQBBOGnkRCfa4eq5drBwHrleP/Bs 8EgnKk8fTL4ZuoBuCCRMHjDvROvbuyt/sy0hhZVNasoCnejxF/UxM70l5Nm7 2rebpxPZv05mux2whI7caww25OxEuU52jrs6l5Df1l7h4H9UZJrydsLz7jJK 6WzdTJygou+eiluK3y8j03Je8+ujVJSqHqf+998ySj64/e7wRyrayzhxwGrP LxSv9f4boZeKvnYSL6Yd/YXydmwTv0ulous5ebmfU3+hkwddJJjeUZHOaabW Pa2/kOiZuL7gJioaAc+ZiNVfSEKBpPK9horieOp436usIGu+VsrpF1TU1uox 3HBwBZ3zutHzJZeKOKMYCysSVpDp++2irrepKOmnCfHp5Aoqin46YnyWim7R ms8m5P1GuVntl/kMqeje7fefLET/oK18b+Nskj+g5zvo+U1c/1BlStu3D9Xt aI4aFlyl9w9NXWcfzcppR2rxQvD6+D/0+tebmYCYdlTy27U/r+UfKiNburFa taPSgUGumMvr6OtpPXO1nvfoSMdpQs5FBihmD5c9Of0O+d08m3l4aRPs7d/z jrDjLXIgtKd6bWaE1B+rA7l/2hBhROq6vzQjzKpn9XEPtyFWtY6Isw6MUJj+ VHDmYRv674PMkRvPGOH5sE5Ds0YbSjgb7pzayAiaxMVfJoJtKEican/vIyME 3S+WaVxtRXDyvNEjDiYwv9XP2VHXij5x06RqvJigbEBwgcu+FTW8kRdpusAE v04w/c3TaEVP3C/yvUthAmd1gryxYCtKZu3i6nzCBLwi7qnjqy0o7LkCc18d E/gei/OPH2pBh/dHrH2iMwG5z4qmUd+CzP51LY7NMcGB5cofYw9b0K58xZlJ VmZY+XDt9+L1FrSddOnLrBgziLklv0mKaUFrS92Di5rMMH5dmyIf3oI+Zyr1 rlozwzJJYmvDyRZUMtPTzBrODOeKn/z969qCSEkqj3f2MkOCUeGD2D0tSEsr OltmhhlsMi5tVpVvQaKDfelKzCzQKapl2yPagr6pXI7XVmeBGZE7ccrsLejq +34/0nUWoLHIxv0Yaka1XFdVI8xYoXi1SGUqsRlpJIyWDL5hg24FB9X5b02o V4VFr+8DGzSpcj7jH2lCYR8U6qiTbPCq9S3S72lClfynPjQIs4Pa0NnO2zVN yPTBv+mCCHZgeP6U//ztJuT0SkT2jBkHmHAnBYujJnRmaF8ady8n8AhP1Qmk N6Jy9bfn0dIWOJiYuKnctQE9bru+//pmbnjwXIOpx6EBpR0h7xmU5oacW6/P LFk0oJDrn76GO3LD46HyejOdBrTr26zDmyJuKDnn7qHM34BycvgUVP22AtO6 2PP1jnpkGrfLL+kkDzxPj7f5alGPlH+dFTj/eRu0ScTEbSHVIQYwshb9uQ1u fxZK/EWsQ91xnJFVf7fB7tdxIZOGdShCOHNqXYAXZE4fWhhSrUNUw/rKGEte 4PK+fmcndx06E7P56PXnvKDxKVh58kMtqt+WU5QTxgfaFz2P5zjXojRXv8/G V/jgCnuQlI9DLQr4T0PoczIfmNa9e6phVYu2azVHyz3lg3V9McVR/Vrk6zy9 7+kgH3gPaOYnideiLQ+01l4Z88Pej0LGB6g1yFnlrUXr5u0gqbbE+XmtGvGI 3IndJbQdli4aPXL5UY1aOTwbb8tuB6LIO85P49WIMPEbeezdDorF3WJs76rR jlxFndWT2+FmcMWW5YxqRBeMl1Xp2g4vQ7ec0dCrRgeYLBhvZgiAIOdsM29M FeKe54PlhwJwnl1FTvhcFWoeGb7oViIAj7vfdqkGViHt6rO/Fd4JwCn7p5zh zlVI4NyjH3VrAvDXZu3iQ9Uq1DvLOrxwWBCYysvtiAOVaP9AU8UBuR3AVt1w N9GgEmmaeP43uWcHvGqbqqFoVCLewn8J5wx3AM/E2q45pUrUcVHH9Z7TDjhM vDgYLlSJzCULVoaid8D2iGrxLb8qEME3Uct7eAcs7qQGCb+qQMLLjkUh6ULw SUPYukGrAq24z91hyRMC3w99eeq7KlBvy7WIO0VC8K3+9denchXoVkajLaVZ CP6OBAtWClYgLkPt738WhSDHvG7IcbUcrV0WUrzsIAxM259mHqgrR8PbRnKT OUXA5qD9qyf7y5Fw2LiDqKAI3JX/Jd5mV472D31leCQtApv1ONvnLcpRx5MZ 90oDEeD9mzfko1+OKk3+CE8EikD9W+Z4ukQ5yggVSDHoEgEZvRC3zpky1I3j 3DIsAizdokG5E2WIx1jsp8N3EXAsrsiIGC1Dcdwydj4sojBQTeVz7ilDZx7t 4bqlIwrxc9o+N6rKELnf5vLEPVG4sqdu75abZeg6slcPeiwKGgXPta4nlKG3 D8mja69EwVUmbLvwlTJkHOSKeDtEYfu0VqxjeBlS4/L9Y8AgBnpcF6eJXmVo i+Hl4FvHxMA6X7pd07AMtWSXHTVU3QlhBi1fZZYoSCEqqXKesBOmDXgliD8p KMHDY/tj053w+mx1XuAMBZGkOFp43XbCYvF8wuAXCur9z1lpMmEnsISmFCj1 UdDn/F8/bk3uhIHIGvuoCgoyu/rO0mJxJ1AYuau0KBT02OdB7t/1nWBZduzY wisK8lcwd/IVFAexgLtHEp5T0HzBnVJDM3Ews3qxLJdLQQzPtCIm/xOHq5sO jQtdoyDPJI6+zCJxWG4szPKIo6DGE4O7yRXiMHeyLr7kCgVd3XVltIomDiE6 KTMnIymIzdkvt41BAnLZKSPOZyiIYNFNymOVAMZWhq3fginIl7D3T8RmCWCx WTgec5qC3u7gddLcIQGVPv553QEUdL2/jOXBbglI55CVGj9KQTVt0iXntCSg SlqlsMqDgn6UJbk76UuA06D2kZzDFOR416OUw1wCXpw8QIw5SEECBzmOh7hL wDRJi4VCpiBz6+DtdsckIHNX4NBHBwoK0x+sU/STgBp+zjF2ewoaEHkhPBwq AfYOHMcjbCgo85Pze8skCZB+Tw3vI1JQrbjpX9YUCdA3ehNlY0pBY567dzWm S8D67Wnnt8Y4flMsN/fmScDVEPZzI4iCSpZKyBoVEqC97fGVM3oU1E3IivlR KwFvxx7wq+tS0K/z8a+fNUuAgdSN0GUdCjJgPCKoQJMA67BXzzO0KKiZe8tH 0Sn8+y7UrVZ7KGjSYYVrYFYCHn2pNbRRoyCu1HGDtEUJMDkQY3xgNwXZi5Rn bWOQBDU2YtdVVQoKcn/4oYNFEthKHx55pkJBqTk3GRK5JOGRYnbLR2W8X3kf T1ZBSagr0ZIlK1HQmp9jSoOoJNTsNRS7r0hB4s8NGyOlJEEouPTnjAIFGf9U WDJUkIQdZof+s8A+pskv90dVEn7WTqoXylNQ7Nn1/RQNSeD6y5+zA7ug/NvV UF1JsJHMmk2So6BZqJuaM5UEhp+VSimyFMQTUyj8zEoStLdThaWxNVrSrP3s JWEru/5MhQwF7ee8fEF+vyQocnTlHsIOsw189vmgJEh/rjBgx75702Uox0MS 9u1XqayQpqCqLtOth30kwUHATSoMe0RADURPSIJX5+VThtiMriKn+4MkQV5x 8BEXtkwma+6dMElYKc5tG5PC+THyk0aOkITo6a199dh+0oNM22IkwcTCo/Mp dqJ3q2ZHvCTwSHaXZWI/L3jpde2GJNwuzU9Ox+78nnXHIlUSetR3uN7HXtyd 0MJyTxJK7vvyF2ALBIeu1GdLwolhel01NuHNEcXIfEmQaHhydBD74G9rV8NC SYBpiT/MeH0RBjrXVl9Igkx3RLwWdvYlqcrSUkk4S2XnOYldX79lJqQKx4uV +eYL7C8sv8XUGyShN/AN519sdsvPpLlWSfD54B3lgM9LKfHDpcIOSQiocFt6 jm3zobz4eLck5N4Y8dmOz/8kb/6o3IAkMEXoD8Rg39qXzPt5GDuj1/Yv9qv0 CyY5XyRhouN4YwSOZ99HnxD3aUkQfVKGOHC8V3eSH4r8lATGM9fq7mOjh4ps d9ZwPjS2Dw/hfOHxaRWhMkqBEmt1/UZ+jSn4qHFySMEFEUTywvkXU5jnErFd Cn6/4fMVwPm6P9AkkCIiBa0Pfq/+w5ZXG4uel5QCVuFUNI/z++1L8ULvXVLw rl1kYgXn/73Q6tpsTSk4Sc0mbcb1EqBzqGdATwoy57hPK6lT0NaKu/9I5lKg XTM+F6tJQU712x10juDnH7MWqMP1KBvzyuu0txR89x9KVdKnoGUiOfxpAF7v q/WxLAMKymi7+Z/4OSmoEBr/+QjX9xCVa5ntlhQckI/QNjCjoKJbTziN06Xg 1t0nZ9bMKSjSyVL8QpYUMMVE3G+xpCBpeqzFjydScMpb92GELe5/w5vu0Ruk wP3T5PrJfRSkm5NdxPtWCu6n6tZfPUBBnEdRow1VCviazkc/caGgZ18vzNR+ kgJfRhaObe64X8/8QgVLUsC8JfOypw8FNRTdcRr/IwUfAycSaMcp6PZpreNi jNLgKHbrsS3upzpLQbeSuaVhQSJQ0wv32wtrM5/PyUvD8sfKX0IXKMi2OvH3 S1VpuBPTIjgeQUE7I5W5ZzWk4SjrhH9pFAXVMR3X8QRpiGpNr4m6SkGsXJ/j rVyk4dVXy0uZKRSULDSwS+SaNHQ+5X29+IyCzuzwSP92Uxri2eOfa7+gIFfB yU3ld6ThXuuPzGg8f6S2L3c750qD6Nu/fgQ8r17x8J6/UyYNlds8REXb8Hxj s2rZNikNn8nGW1u+UlA5a6fa6Iw0jLu3cj75RkEPWJzvFi9IQ2H3ea20WXye TN4n7NbxesPE5W8uU9Dvf1F8SQIyIMdpNbbGWoZEl8sOsxNlwL+vdK5RsQwx LEFbn5UMKLY0pNnsKkNfFlrUH9nLQEjS+ydD6mXo+c8eFjM3GZDnvS8lZVCG 0MzPp5eDZeBSUW6HnF0Z8vysuPIvRwaefT7ZoHS2DD2mZdxc+icDyuGSF/U+ lCF9++5BIxZZuMQkrH0H3y862rmVr3PJwoeSxfZ/H8vQYuvlJrkdspDl3/Fi ebIMGdWcWD2wRxaIwgGzUUzlaOCp0bHyo7KApqLcuPB9h+vKlM6lVlnYNUE9 wfeqHGUxylx51yEL0lXa4QKV5Ug90p0m2CMLp9gpsvKN5cj5fFdA8ags3Dg1 HnS6uxzlna7KGV2VBVmhmylPlsqRgXsyl6mqHBzat8P1lV4FCtTRHWa/JQfy j3cyOX6oQAtsS8U66XJgGE8ynKBXoDB6cbR3lhzUXPrqkjBWgaLOKcg1PpGD klUZx9WlCnS7QvDEpQY5MH1990uUWCUqR8urS4ty8HI9s1HzZCVitXgpMH5A HjZdCt/jKFaFru04ObnNXR4eupkIFylUIZ4ppXI4Jg+lVUbZwppVSCgh91DW KXl4u7Q3Q8y6Cqm8T85ziZeH+Xmu7i58f3a0P6VOLZcH1YAJHtaBKpTprEqq ElOABKEtsfkPq5Gmd2dIlLQCuBp33Vh7UY3eB4feIyoqQKYqGjxcXY3WrldN tmsqwNbnKg6kvmrk1mR7echaAVgNiQzvOGqQsHogZf2cAljrGySbna5BaVxF Usa9CuDgaiO/W7YWJVer/Wq+rgjHfmZPfOCtQ3SruE3sqYowsDzwyEWkDu3s G+ayvKcIQgnZ16el61Dh3HWJd48U4U7kUqe8Vh1qlpix/FCrCJwR3/cyOteh 1eiC+33zivDi6xEx9KAOHTWXMp7crwQWZ3sO9GrUIy0qXxKHuDJQVneHQ2gD up5B/j4sowxE/R804UsNaNIzxfqNkjJUm1kyrsU1oPtLvJxHtZXhg2ZfH+1+ A2IU4b1aaasMzbv3MNMaGxDViyfq5AVl4N7tmcon0Ij8/mwO7elXhpSRAquk qkaUJcd6KOe2CuxtXtYMEW9GbxToQkGKuyAsgNl63LcN6Uz8Wx5/sxsaL7yd ivryHu0NFb7ac1sNOkzPWIeLUFGZjWx8z6E9YPRwX6NyfydKa9ZRiBRSBye3 kEVGly5UkBVy4HynOvwU7Rw8+qgbHXHgepPRrQ4fm1uYCgq70Q7mXH5KnzqM JOs9/vaiG8Ud/9C5OKgOfQcfHz9a2Y28NZVsAr+pg6cfrUypsxvJvB0GDyYN MHkcML51tRtlLVkpmWtpQFZQvdZuyx6UYiP5lzdDA66U2X8t/NSDusVUWNfu aUDNuy/v6kd6kMCc9tYvWRqwr1c5uedzD0pPtpEszdOA5j2zFT+/96D7vWeJ B4s14G6S/F3mvz0o/0hH0n8tGhBj8+LNbdFeVBZyfqfmsgYoi9WFHHHpRavE WHmx3xrgbyLymfdQLzIQTFZjXdOA01cN9tYf6UXVZfnG9E2a4HWh/JWgby+q /9fpfWGLJuTtHC3NPNOL3scpFDXKaILQU/VogZReNHy/B+0ja0JbzC6HmrZe FKZaXn5hvyZ8eSqrdKC9F/FUZ2nluWhC1T7+8GlqLzIe9lFeOKwJ+XdVozno vShPclUgOUATvhepkUS+9iLf/J2z769oAlr9VHJnUx/6WeRz35SiCQ+UqvIW tPpQAtgIBlRowixSMxbV7UNSnWq3Uqo14fLRhTNGBn3Iaf731bFGTbCwnHoS ZdyH3mgmBkd2aoJktJRbP6kPhZcVW1V+04Qz6NjoV+8+xNTwe0VDTAvKuB8m Rd/uQ/x/d76xkdCCHXq1sRppfUhOxzTYS1oLZAy7XUcz+pDF0+szdxS1QO/H tXSNB33oeor02G8tbBV6QklBHxI6ZvuuhqQFLJcnHUSq+9BulpxM60gtYLQ0 bMr+3IcANbseu6wFkf0lvnNf+5DjuWnBi7FaUO10dIv+VB8KmdG69TxRC/bs 9jjcNtOHynvexm7L0IKDAqct6pf7EDF/8WTfCy1YGTkBcux0dNDcwvjouBZs GrntXaNAR8sPRgvMvmrBwJnthBtKdHRzJXyb0pQWeLv03XRToaPmgmcjP2bx fuQFPs3tpiP1zXyXIla1gLfbbWlFm444OwcrMrZpgzYhnu+OKR1RXIO1qEgb KL0sAkzudER+uTnzpbE2DIwb1185TEezXPnMaURtKNj6aTurBx3JVNG7Dllr g9xe0dL1o/j3xfcGTe/XBg2Xur+9x+nI5zN7EWugNhx+n3lBIJSOBAKzFAzv a8Pyc3XTkXg6Yo/dxnj4gTYQqS7KmtfoaDUz5mNkrjb8zIsLvZJIR8Ptftcb H2vD2EtWgsQNOnqsqrNo/Vobhsqm0rVv05H+zIca1w5tCFze+3Uik452sZhk XOjUhtB7e1J5H9CRhNiboKxubehpF6vQy6YjZtv7smMD2vCmjHLqci4ddRT6 Xjs+oQ2bGJfylvPp6EjApgNhDDrweOqMiVcRHTnGhKjdZdKBL2buiz7FdGR6 f4KjklUHLvAN7/Z9QUeK79sr1zfrgF/iE2uPl3Q0r3xX6qqQDqRPnCRol9JR zLT6bKq6DjwZC5/xr6ajM0z5LaVaOrC7+HGfeQ0d+YoI5fQTdOAOY9hhyVo6 srVeJ4shHQitrbVpr8Pn9fRdWZ61Dsj/iqphb6KjAr9jV14e04HVch++re/w +edYc2T76MCDFDmXMuzsPvWkRD8diNY5e8/jPR2lm25K9TqlA4e8LggVttNR 3M6sPMELOqDst8CvSKUjb1pfw/kUHejV6+9v6KajMfYac987OvDrDbMzqYeO 3FH+O6cMHdgkXjjai72/MKRL9YEOnI7RERnrpSNi7Lbx4Sc68Pxdt9EoHa9H z5rRtF4H/mPdrHb5E17PKfVYtSYdONaY1DuLLfpIiFOsVQcmlC3TnAfpiI9/ cttyuw5U3f7jJzdER4yzMZKP+7HlrEKeDtNRhEzAw9ufdEBnPJmFfQTnhytZ MWpYB24Z6VE8sedbJPe4ftGBjpPmV3hH6Wg0pxo2/9QBxrmcvoNjdORGf9i4 sqAD1y/pJRVg07mTLL4s60C8ZZD/Ejb1/EH76jW8v1Kvh1fH6ah238rhU+wE KNf8o3DnMx0ZJA6Pu3ERQDdbzrAHm1Lf7GPJTYD9j9SjeL/QUdHu1JNS/AQw 7LC/fxU7i0P9Urc4AYpSzmi7faWjW1MuxBIpAoRfiv5xDftqWxTXTVkCnGPk XSjDPhXfmWatjD9f+tXNM0FHXsd/H1LcRQDi3pnXutiulpIybHsIQPrw39gR bBOO08X12gSYpKdKPcEmTKWfydYlgNa9IJ332CpttQYRBgQoIJDvfceWLJhk dEME0BTksOOaxPkUz9Oma0yAS1NeZAVszuOEG4JEAvz3XL/ABHvd4si+JXMC fHvh5nAIe5K9eLTYlgCSIu/uXcMenOx7dN2eAIvJ1Sgbm9a6fiKATABxX0vd l9jNj+U1rfYT4JYHim/EroizW5V3IcCbxBC1buxi37O1LG4EUDeu2j2GnWfx IHbcnQAZMrNXZ7EzFFps6jwIsAAfdX9jX2ef431wjACuCnZmjFN0FD0p0H/B hwCMdO7nHNhnW/c+cPUjQEzs8Omt2AGPvb0IJwgw/yL2Fh/2kbjrygKnCHBR /C2PAPY+3zc/F4IIYPzx5MyGrSyGSjtDCbCis1dxw3sVWCOKwgjwuONP48b3 Ndh3mSadJ8DpiJN1G89XmNzH6R9BAIOAI+Kc2KKtF6kWUQQIZrwzvLG+bY8f 3pGLIUD1jz7GVbx+1rh2N+arBKhSno2fw171WZIaiydAzffs0HHsOXOxqZpE AkS/oDT3YH+WJxZl3iDAmP6/i83YdLYToedvESAzWe/+a+z2idv6LqkEYF3T lvoPu76lcpNOOgHq2Kp4bmC/efS5hf8efl7MHd9z2E+vbr4+n0mAypgkJU/s bB9NJ2o2ATwOBRywxL5t7ib8/D8C3H/4d24XdgRbYf7xAgLMKh31WcL5EzTR FWBeiM9nqN28F9un5Y+6bBGOz5xg2mts+6vWNSOvCNA/eu7KSWyiT/CV6lIC TO1VkrPC1jO/Z32/nAB9sV8J0tjSbNN9B2oJQKm8WErF+b9jgjdLq4EA+gd6 ZB5ib27RO8bXTABPSQ22MOzl2IQfHe/w88z+qgpht7IqcZj1EcDdumqHJa43 /nxlI88BAnT09J/ajH2EqHouYhCvx459vR3X68pltak34wR4xhlaZ42tsEmn Tf4HAX5apP7eg+s9JJuwyXSBAKkUM7EJ3A9qkZ7ukWUC/LFqjriL7RxhWJC+ RoC5r3zrf3B/iftjEs/BoQsvU7V5nuD+032XWCe7WRdYruYZOmBL6Jn/Ntqq CyKPiouXcf+ihFkdD9+uC1umT/kbYE8u2VtOS+pCe6ad7Uvc/yx+HOJo19OF 75v0ku0GcDxuHDaaMtSFG/91XP3YT0cjuzzOsRjpwuhKH80LO+zEsSlDc13o YmHxC8X99vE3v7bnZF0Iufb3TSTux+xfzsbfDNAFk4ShTAsaHTnFnKsrPKkL 5wI0bMo7cfylz/9uDdKFjL1jh5SwCZ4Rxzed04Wcu5+es+B54DscYxl0RRcK /ulKFOB50dafzOGUpQsW/Vwcea24v6WxfdfL0YW6TyibDTtk38UOyTxdYOJ/ 8ul4C95/p2/KXIEu/BjksVBqxvOuFYlde60L/Idq/t5toCOp0hm1+ve6oHOF Gm+A5+H525bOan90IddaXflKCc4nxxo9wX+6MOmbRq3G81WOR0vsH4MePC2T Uf+F5y/tmsTYO1Y9iOW+rnIMz2eFy7/8fXj1oDXvIu/uQhyP0w8vZSnqgQQ3 yTj+IR2p2m16tNlZD+aa7gs4peF++t7+z56DesAkU53heIeOYi2z7Q6468GB Fwnldqn4vE3QSs4xPdB1yqcTU3A8CBctdU7rQcKtMw8k8f1jTfL3tEeCHvBX eYmmx9LRu8UfaqWVehCapDAeG0JHx++OlHtI6oP+fZLVPRt8Htp5ZQ4y+pDF aRrpbk1HvZ0+FCN5fVhfqymWsKIjY46515Kq+nCrkpE51xz3k7C/xaMEfSAW l8WmG+P5tE/4kYe9Plgd0E/dR8Dx2uaU4nFJH7ZOa13ll6YjtrgWf49BfSAY mU6+XepDA130whepBtDq/jTVKaUPxSy5HMs6ZAiTz2bF/UT7UHLZGEVrx14I CKeqZ+f1ojPkj5ePj+0F2YioC0z4/eGG9b+hmccIGLyX5yjJPYgl+LY/9x6A HbydVTZbe9Dup6NSIakA5+u8bIqju1HCqxKF3QsAek+U+XYxdqP17+lneO2M IL2Hmn8prgsd4SldbygxAqW6F/f+cXaheWaXvrdbjeFpfHa0RyYNnfqs/u1B iDEo9H0U5lajIfYFSWJmnzGIrSWweH3oRDTa7dk5DRMwyb6UEXmpE/29KB8U qWUCwsn6+QYRnUhBsXyJR8cEDOQFz/6+0IkiLg2v7dEzgXLBeq/Q8E6kqKLE FQImYCU7fO5MaCeKvFIjv2JjAkqRnsmZ/p1IlfDtCIO3CRQZ24lHOneiuEzU xZNuApWPBjrvaXailQObC2MzTKAljGf4nkYn8uHtj1m7awIrnYL376t3IrOr QdqTmSawHFomm63WiVhOP8yo+c8EEn+JhRWpdKJoU64jgUUmUP1STmJOphNd mO79/q7ZBCI/ML6a396JTuoGsl5dMoG/xyqebV6looQu+R2iv0xA6oo5Uf43 FeWfGFV8sWICl113PzNeoaJPOU62H/+YwNFwptnzy1Rkxal/ezejKbhlOmus zFORzEc2KTq3KThXPm4T/E5F9As5hooKpmDGz8O9MERFCwIH7aoVTaFyKfGJ PDb3C34PsrIpvNddFzg0SEXEL1djLu4yhbFdZYfffqSiEtvAd52aprDJT7f4 OZ2Kknbqu4QbmcKZcV3rLBoVGdd2h7xzNQVdV5KRUAsVCRc9l3dxMwXS7TJO /2Yqms+MG/h6yBT4PKPvVTVRUc55A2D0MAVLnhler0YqYtDJ49L1MYWREb8D VXVUVPUsODc/2BQKOU0VUyqpiHCPlxqVaArZc7OXu0qoiCfhe/TW66aw9q5D eC/2ZFizVuYNU9gLO88WvKCitP3h9yi3TCGKSL0UXUxFy9vGvOfSTUHqw8gH w+dU9CruxV+3h6awnaXjUH8BFe0+Y69MqDaFeJHSgv9yqMgm5JjG0xpTYNdM ltmN7RsUpr+zzhQelX61qMimouzAbGvmRlMoXXmU1POAinh9fvhT20zBI4GB hTcL/96Bm4W+PabwLZEt7cldKqrWpapmfDeFDFJmgcttKhrQ+ay1edYUZr42 ya+mUNEvrRXDS3Om4OmfanMPW01dguQ1bwo3ETV++BYV5SqdCtyzYgoRKebU k8lUFCvCU9TGRISXRz6fK7pORbZ/7dRWhYnQePRExpN4KhL4aH86URTbX+ec C/YQxaFk504ivIa/OziwA0PImiaSRDD27k3zi6Oi69P7CYnyRNBj1LmufZWK qP2HYKcmEe6l3dCdj6Gi9FL3qGItIkwtvmZ5hn0k9XC9sQ4RJlRMb/hi/7D3 MPXRI4KW7WL/6GUq2tZ6zKIYiLBpXtFyMJqKHN/42xvbEiGAQ8//VyTOj9sB yd0k/PeHy1ersMdOn6B52xOB+lSAeAU7SPWk0zUyERZN6jgEsFPygpy7XYiQ 9zGIBJeoyC06OMP7IBHYxXyKN2PLHAkZWHEjggd58V1/BI6vyBk3sSNEUC8m 7D6D3X3r3BFvbyJYkZhzSy9S0f1T4TkrPkSIlz34Ph77GOn8WMJxIvAOcBS5 YS9xXDxWFECE2aGO+8zYAlGRvitBRFC1Ytp+6AIVHTh59VTCJSJYCupZqZ3H 33erZ2WMIgK9O1GWB/uU5d/756KJ4D5Cz/oRjutZOrjN9woRLva+8HuJXd3n LmV+jQiP91R4Ava7xgxKdSIRghVVFGWx6S+6SdrXifDzOyRyYs9fszovm0yE gcin8n3nqEgOtLuZ0oiwThl8fhZbQ/W03/l0ItQ2NO3zwAbhQoaFDCLoR/xN s8Z2XZRUHbtPBMVDJTOS2D6jbg0uWUR4VjnAwI0d0pHm0vmACP+MCp6vhuH6 frwltjaXCH9P3ujvwb6baiFKyCOC5CXH/Y3Y+dGXS4oeEoElivfES+xat99D WY+JsNNrxCcFu91SM1TgCRHa6BnWMdgD2ie5rj8lApfno9ZQ7EWeLzoXnxOh nVfguiv2pn/iHYtFRDBZluq1xeaedj0W8IIIOj4f3xhhKzRRbx58RYQL/+Ub KWNrlXDJd70mQp+T17QEtvEDsyqrUiKUH5ZXFcR2O1c5pVtOhGtXt4SxYB/3 /nXpRQURpF4NRv49S8XzTl1AsYoIKS4cksvYl+FEYXY1Ee4kejvPYd9UfWy8 o5YIW3zeyU1hZwqP02/UEWGBjTtxHPsJ286TbA1EOJLCHDeE/WbRmeVSIxGu qF8RHsBuGE25t9xEhHw+b5NebGpHx57AFiII+11k7ML+VMHR+qWVCMTAnANU 7KnHpu6H3uL1HHps3IG9nHppsfsdEc6F+za8x2a6XJ5g006EE5sp/e+weU4t STR24Po7fOLKhsUOqZXqU/H5N7s3b1jJyt/2ZScR/nNyv7/xfR2d/HGlLiL8 Wtdh23i+qczoudxuIpg+orBu/L7DNlEe4V4i1O96dpeG7f5vf35yH+4vl8bq e7D9p5MNOPqJcDhO9lI/dhj9PS1ygAicBiYfBrGvNLEdX/lIhNVb7C/HNv4/ Wonx+slBIhxPMFaaxHZbzNQeGcL1fG+VfxZbVvv3CfsRIijpcSUtYs+edXpY O4r7i4fprT/YlLKiT2rjRLjPf0aGCccv6g8nf85nXH/Op0y4sK0Mva23fSXC Zh2mOT7swVrR8p+TuD5YNablNvKTMeynxzcicEif0t+Dfcq0S4E2TQSGPbGC BtiMrfFpJbNEeFBwMYiM/Z7jS4fUD1xPnus/DmOnWgNryk+cP0/vrgZs5N+H 5ZDgRSL0lro/j8P+yeNYOL6E639G3jkNu9zx2Tj5FxHIqdaJ+di2vUcdNVeJ oG0/fqsZO2iQuntpHfe3r6L8W3C9GYir+HhtMgMD9mguCWwWj6tZPYxmcH5P 4zUN7PTPhlvesJjBdW1JOTfsqukn385wmcGIOmfVS+xYVVapic1moJwpvfwW 2/6kh8sBbjOof5H5Zgx7bF6wVWebGZz8vfSeD/cP9tWYhysCZjDbwGp1AbtT f+ST7w4zWJRZoqRh372oz98vZAbD9NZnG/1JddN8dJmoGfzq91SYwXZkP3wk XMoMGC5runnj/iZqVZ72TdoMlrIllq5gf7m2/YOrrBlElp3lzccO2/reUF/B DHxWCvonsDMFdEXWVM3g2oGl26dx/5yU4eu9qGsG3wZsUzNxfz1kdtBsi74Z KCXPNOBXaUTz+e/NfQMzKPV4lrCIXflEI60CmUH2pjPDtrif31Rzcv5NNIOt CvFZbLj/EwxSB0IczaCq841WGp4Xzw4NWjE7mcFnlUdN77ClLslWpOwzA4s8 tymGKCraXP/6XomzGSTQGKYDsEfMe91+uJtBYPbtD9Z4XsWRBYf9/fHf96uM yuD59jfksN2fADM4JTmW6IkddOdRTUKgGfy2ZG3Nxnbr18kuOG0Gu6xjp3de wfP7sLPHxFkzOOHfNSwZi/u5X8a4Z4wZ3JeTNjLG81YxWmTSJdMMRrNfMk4n 4niVZD7ryDKDF//pv9VMwvNpXDzYJBubnZntEjYPUeafyn/4fK67DfPjeb/C psrPUGAGjzQPMpvdoKLmpL2Q/8oMttlumarC9wPPDI/0+Xd4f4frjjOm4Xi9 HT/k024GH4woR1yxe1e9pD91mIGTmmJTCbalm9/zpk4z0Nkc1XMsHa9fPLgx vc8MbmnBlo4MKlrPi/mxd9wMgq1rcl/dx+srfmRxbdUMOLuMXlFzcT3VCZiL r+H8E/Y/svc/PF86rxBf/jWDSbXJy4XY6vNHjT8ymMP70hu7E/KoqFVDwkCZ zRziTYJ4rPPxPHiTvvsdnzlcfnmxaAzfx2yq4gW4VM3BaPGLsA++z/1p8/+c cNgc6J4hOiX4fii6+89lQQ9zaHKIyiXUU9He2wnSeZ7m8NxELaAGO9q9wLPK yxy2GSoIdzRQEefC15E5f3NYvx/SN4fvn8KinoNOYebg0iF1w/Qtzp9A596d yebw97FAsVoXnoe8xNaSenN4Oj17Y9NXKtqpkru6W9wCAilGLPybO9ErNR3f 85ctoLn3sXYRoROdZ7WXER21gOKc1hfWxzrRIa4IhS8GltDR+77o041OpPRn 3OdCtiUYxm66u1yN30cq25d8/1pCW/YOju6pTsTvO1ct7WkFhq7u7/YI0JDa l9u9GrVWwL2u5T5rQEPeyXbaAaLW4K8Kod2HaShOwbgzKNIalptq6XVRNPTx JqW8Y9AaPFQ+2fnh9ykFK+ujR4et4bxMsVM/dgjTENfKiDVwwJ/NFlk0xH2G 6ZDkZ2vQFWhLk3lAQ8YHSevB36yB5xnj9oFsGnoi+9lE6Jc1nOud/E87j4bC y7e2H+WxgeDj3xtfP6Eh4c/ewyvGNpD+Q/Hp2zc0JDMvpBhragN6YzrZMqU0 pMrQHsRnhj+/8tkyAhtENVh3WdrAiTKuCjUKDXk5rasctbOBuO5d/LfKaKi4 MS28/aANaO99kWVWSUNmD1u354bYwIfgk2xn62jI/uX5w7vP2ICNuUpiC7ZL 3a6CyrM2YJgY3iRYT0MBg7cN+sJtwHwffV8pdvJ2j6Obo2yAfHZhZr6Bhj5d +V18JskGluYi/h1spqFgbyUb63wbqH7QWrr0lobqLwtOVz2ygZnPh7cR3tEQ Tw5zglqBDbhOFiqGYxd+HGrZXmgDIgtBd/5if7ZPMRl5YQPHylaPbGqnof36 a3qhVTbgzuhcudZBQwSeDsUH3TYgp179tJ5Gw/26onVbrw1kKfeMr2F3Wz32 iemzgekfVh+1u2jo9JXoh8cHbEA6+DT7E+wnq9qSmiM2oJ8Y6ZbUTUMiXx7s aJu2gV+qB+fNe2noX9lptgVGW/j2q40zqZ+GVt5YD8cw2wKnskVoA/b8S9lS AVZb4Baevf0b++uzfm89DlsIeUBfODZAQ+05Rs1RW23h7FODPYSPNHQ/ftsV HlFbSLSbKKF+oiFdlxeMu7RsgSicI/V2mIbU918bqNG2hb92Zea/sFXIXiUO BFt4aJsgLTNCQxK2Qp6h+rZw1D9l/QI2u1FUXaWRLeT9mbZSHqWhXgWHSGuS LTy4yW4QPobzceXHX18fW1j4WTk/+pmGSphZlEd8bWGKeriA6QsNz1ch5wN+ tqCT8U5SFjtQ0aiEeMIWlHt3O/tgH3dN9pYKtoV/DXGfJrHdK/d8+BhhC7b7 T5BGvuL9tBLXHCNtIW7wgvw/7I/dLopvo2zhR5BMg8gEDTnPRF2mxNgC16vz xvuxyTtpOqkJtmDBxXm0FdsiMiibdMcW5j7n6eZM4vglxrY3pdmCvsErkwrs pvS7qwYZtrDy38FtPdjGL+qdlO/bgnFjyS+2KRoyHOPlYM+1Bev9JvN+2Oqm L0/XPbMFUaHfhbLfaOiUfUsWoQifz1/uFX3sIreP74qKbUGir4rNEVsllEku 66UttNTKhV7Els8nD4SX2YIj62R8J7Yo+6KxZpMtHPuOCgKnaUjwuMK2vGZb CCjwnYzE5n3rNszXagu1AafnbmGzJzadX3hrC6wDh/e9wV7cmvaqhGoLm4mu 0avYc6feRUvRbGFWRpWR6zsNfetct7/VZQuTzS5WItgjKb4zp3ttoc/wr4Y+ 9ntBPbk9n2zh8z3BwDDslrDAxexBWzigfFT9KnZ9f249z7AtePhF16RiU+5x Hf4xagukgMuaJdh54oNpRRN4f7eTrk1iX5SP5Ni1YAvLigf+Ws3QUFjcq77M RZzfHaYH9mOHTE0+3LKM460hc94D2++pg/HMii14pq9LnMXev1v6fOE/nJ/H RSceYDvcPGApykCC00+u3SrAtvl5TTBxEwkygs6zv8Q2frn40p+ZBGizjFMT 9i6d5u9KnCS4/DwpYAJbMX21/C4XCRZOLZ2Yw5b5vSuecwsJOF4G6P3CFq5I k/22lQQ20KnJOktD20XfL7hsI8FRxzHPLdg8Fxnq23hJsHzayo0fmxUddy/Y ToLIkz4vJLE3ZWeqCAmSwEQYtihgrzHQVuN2kGBnQKnmLuz5er00XxESvMpv +6qLPWS2mSoviZ/PFdRPwr5yVbXvjRQJNi1mrJCxVVpJQ0QZEui+bRpwxj5n mfz9qDwJsrtjJj2wJRJKFuYVSDDaQ+T3xm5+27UapUSCfndvJj9sfhsBjmxV EnwslFQ5jV2RqMOzezcJ3pl98wrB9mx3FqxWI4ERb+DRs9js3OE7bdVJILbW IBOOXUS6J/tJgwQ684xPLmDvv1Gp4q9FAs9xo4WIjf19GNRY1cbrr0ljiML+ j2ddL55AgqUzIrRobCsHCeMdeiR4j+dkDPbPZCPLR/okuAbs9Vew02me9tqG JGgnPBiJxd7LF3OgaS8JxPtrGq5ifyE/dHcCElgYRPvHYSfebvYaNyLB2S+b 6BtW75kICDIhwbmjzhzx2P3bOUI2EUmgIPBgfePzyP1K52+akYDkPle+Ybk0 62hxCxIUZHrqb7i9LyD+uSUJprR5ozZ+L2TH9ZuG1iR4miSYuLEeYZeitPc2 OH9YE9021luXQc06SCLBDGv8/GVs34GfD7/ZkcB5SZ60sV9uEb5n5xzw+elG n4zEfn1Q8xU7mQRxei/2b5yX2/19FWlOJHjr2cG0cZ6Mg2fq5faTgFF04cw5 7AKx9LbXB0hg0EkoPoNt715GNXUhgfcspSgYezlroK/LlQQeI4mhp7Azh/8M ebqRYJa/Y9MJ7G9H9s5EHiaBw6Z/J7ywk3MOL271IMGuDHHSRr4QxiL/ZHmS 4JkG/5LbRr4dbeCo8iLBCb1Paf/Pt7zPPDY+JOhNGkvZyEfaZ5YdH33x90sk D1hu5Ju3hdxvfxLkE4s19mK35B9XjTtBgvlcdVsCduBEgqbgSbzfZ+Rd6hv5 5tturBVEgpDiPnPZjfzxdzx8OowElK/FA+zYf58GezOEk+A/yXmNTdh532+f uHGeBOPTmft+43r8eaLv/LMIEiTuvjc/iZ14yi19KoYEO54sp27Ud1ht6eKh WBJ8sD/fV4l9lIfPgXYV17OE5dRGP9ArbuOoSCAB8x6+iBzsyTnt84k3cT5w 5weGY3ejW30Mt0jA/pWieQq75saMRmgKCeQmy995Yd/Znff90B0SrJ4dDrDH Nj25zX33fRLU7v1xURpbrSag/L9MEvwbrGsXxBbZ2iqw4wEJWKkKc1zY888j PjDkkoDJiO/RAu6H2bPTQHtEAu2Pn2ZqsddONEuHviTBvaHEb47Yk1WSkVOv SGB3Rd/dFLtry8VPh95g947naWE/eaaRalZGgsOl554Kft+Yd9msO2pw/e2T ye7H/f5VwPmp8rck0Kxu0tuH7e+vVsQwRoKDfgMflPF8YbwXZnp7nARffwvt FMC++7a2X/4L7ldTr/UYsFsVHZjtJkngmxY83IXnm8zkaZfMWdwv+8UHwrCH jr1k0vuD6/fhs2dlkxv5qe0czG8HBc5OGYJ4vk4kRcywCthB0DnZ6T94PkdU NUffFbSDFNIC98b8fiZ64FmdsB3kZf1+/wib8+NZRh5JO+gtHpHVwm44UFZY qGoHWeIZx8zx/Nd2MNj01cwOnDyDxqzGaSihJ08nyMIO5EwVLJSwB122BP6z tAPPUe4rHNgxnkMDArZ24PxoKKYF30dowZGvzMl28PTr3QdG2CfvNPoUHLYD rUQR1134/vL4o01HQJgdlPGvPvo2hOPnfejeQoEduNDXqIv4fvXq97qc11M7 4A02eNWObZOUW9JbaAecDSLh+dgXXk20lRXZwQLa/vwA9hBj0Mql13bwZDS0 jELH8X4Qu29znR0cbV0/HdqH+09/0VZZuh3slv/IOYDvf0Jym4yVmezBzNp1 0OkDjsf1uS4TLXswJ/U6yuD77sth8S1sx+wh2te15+ErfD9udfUbSrYHzzff 4HE+DYXm7/lyv8Eecrr5Jtbu0JDSCSs21nl7qNes36YfR0P7FNfN9ss4gDRJ Nex4GP69jiVVB7IDRNTSxbb74XnL+YtwJMoBKpbaFQrdaGiPwW2P/S8doKDU xYDbjoZu7g/e82vUAfJ4vWWOmuD7vffszkv8jjD29v5FVgKu/y0haiJmjkBt KGgy34XnocoB627sGwZ7FOWwzaz0vJPMHaH1mVUOM3ZzLMP9dQtHOBRn/KFO FXs9ke2ztSNEPc+WMtzwz4dDhQ6O8MWz8rGOCg019vQl7j3kCOkypL0GSvj+ kak/5RHiCCUNPTOX5WiIrpyarRTqCJdOJUh4Yc+WzR5YwD4h9svfDFuoN6c5 5qwjfJXeZMuBfYqbPe9ROF7/PX7CTVka2nmp230m0hGeHBV5lSuD34eOnOgO S3IEtHbWckAK73+2+ZrRdUfoaSpNrcbOvyBhwnnDEdIEmldzsTvTu17cu+kI g8q2WwOwFTp1b1SnOALF8K/HuiS+HxuxWjHfdYTNrPnPlLA1pB/U3Mh3hPom uU8p4jT0nZIqaf3IEYKl7McvYOeREi+zPnYEpVQeBm9s/vBz5hcLHOFR/75w AvYilfzBr9ARzj6bPj20k4beRLAPE0sc4aoq34ld2ISB0//+VDnCq0MPbgyJ 0tCPk75HSqsdgfj8qcVb7Mcsh+uDahyhUVdN8A32jj02sVO1jlDzO2MxCfv3 VTnuvgZHuDBdWrwXu1zro1hJmyPQLN1U8kTw/TfZ1NC3xxH2fgHpS8I05OTw bk681xFMf3wZPoHtt80xtw/7bdpcsRv2neTDbOZ0R3DTUryph/0jObxT9qMj kP4xmPwSoqHcW8Ve4yOOoPAwMywEm/226HX3744QIuQqELEDx8fpPxCYcQSf ltGDJ7G1+JUW2rFVuK69PoLteVvH2XDOEcKmNR+aYFfcdpQSnXeEDu24UE7s wNS4N/2/HIEjYm/fPUHc7+8sDjkxkUE2OPxqO34fr23+qSrKTAbX7V5GtdiF y7MXxrE/ssfwvsS+sn9KOIiVDNadtqvp2NoCQ/tvcJBB/ETGsBd2WmpLR9tW MlQd3PeXCTumqVEsmYcMO+WuKKxsx/m2VBfgvI0MziwP/b5jW+yr5JzgJQP8 +k+jB3uF/4UZswAZCj3k6Y+wXW/frd4rSobFMwk+DthmjWlbWMXI8Dqict0M W33xtls7tsqFu88NsLmcbqweFCcDwzMLewXsSr4Y7XNSZMi99yGXAXtnyonn LxXIQOHyvPSan4ZGkyFLQYsM79+fn9mNfaptIG0Mez8rtVMB+x9DaPJ9bTKI nIc2SWzRUwUxPAQyMLId/cmHvZ/E67+iR4YRI0W533w09Jbzs04rkGHe+YZY C7azccSeaCMyaDz231OHPXFuh7KBMRk81gWdK7CZp2x2FpuQ4UlF+2ARNmp5 zZxuRoYuZYW3GdivLl/t9LEhQ+3uk1KnsY0rJN9J2pJBnmmbRwB253xF40fs vlrtEh/sWY8fpXZ2ZLi3vHrNHVsBXLJ0HMnQojYqaov95uxC2k9sbn2xOQts YlFS8lMyGQJ/vukyxfbcWR8jvo8MqwenuwywM9eU/NmcyZAh/qpIFVtFs+lY HXagDoFfCbvc/7D7eRcyHFv7liCHTR9IcZhzJcPo7qbn4ti8ZWs6fYfIwPLi 8Qde7Owfd/Yku5NB7eG/xq3YuxX2KFsfJsPfRKf3m7Ft0rx21hzB+fVpkocN Oza0g/nRUTJMrW89vcaL73Oiw3dPHSODY5hh3W9su8Y5NT0vMgjEuMj9wt7B t+1QuzcZdt1Fu+exL5RLLtzxIQNnyyptDnvUQz3+iC8ZbN/HXpvBflJMfr1w nAzE/AW9KWxu52PWVX5k8Mxq2jOBHbweMhrrT4ai11aGX7ANSHe2CJ8gAz3e /tYodvZS/n/j2Et+9R+HsZkzS3WfBZKh9WWb7hB2+zTdC06Rwag5XOMjtnrK 1B+O0/g8Xm//0I99R281uQubsk/hEh17dZRTITOIDMr6T036sN3jRaq9g8lg s3JHtBe7Xk3FSS2EDHISnzl6sOXpBt9+Y9OJ17i6sRMv2UY2hJIhZy1Gsgv7 h5y7QNIZXL99bdY0bKeOwML9Z8mw7OeY0IldFnrJWCKMDFGWgoNU7J1iN+lT 2DJs20w3HN2YHfjyHBke6BBqPmB/9X/BfDEc52fgFdKGrfnq75qdJ0MJ/PzZ gV1cTlPjuUAGO6OQgg3ze44392P3MLOFbjiMY9Htv4tkiBfPddrwYDHzQkAE Gdpk91ps2Nh5e7z2JTJsLeyy23D+uqw4QyQZZswO+m+Y85H26zbsrdfa7244 kGRunRJFBoMt0kMbpi0dGHWLJgPZ00lrY306mb5n5S7jfBJ3zd7wfdNzW35g 6/ariG/sj+F7/H9lMWSwkG16seFjKXd1L1/B/StdxHnjfFr1nn6wicXxbVXg 3Tg/lbEKL4GrZPCz/jK84eT493+GsdFry7qN83alz8gHx+N+ljJZvRGf6kv/ qgwScP082vZxI37S8ludWK+RIT+ilnMj3t9D1SIzEskwG5SUN4BtL2YkcDSJ DP437nJ/wn7d6FCoch335xNciYPYEXzB9JobZBj3X64dwR4rvxwYf5MMC4mH w8awzT1vM5OTyWB/ktPkMzbPi9dqX2+Rge8cE+8kdg5pJW7zHTJ8enY79cfG fiUyTtKwW6TEPm7Ui9y87v70NDJIeCyoL2EXpp6XlsnA/Yn3uNAq9ptP/6r0 7+P16qbXMuP6DHv+IG9TJhlOfHuWtlGv+pFwrQW7RLAzkhO7VjramfwA50uD eDwP9js/lgW/XDJMeP09JYZ93SC/X+0/MlxYz+yTwLbnNq9dxr7SwWUvg937 Ii4p+iEZ3n3bdUYZe2SFS+HuY9xv95Tc0cNeiuU91PYc73/qoaQbNsX5pcmN ItxfWPbnHMEOV3JS2ldMhpu9jupe2Awdqb9GXpAhNYI3LhCbc7vQrZVXZNgm 2rYpGlv8P/EW+QoyrCRtkS/EHgupfTaDLdTWVPoCO8/M4/bLSjI0GFi5lGIr fcv1QNVkMNNM6ajH1twjt7a/jgx106pRA9iWNSp7YlvIcKNt4N9mPC+ep/vV 723F/cn2k+zG/OAPekz+ha3E8b8O7jucyjYMAHj2llKoUEhDiKyScWdlRTLe wzmc42ggCSEpQjLKiobKalFGUUiSFipJSJTISmSUSErSdz/fn7/rHO94nns9 XJd59CXojytXBnvW28PhylPfFNEBJ5bdt3yF9fSnxGND9AVHQdP5b+zh7GW/ f0Ho4ZFBWvpHe3idfunuKNq2VnF4e7c92I2sPPMDXZrlcVigxx7GRQePzqLD 7bozQ3uxPjCFwoSxHy6829bH+GQPJ41FFqugdaNqfeSG7WFW5mGZH/qE1JWI /Cl7qOL9GsuB/bzWnboZ8NMe7vFzvBJCzysQ6tSdtocLAedWSKCD9QN1Xv6y h76zayaV0O5s068jf7BftrSYOKI3Fg7SVTgdoKRq9lQh+rOhsk6xqAO8/+14 ahfOI1v2lI2VrXYAk4Ee0X9k3qngrfNb4wB9UsceC+E8NMtPy1q31gE+xJeF S6HL82dsLik5QENRgdQGtNJXw+IEFQfYVDOvfhd6UVB9gIeGA0hzhix7jR6K 6p4WM3SAloXBRjdw/krJEuD0cXKAXc7MT4dwvnN8+VtDIN4Bmnq2Nr9f0WKY l/wjvrLSAXo/WStl4HycqqceK/HFARKcjVc54fw9+VHgsvMyR/CwP/b1yvoW wzGvlTu3WjrCbMJ9l2uaLYaBCRaWFiGOsD+1YUnkphZD/6uCNhvyHcGLSXuX ZYDng2siv2vfOUKcn5H4OjxPLLhY+BiEnOAKz6+A2q0thjfWON18recEF6b6 Nw9YtRh2ZG0xEtjrBPreXYtoeB6JFHwxuTbTCdYnP1+auQPr33pluQH0b+3j LtfRCo7JNjlZTrDTRSLtDro22/GGRI4T3Iss+foCLaDV58Z1xQle2BXY/kSf Yv550XndCb5MFN7dZo/1olQlJ7nUCZLaxJdMox+7pVpPvXSCtu6lgpqOOC/d PF5f2OAEkVubLPTRK+ZCzHe+coIHX45GmaHDM5kmbxqdQLiw4SMNrduprFfS 7ASD9eLGYehS52fr9rU7wXjC4soa9HWHWcGBPicY029i2ji1GFJXv8Vl9KP7 NlY7oXl/9PE6fHKCHK3UxUz0rrQXnE8HnKDl9uJb+9HyLWdncoacoNCNlpiC vmirPsz46gQ8OZM/m9BJlrtftP52glvWtpHWVIuhuGBT/8UZJ9jV+y3HAZ3+ YtMc+48T5CdbVTDQl81FNL7POoGTtXajD7rcrDRDZB4Fq14Pnk1Adxtx+pnx UjBjuT6jHq22OUuiYiEF+SqTh4CG9XuGT/2oOAXXzv46tRWtW+lvZbaIAq3K F5ds0CabTCNaF1Mwatp8nYGm6Yx+GZeiwJQz2iEEHaGh+2DtcgqyC0flb6Kb 17V5XFxHwQnbiWxxZ5yXJzrXOCpT8Jf1yHIJekVl/5ioCgUnp45+lUX7mn8/ GKVKAU9P+woltPAu4QQvdQpWGvOrA9o8y6hUR4cCpxRq3l50tdgt7lYjClr1 xdn30Z/by14kGlMgwCuj8ggtkl2VtNWEAk8J3e81aIZKvdR9UwoGzW/vbETP WAwoXzanICWm4lcPWuvYMkc/GwpO/+Zv43bBfjIVe03YhYJ7w7L7tqJvKPPw taEX3fxVbIXO9YjyzKZTELCkfdQWfan5yLoNrhRYW+VZ09Bni/xLKBYFoc2V hZ7oiF30B5d34/vvlhiPRYdlvJP12UNB+uSP0pPo0DeOEVqeFOjUT/ono4O2 bDd+7kVBKdul9SzaW8b0xZgPBW8zuTZfQzu8VX278QB+f0P8qUdoO+FCbc5A Cs5MuL5/irYxXpv+Eu2jcWDJM7RFiQLdLZiCTJM9Ua/QBolSvccOUVDAf3P6 PXqNKedY41EKpgwP+X9HKx45apMegfcv32rwAy1/Z/aWeyQF84aCuabRMnLT AT+iKDCL/xc8i174d+TXkhgKXNQmOPnoLYZ/S99y70qgYMh7RfFSdMbkNzG5 RArWzZR2SqP1NgjKdKEnpB5xLkcfuWWg5ZhMwakzsFkBPXMjb5dpKgXvwqXc 1qF/ZR2qU0yngOtemo8uOr0rraUXraTppK6H1pG++THzPN4v8sY3fXTw+b6f iy9SsGWVgPMW9FSa1WreLApYpR0ft6In4mTiPl+hQLXhUIU9OvWZzunLVylo qlWUdESr8+7IcbuG+ZIUud8J7XcspqItF/f33XYRZ/S3sG9DdTcwfozi/rqi k6oEpqLyKRi7M7qWiVb9o8BhWEDB5PEF21lo3xDakruFFFScvhrPRo8GPLbI u0WBKF3p9m50QskHR49iCg69flm4B608PuW+vIQCR22DS57ovfuUQs/dpmDP yqyD3mjBQpMY+zsUqDUlO+9F5w+7pc4vpSDurouWD3p4T1p+bBkFy6KiO/ah T+QWlRuXU/AnfvCKL3rtwLMn/9DFEsp79qM92bMdBysomOVjf/BDDzJ2CXne p8DO+n7oAfSn2vmeK6rw/oeDxALRfaqVNe/Qz7tdc4g/zpsfblFNwTPJxzeD 0J1e9zo4HlIg/cZQJRjd0eKhU4lWTPtxjbjtasW40mMKOsf5Yg6iW0U8tvWj bYK9x4hbgkXyLz6hgLtJ0DYE3dR9l9fhKQUD34fziV+Zsz2Eayjofi3McQhd XyL8qAb9wTXAjvj50rvSYbUUNCTLZBDXHXM/pFVHwSVnsV7imlGhtjG07S3r FaHoJ47lG3KfUfAqutWZ+FE1K9ntOQULG28kElevFhqVeEGB5NHG+8RVKWXm r9EdJ00+EVf+Zl6LrafAeUiE7zC6gi3ICS8pSItTXklc/rLU7Rc6gXV5M/Ed Teb94gYKLHf6byMuzhSQ8npFQUvsRWfim7ylgXKNFKg8lGcRF+53a36P3jPH 706c/45fNfU1Xm/Tdgbx9S13Tlg2UVC4c8aOODffdZCzGfPngIAR8VVxfpP7 aEX6UWXiy0du5xxooSBX1G0Bcc4A4++6NxQERuWNk/fJsuFz+YTOy3etJ864 W1Ke0UoB43BUFvGFFQxxx7cYP0OS+4jT43n9RNooePp5uTbx2Ynihlr0Xa+M 32S9T9Ppa8PbKbi5K/ku8akanhjtdxQ0N87sJ05SKe77ijY93yNPnHDWxTDv PQWa94yayH7Hed76JfmBAg3X6KXEMc3Ojk1ol/ued0m8ROty347rxPiOarEh jhB23vu7i4INtob7SLyFB3E9L/lIgVir2Q8Sn0c+Fq307qbg55POIOKQYs6P HT0UHOuu8iTxHLykSDetl4LIRKEOEv+BUdQ5qz4KtHO/mxLvdyjcXtVPQaJU okgA2ueBU1HgJ1J/zbz80d6rOARVBiiQ33jpIcmn3b8cn2Z+pqCEFxgk39wy /mkd/YL1qWKXI8nXDUEr1m8dxvVYkBFI8pnXZsua+SNYD/adSST5XvQvamn2 KAV11zsLST2YZfP+q/6G18sWubST5Mfm1b9iximghRYmeaCvLDL/bvOdggc7 FINJvbGsi+//OEFBVWjxBlKPzq8VeT43hfVjaRibTp6fU/Vx3U8KjB31lrug 4YNNZdI0Xu/E6FsaeighpVD2N/Yf1jp1Ug+1x8VPGcxivdU4kL2d5G/5Updw Thp4rLjlakLiMXmzvRkXDcQb2yqNyHp7MqxFuWkg5yezkNRjhaVZBlk8NNAX E79F6nVAmJxCNT8NnDaNX9ZGi5msGf0rSgPvv1OBq0n9kbYYqJ1Pg+HWXUGK JL+mvD4mitFgf6a8H+kXzLyCJpmFNOCITHIg/eSm4Poy/cU0+Csa8V4CbdWs FR62jAahffvbuEm+l0zKbZSmQepql2uc6I2pJbUT6MXvD+6fh15pryLiKUuD 3DBq6g/2t9nWlRk75Gjge2fs2QSZD96JV65eTYN5gtdOdJP/t9jzfap5Az7/ /nvnytDRj26dT9CggUXqYPNt9EzOPv2tmjQo5z3PV4z+7P4lukqLBtsak3fl ox/294jnbaSBy5lFo1lov8HX6kcMaNCtXKVI5oXmr0X7VlnS4KxIoqsDWtqw r2gcbVPzs3Y72jNZ4mulFQ1aw46s3Yaep3bU13Ybfi75pdcUrea/fX/IdhpE lF+W0kGnTE741TvRgOZ0IEcKbftLJ9DXgwbL5evU3uE89IrjSWj5EbwftX2+ JTrkSIxQWBgNTj7u9zVFy09bZhiH04AtklRP5rPg0TcPmo7SYOkCzWAdtGz7 wLyRKBrOv8uzV6L9CgVil8fTwIqhrzuH8+FCyi4t7gwNmhYMFJB50amwp8Dl Jg1ahOLW86APGm6JvtGJfmJSex3nYdHn+qHdos4gJex0UwDnb4NNRyQf6TtD XQf83Yfz/p8tte9K9zrD6Xt1/q/ssP9C/t2UTGfIlVNax7Md139Vs75kgzOM 8zvxsGzw/M91ujd6zhm4mcXsa9bYTw+63+BVc4Fd/J45/Hh+8X/jJ6Xh5gIq L8P5L1ngPKUofc0sxQVOv9rKoWeO/YMp8J77oQvwDf+OXYDnn+LkVKX87y6w 8kf2qmnTFsPGj55i/hMusPXZ2NpJ9KiK4U+dSRfojv+6/ht6TcPI49ofLhAl LmgyiM7mN3XunXaBj7dLEtrRSZHTsVJzLtD5gzenAu1zgDEQI0iHMLmhpiPo tdSqHA8FOvhcC/QRQQ8XnVeTWUkH+XOBlCA6n1vkcRt68lmnCR9a6fZkr8Uq OnRUDKziQCuLPFZQW0uHJWfe8U2Z4Ho9pefNqtLBS2Gjfhd6w/pTN8/o0iGE IynoFnriOLeh7WY6RMceLSpE3+48+Jpfjw72ne2DN9AaJ9zGD+vTwbKmyuMq WnNg3QY20OGilVPIebT2xboyVTM6WKytXhSN1uWbrXpmR4fn5WJL6eimVwNf UnbQ4V/mfi8aevfp1xIu9vi5b/Z9R3Sq3BW/UQc6ZKb6e25Hj2y2XLmARgcB y4/9pugMv/STLm506LzZ4K6Onnuv6TLmTQeb+zGHBNGnc2Rjy/fSoSH+gzw/ WmkPf+lRHzokHZht5EE7/fggstCXDoGLLq3nQN8SPfZY258O0mPeC3/heZdl 3Lwm4iAdHHgKXT+jHxfum14YTQf1LXr8teiZ0B+NjegzcyLKT9EbLA7nnjiO +xFpuuMx+spAnCNnLB0qzn+69gB9XPbqne/xdCgO7PAqR1ukdOxvSqZDawlz 53V084GtQ4kX6bCRlieXhBY0anxokUEHg6L0UwloIzHHczyZdHgxOMB1En2n kG0WlkWH482p32LRZwbCrvpcokNoq0p/JNqZKmVZ5dHBuF1hczC6V1fuPf8d OvQYvi5goUM0NnI8Rp958t2HiRZVtl17qJQOhUet1dzQejJhh76UYbwUXH9A R5/9925JfQU+/9uxCSe0dU2Ky8lqOsyMb362Dd1flRdl/JAOns65Bdbo0LLq /D/ox9xbUq3QebmjM3sf04G1ime3BZoz3vyidQ0dUq9WrjZFV2yb1ylST4du vr3i+mhbM0nuOnRVT+ZSPfRnA1Xl8JdkP34rbEaLqzGOfG2gw7TGKv1NaN+F FdKvX+N+a9vEa6EV2ve7prylQ6XdrjhVdOXrmOPmbXTYpNRbooLe/jyzaF47 HRKpsC5ldPi9l3/93tGB986izeT3He8urs6y+0CHoLCS+WvQSazujwt76bCm X0NWnuz/c58rHej3nw1d5NB71Gf2XO6jw03ep+kr0MC5+Lv6JzoYiinLLEdP XLHkshukg3fkQWNptJvwu2dSQ3TIy1BKW4Z+GbgroQct8NB2YCn6qmnEYr9h OtxLGktZgqYGy1Ynj9Gh/OBuHkl0ja3xqNNXOqwcOe8pgVaraCqW/UaHLYqb GxeT+Ikf2XRznA4uyU9zFqGrlOSsX01ifua1sheiV/gm+AnN0CHFZrOLKDqh bYnWG/QJhc/9IujfBnm/L/xBm33fT9wy/0mU0l+sR1KKycLo6JLp0xbzGHDU eeSLIHp8yXHnBRwMGBaKjCF2jVoo+x6tvN1PkVjbXiXPk4sBS9Ro3gLooR/s e7G8DNC8ryXGj3ZwHQ+z5WNAm1fEQz6Sb7VhRpL8DNjwVcaf+MLZ9Je5AgyY v9TmAy+a959iiq8gA5IXdqcRH9hzx0FbiAFPox7aEFtvbOyqFWaAmc/elzwk vnLolxNFGJCurZVIrCjwZbejKAOyl1rZEc+95xr/NJ8BTc1UDzd6r9Gp0kIx Bvydsi4gfpcveyhwAQOG3p4IIS45vImTW5wB095dS4gfjXj4V6PruhvGudCN 9KSekEUMSKksf0Hc9bLCVmMxA1SsL1wlHt3cXz2GDhkIjiT+UyCiel2CAebt VixiQemNmWxJBhwOkNpCvGY24XC7FAN2Dp3hJ9bxuTt8agkDmneafuNEm3X2 OlsvZQBv45d2Ykdr4Re8yxjwMTDqCfHOKu2Nj9Ga+aK3iA8ou+cdlmbAQHVi JnFUxkkJbRkGvOT6l0h8Srj8+Dj68Qv3COKcIz0/8mUZcM29LJD41qjgzl3L GWAr/dubuJqh9Wb5CgZcslT2IH7VwDTqQAfr27gSd+qdKDktx4Abpm7OxDPS 3ckCCgy48t6UIpb6q+EbvpIBRxK7GMSr97l1bVRkQOyDeDaxdlec9SRacWj5 //cz3XbnftEqBmi4ZR8gdnjQpeS5mgGpfnxHiT1U+C/Ir2Hg/EklEAdkbhDo QlcVJV0kjhBxDTm3Ftc7tLCQODksdtBOiQE5q4ofEmeNlTgJr2NAHtf5VuJC 187aOrQee/cI8f1XvFqRygwwSpPkJvtRr69+dbMKA84NFsgSvy+ii/9EyxbL byYekomJKlZlQJn+YWdi3rkOlqIaA66ONF4kXuzL09SNri56/pB45cf1hhfU GeAfcmmA2Kg6Wma+BgOMH4xpk3izU72V8AJ9qJ/FJmZlvf9zTJMBUlYlycTh 4aodv7QYcPH652/EiV9pFne0GXCCq16exHuG27GKfToM+OEVSxFXGrw727cR 10MhsY7451ykfcNmXM/GokqSTzz7C5/E6DHgi5DVLPGi7jb1LfoMGBm6b0jy c8PDdWLlBgzgtF7cQLzv6NuG7C0McNFPmSH5vYMZ/M7LiAHjreF2JP+1DSU/ aRgzgJ/nZD7xvH+0P89MGFAk9YtN6sXp8M6141sxXg/wjwmhD7mFaVWaM8BO 85kDqT9uBrJboi0YUO9+sZp49RyTJmXFgJqRo+mkXlWG9ceADQMi5WR2zUdn u0anCtpiPSrw7iKO1lfMakWvCKqlxNDb/u4u87RjQPudrB0L0D1HhvtTHBgQ avSUJU7268h36HVhwPPWb12k/o7QU60L6Az43Hg2WMqYnMc0aEEMBjiW6C4g 9fr8n8D9Am4M2LgkyJrUc+XDvzLV3Rlw4MO5DlL/d4T+m4ncg/niWuxA+kl2 iEiZfCADtHn47pF+1RdlsOALekmyx8n1JB4S9++7FYTrvfwkUw2df6lZUe8g 1rsQHZEN6PL6M2cdQxlgWjMWRvpfo7RsSFwEAxqiFpeS/jn3SHXz1wQGxGdx +pD+vOUl81xpIgPUrQaCSP+OfpsyGZrEALrogUgbUn+GJwr4UhgweOVk5na0 hPhdabk0rFeZaV8c0Kq7DOfszzNgNU28yZXsh8D2x/euMcDEPfi1H9pkmezz gFwGuKvbT/uj16qMNq7LY4DVnpgVB9A/tsd1Zl5ngOjF0eAgdHz6o+nIAga8 N8zRCEWXrlZXtSxhgNvegZFj5HnMFl7sqGLAzbKvdunosqjWwD9vGPDqUklt DdqPe4lUTSsDvOU1GHVkvWNc7ye8xfih8f14hr4c/5lDtp0BMl5XVr8k/Tzl VxJ0MKDr+YmsZrRnlvSN4z0M0K9dVv8RLV25s2v+GOZDl5/YDKmP33+YruR1 hdOhuss0cV4cMqeqpzVdYa7kilUB+oNOjUs32xW0Zp9NKuG8bSL9atHN065w wTeu6gHa7Itk8OqnriDTa73cygzrZcHcj9gpV+DgMcweQD/lGT83u8oNym4u 3XoYzxcsc4W+ZY5u4KKxyIsTzx8HIiYs5GPdYFQh+UoievklLuc3ZW5QUen0 iBfPK1vuFh/fO+QGAwe3xoSjx3d6tkkuZcKXFLmVg+iNf9wbfc2ZwNVdsFHP EucVu4o6HQsmeM1KJ+mjz+aJPpxnyYSeDTl9Bugf9vdvpVoxoeZUZ9wWdHHh olPlNkzIy1WqN0OvcXtmP+fAhLV5/Cvs0JKPld8nujOhqW291C70z5jp/sJQ Jgx9DtY6gX7+aTjG8zATNmQo6p1Enzf6uHblESYYKnMYJaD15mr2XwxjwotW A6skdGRQ6p/4CCZ0irXap6KFd6qI74lhAs/RnfoX0HJbPIzkUpmgHz0/4AZ6 IstpoBP9/ZmjWz66ZtYiLj2NCR/ynlsUoHdXqDXOP8OEME1N2SJ04fo557lz TDC2lH9QjNaWPe//IZMJdw7T39xFW/9pzDlzgwkxH1Pda9FHju04vS2fCT+3 09fXoQuE2mJ5Cpggdtt5llhQuss3qJAJjv6/0p6T99Ub0XO8xQQ+vYf3XqJN w/neLypjQtWjI93NaAMOWHD6ERNo4SKnu9C+8U+5rR8z4WlKgflHdOaCrb+4 njDhzdLIWeJZOZvuA0+ZALkt7j3oSiNGkX0dE1IeLFDoJ88fHWIh3sCENOXF EUPo9XwlkantTNDk+XB1Aq35L3+ByzsmnDj2aNskWnf66iW590zI2v1githk MP1xcQcTONv/Gk2hXZ5FcLzuYsJETUbLNDomdnuk0CcmLJreVzeL7uQbj4ge Z8ITBwMOXjw/9/37Imb9nQmmSbaJxIPT/TniE0y4fP2IFB96YrD90eVJJuiu WKdMztv8zx/Oe/yTCXNHuswF0RpxyRF/Z5mwdK6SEkWbRkvCfW4WjOf7NyxG S3F7uErxsMBtZ4emBHr02M3QIPSmpogM4tPHTMvW87IgdkuslyT6U9QBpat8 LDi8NHxGCh0d+XpRoiALbBuMfy1D0ziWbRhGG+7IdJBGK0futt0qxAKPZJ1i 4taIv/Ecwiwwa1LdJYNWiFj3L0iEBaFvlOtk0U/CY7+4iaElT+yUQ5+da+Gt Ql/6ylFG7B0uu3LJAhb8mfeAWx69MLzM7Q3aMuTvJWL3sP43W8XxflKFbxTQ 844YVqtJsOC5U7/4KnL/Pyc+JKIdH16iEV8/3PZrGL108FoG8fbD+zSuSbLA dXGE/Gp0dujF60uWsOCpfYTiGrTBoelUTmkWbA/o5ldC/1ULD9+DPj3ZakZc NcTt3YDOaJo8RryJtnDLWRkW1J2++YdYU0fl29rlLPDkWd67Dj359U5HEvrC yt1Syujbubp1k+jNie9siNUkzDMfrGBBtjrcI143xbayk2dBV4xctAp6uPCL djnau+RFKfH1nX7yyxRYsFg8+xPxqtaw35/QOQEtW1StyN+f0vNCFFmwn82e IO71Xp7Whe7kOSy9Hp0jnxtutIoFyxqfmBLLpN5xFF7Ngr6nPWeIpfwbuXLW sCCN21VZDd2+xvEb91qMh6QpW+KzPR86vNBDSg8DiMW3fynRUGKBSurnMmLR 9dysZ+tYsKsjYYM6+tXnE1bKyvh+FaW2xAlZC3ROoRP5xXyIBUWXi9JVcL80 PS4T84xtqvqqygKXQ8d4NqBrrj7Ks1/PgqmNdtLEUYytaRXoBf8cNhDPa3Dw jlJjwcC9f3Tih8c+OA6iVfXy9hOHb2ZvsVZnwaKe41HEs/n7pSQ2sKAj78s1 4vvsn1yH0VbO+8uJQ5eGfetGH9qqUkc8HX+i7oYGvt/Ujn7i8i0LbotqssDY 6P44ceDvc5kH0DqDjL/EE57XAvW1WNBmv22RBrpHKzAuh1jfV5a4kdM4g0ub BUcfNq0mrnq9oHg3umFZkBpxfkbP0xfo8jP0jcTpXrfalXVYoOUXbUgcox0+ koze+vWbKXEg17Z/E+j+HVlWxO5Ny8SdNrKAqzd5O7FN5vCqe+hLH2ociPW8 7+lKb2LBveP6NGIlnTibo+gt8jMuGv/XC4rdh970Y4ZB/CPzR/x1XcwHk3o3 4iad1BLfzSxoTixyJa7mdq9tRp+k+P7/fmHz+veaeixIHsp1Jr6QNTd6Dv32 WIITcdzeV/P+oJ19KnYQB2/MWOSmj/E8oGRDvJNn75rHaG71T+bEO1o26a00 YMHytE9GxJDNvz0WzRmlrEes6tPuMYw+WlqlSSy9KffgNkMWPAg5o0wsyBt0 shi9aMldBeJfLcbZ4oD51S23lPhz9sI7wWg/ybb5xK0+vXXv0asFW7mJb/Ee /Zq9hQV7LG+Okv3NeLONk8sI11P5ZDfxiRxpid3onZO3m4l361bqKxuz4Av1 6Q6xA1+8XTLa9cTXK8RGrdSuCfSjepM0YlnfqYQKExaUZbX9H6/Cm2tylpmy 4HfdQlfiGb600nB06qoMC+K2S2qdJmYsWFl2bgVx0tu965q3siBdXbeO5M+R y7qGmuYYH9pDRcTe+wXsz6ElagdOE5sJ5IW6WuB65TexiP/q9b34YonfL983 TvJ3WKCky9qKBY0qOS3E79qOfr+FNo1aWUpc6iezJNiaBXtHFIKIfa7SPDlt WODbw/Nt/f/1K6jZDd1F02gkHjZN072PbnF4WUjsOfhKONCWBVnPN3sS71Iy LhnYzgIL2TXvSL1yK1aZeW7PgvrzfhmkvslwWHkoOrDgupRXAHGnnWdDJLok rmkrscvk5SxdR4x3GBsn9ZPSljIudGJBtOIuPeLtVZwJyc4s8L8YW0Hq83yR FVMjaOOMxOPEja76buYuLJDM5N1BbP3voBoHHevn5R1f1qItjMZaAxhYP986 LyA2et4u48Rkgdct162kf2i0Ft6S3sWCbZHLtpF+9JHBMxiBLvmjz0UcN+Aq O4BWa66pIP2r86doYtFu/P7IPHni6CX+3gaeGE8+emMrSPy5aSmy9rIgZY3I HtIvA788uHDFH+tH0aFh0o9lAyRa+AJYYPSnKZH4+YyvgA+6LfWcGrG08IoQ zQNYnwsCA0k/r1GNcqwNxPd3OTRF5oFFgWZigwdZcFt5tnMhumyu8bhSOAtq n3qYCJN+JBS8MA59buJ2lxDJZ0mZ7AG0xpqkYOLLansrco6yIOD1l1wyfySx +UYkIlnwQsGAU4Dsb53hdq5oFjy8cvEKD3mepOKlnfEsuB/gkjaH888xmdRb iWdYMBJ8XucbWtUwcucXdOX35oqv6HcsvyWmZ1lwd0vRJmLlqzbHZtGzR7bp jqHblISovekskFHQ0xkh8/TG6DnziyxoB7EVg+jGHcHbuC+x4BQ9+haZ/6Ti XEZCC3FeeL/qbQPac2y8jF7LAt19xTqX0dxb17Se6mTBeRpVFoymX1SJvD+F z7O095kJeq7/TaSuiDtsnb/3wSLy8yFHTxuvdIfh3/mOA3g+SOT7rQX67iB2 vuf8bfTcCfF1qQ7uwJX1qD4arSQwe7N9nzvMLu8tckTLvPlikhfjDntm6+4q oRmnQlQbMt3Ba7PMGnIecbJ8m/up3B227Har7cPzSsZ0S8CORnd40HaBtw4d wWW14ya64NOhrFr0zvlP1QVfu4Nt60VtYpXVd8YfowN3X99Tg652SvNVb3YH /fJPDU/Q3WX23mKt7rCWe+zKQ7R8YKt743t3yGU4RN9D3xh/u91ywB0+LjWY fxMdohk/V4R+9SmuuAhtHqJXuOCzOyj7KOwg/vzvMt97dFXN1rOF5Hrz/ar3 DLnDe0kb+QL0RRVB5eMj7nBgmaPFdXSitwHfo+/uMG28981lNOPm91KFCXfg 2FQeTqw8cZUdi7510E6JuP6QULXNpDtIfAuJuoTmjX8X2PXDHdgHU7Rz0Efz AvpmpvF+xt1FmWj/T7kPtObcIaj97rt09MLC649S0X0GAmnEtw/kP/2GNl+a s414gvPmixv/3CFEJOvpOXSgXNlbGQ42nODvuH0WHez2dIyHmw0V3lZZp9GH 33XLtAmw4eKNzuspaOmc3hUagmywNn+1l7hqT79CCvq0G+d64tmfn9daCrGB 1bKpPBkdvvirVrUwG4RmOp8lkf3cMbstdz4bRD3GphPQxxukwoMXs+Hz7n8n 4tFiDY62H9AvEwR2EGe8TF0BEmywmGEvIb5dL/xUQJIN3ce4bsShPz6fx58p xQazjTMvY9Eba4dOPV3GBgajbEUMevRBxTUxeTZkm0jzHEMffDAVHIRWG/rz NgrN+WCDeQf6z6m1ecRLqgqHryiwYX6TryWxWWXOeh1F/Lwz+3QkOqc87p7r GjaEFWfqRKAdbtFe5auyIcfh9t0wtGhNV53IejZ8HP2aSvziHfuRH/rfwiBf YgPOfXe01diw6r7rKuLVjpHnn6izYcwl6/wR9MzMjV0dmmxQbH+ZeBhdOn89 U1+LDZ7q6fuIfVeW0nLQF/sKtxH3b6u22q3NBsnZm6LEDTkt6hM6bDAeET8d is42+/NXYDMbnO7ZFh5Cu9Ajpn3QWbvTU4gX+fF8f40e1FgTRBx3fv6nM3ps eNojbUgcMKpQL2fAhlAPWlsI2iTV+uymLbhfQnwLiedym5Mz0FaZFTMH0ffu O8X/Qz+WLO4nVh1gHak1YoNqqF85seTGILadCRt6WzWZxMNdmapeW9lQ11P5 IJjEX7B/WC1afZC3kJhjvmmDnDkbEm4lXSCWglGvDvScmV0Isdll3WtWlmzY 356jTdyiK/ojDz2k8WIVseubXiNuKzZotipLEgdyx/dUodUuXfsVhL68u32Z 6jZcnzv0amLVf/neJ9ATgYxi4nvnwu99RpvOnrtM3PRckcq2YcMv6YexxHNK gali29mwfuylAzH9m5jA5A42PPzb/DuQ1IvYT5StPRu+lR/8RhywoiK3AH1u EzVAfMKOabLTAfOJ8bSZuOJO0dG3jmx462pTRGxiHdmo7sSGAzceXSV+/clB JgkdAD4Z/19/8WylGcWGgwv2JxAvCrH8eZfGhg99cvuJc8RkTRc5syHQy9WT eN2N72l+6Jh/ze7ERh3p6mtd2EDj3O1I3BjgE3EcrWd83JbYWQhe96K7N3dZ EPvpDfpcoLMhb1bbkHi2tfL+T/T39I26xLH7kgTtGWwwPBOgRZyVpXVdyJUN G5ySlYmVdASm96BnvvqvIS573WlagxZNSVhJ3DAvuv+IG9aPNC+Z/5+vOXVe L5pLZWgJ8b1Ll2RMmWxYaHZdglgtoFj3Bjr5yQ1x4lyjh5QIiw3HYkbFiNP6 O0+9RXcGagkTR0TPvMx0Z4OtehQ/sUudFqh6sEHljAI3sQa/f2n1TjZE33nB RbziRtLXmF1sEHaW5iEWtixcY7ubDQ8S9/ER/x5+wZbcw4Zq/yrB//fj5GBG NxoU+ecTMxg/7xl7sqEnJmEB8RtlnvY8tP9z20XEln/Ffwh5YTy9spMkfvRK foEf+vDh1KXE2lnqqq1ojrIFssRFvmC10ZsNSW6v5YgvzHc7Pm8vG9pP8SgR i/X4XN6Jzu4PU/1/P4oPP3yOPq6lqUEcaHf+d4oP5reXiz7xsNx1iSn0mkX1 RsTuE+Uazvswf20OmhPbpLXuk/NlQwH3CQfiGo/+E8fR/ObfXIg3a07kfUHf Ljj1fzyteTu/r2Q/G+btTPw//jglrZyM/DHf4l2TiEMGnQ/kolMfXj9L/O2u Z4pgABt8tdWyiTtpMfUt6MKgyWLi8guPDTwCsT4pmbcTK+9toj9DVzsG9BJf 2dwdsi6IDQa97SPEKZ2ztyfRdvkOHCQfvWQ3ro4+yAb21IL1xMUBZ873oocT TXWJf9VNCBmGsCF3RaEpcdz+ovHf6LL3C1yJcx/JV+4PZcNKGf0k4k9skW30 MDZ0zfv3m1j5rvfDCjQzleIn9eWA0HN1iXA2iNzulSDmLI2SaEYPwQlNYjme X91mEWw4s1wpgNgtry9gwzE27PmV8pM494/hQDLa58k0H6mPY7aZ1Bj6zM2k JcRHflF616PZYJ9qrU980eIVj2wMxpMgbyzxu5G76QLx+HytdAVSn3eoJVb3 JOF6Gy46Sup5dJXiP9NkrBee1unEd82rDQvQsK6yhFja/dujoBQ2TP3SGiD+ fMruqWAqG6REC2xIPzk8ufi55hmsB0P71pF+c7U8qznuItbPIh8h0s/ajHQW fkUf9JBcRyzw+vUO+wxcv9hJS2LfwXmtMpnYv04ZniTeKOXRdjsL64Owgmg4 +tWh1R86L+F+uM9IH0X/1Cv+pHadDeIf5rmR/muzVlIuBf09hB5JfG1xuOs3 9KDcx6vEDl+t2opuYH9QpI8Sl2QPPlMqYAPnmFoY6ec+nMsLVt5kQ8RqjVwy D/Q9S/SXKsX+0v56EZkXdEt/FB1Eu/P81CM+lUMfbkM71MIuYji01uNMGb5f gnE5caZSrcPCu2xoU/njTOYPWuKsjnAl9m/fpdfJfHLrkEfgXrR+xZEWYt7d 9cX16J/tHH+JywzS18bfx/64NvD/eWfhuMYy3gds6OP/OUfs3XmB2oVW/blX 6QT68XOO0zXojx1cTsR+l14LH6tmg+Wy80XEzxK1LfrQwYZn3xPLhmYe3/IQ 12eklOck6a+7uZ/koFu5p9SJX+3YO/cPHezr5Eb8H7sZYC0= "]]}, Annotation[#, "Charting`Private`Tag$104912#3"]& ]}}, {}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, {0, 0}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {False, False}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{True, False}, {True, False}}, FrameLabel -> {{ FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ TagBox["Relativeabundance", HoldForm], Medium, StripOnInput -> False], TextForm]], "InlineText"], Text[ Style[ HoldForm[$CellContext`Relativeabundance], Medium]]], TraditionalForm], None}, { FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ TagBox[ TagBox["t", HoldForm], HoldForm], Medium, StripOnInput -> False], TextForm]], "InlineText"], Text[ Style[ HoldForm[ HoldForm[$CellContext`t]], Medium]]], TraditionalForm], None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> 500, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{0, 150}, {0, 1}}, PlotRangeClipping -> True, PlotRangePadding -> {{Automatic, Automatic}, {Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}],FormBox[ FormBox[ TemplateBox[{ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ TagBox[ SubscriptBox["x", "1"], HoldForm], Medium, StripOnInput -> False], TextForm]], "InlineText"], Text[ Style[ HoldForm[ Subscript[$CellContext`x, 1]], Medium]]], InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ TagBox[ SubscriptBox["x", "2"], HoldForm], Medium, StripOnInput -> False], TextForm]], "InlineText"], Text[ Style[ HoldForm[ Subscript[$CellContext`x, 2]], Medium]]], InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ TagBox[ SubscriptBox["x", "3"], HoldForm], Medium, StripOnInput -> False], TextForm]], "InlineText"], Text[ Style[ HoldForm[ Subscript[$CellContext`x, 3]], Medium]]]}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.368417, 0.506779, 0.709798], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.24561133333333335`, 0.3378526666666667, 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification]}]], "RGBColor[0.368417, 0.506779, 0.709798]"], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.368417, 0.506779, 0.709798]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.880722, 0.611041, 0.142051], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.587148, 0.40736066666666665`, 0.09470066666666668], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification]}]], "RGBColor[0.880722, 0.611041, 0.142051]"], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.880722, 0.611041, 0.142051]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0.560181, 0.691569, 0.194885], RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[ 0.37345400000000006`, 0.461046, 0.12992333333333334`], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification]}]], "RGBColor[0.560181, 0.691569, 0.194885]"], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0.560181, 0.691569, 0.194885]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, Selectable -> False], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{ 3.7376228786594963`*^9, {3.7376229601892867`*^9, 3.7376229753051505`*^9}, { 3.737623087714603*^9, 3.7376231379010773`*^9}, {3.737623248949583*^9, 3.737623302341454*^9}, {3.7376291192188873`*^9, 3.737629201869835*^9}, 3.7376341139241652`*^9, 3.7376344470144434`*^9, {3.7376346952009163`*^9, 3.737634734255487*^9}, 3.7376347858386574`*^9, 3.737634858174391*^9, 3.7376359960568933`*^9, 3.737789464307534*^9, {3.7377897121905484`*^9, 3.7377898040977497`*^9}, 3.73779426382965*^9, 3.737794387991744*^9},ExpressionUUID->"b34063f0-403c-4078-9671-\ 512cce0b6a65"] }, Open ]] }, Open ]] }, WindowSize->{1366, 725}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, FrontEndVersion->"11.2 for Microsoft Windows (64-bit) (September 10, 2017)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 568, 10, 53, "Subsection",ExpressionUUID->"b0140eac-f337-432f-9ba6-a8c5f5983658"], Cell[CellGroupData[{ Cell[1173, 36, 414, 8, 34, "Text",ExpressionUUID->"45aa5238-614a-4bbb-bb79-1010f8c01b84", CellGroupingRules->{"GroupTogetherGrouping", 10000.}], Cell[1590, 46, 8663, 156, 105, "Input",ExpressionUUID->"372b1ec2-6388-4444-9b7e-1aaab8029317", CellGroupingRules->{"GroupTogetherGrouping", 10000.}] }, Open ]], Cell[10268, 205, 268, 6, 34, "Text",ExpressionUUID->"079e0141-263e-40b4-bcd0-8234eeefd044"], Cell[10539, 213, 3261, 90, 86, "Input",ExpressionUUID->"6ade1d3d-2493-4682-8bdf-5e677dd90821"], Cell[13803, 305, 742, 12, 78, "Text",ExpressionUUID->"c1b23d94-7a8e-4921-9b51-9f585fecfba5"], Cell[14548, 319, 3246, 84, 143, "Input",ExpressionUUID->"25c59b43-9023-4150-942a-b8b3a709772c"] }, Open ]], Cell[CellGroupData[{ Cell[17831, 408, 208, 3, 53, "Subsection",ExpressionUUID->"dab123a3-228a-4dc6-b99f-e731b3ece703"], Cell[18042, 413, 435, 9, 34, "Text",ExpressionUUID->"cfd55df0-cc59-4869-b091-771a33c7b549"], Cell[18480, 424, 3782, 99, 124, "Input",ExpressionUUID->"7483d710-dcf4-492b-bcc4-feac27c33e91"], Cell[22265, 525, 456, 8, 34, "Text",ExpressionUUID->"a17f8a73-e3e6-4032-8fd8-23522d94154d"], Cell[22724, 535, 2548, 63, 143, "Input",ExpressionUUID->"c70452f3-7238-4bf6-9394-17a9aa20c3ac"], Cell[25275, 600, 244, 4, 34, "Text",ExpressionUUID->"bbb8d14d-029e-455a-90a1-be8e0169bc62"], Cell[25522, 606, 2010, 47, 48, "Input",ExpressionUUID->"f84e59db-57c6-4fce-8adc-d3145c3c4f3f"], Cell[27535, 655, 351, 7, 34, "Text",ExpressionUUID->"6ba45b6a-b1ef-4f20-afa6-0d3c61d9cd07"], Cell[27889, 664, 3033, 73, 67, "Input",ExpressionUUID->"32735989-544e-42ad-b587-bb5f2bd2dbef"] }, Open ]], Cell[CellGroupData[{ Cell[30959, 742, 337, 6, 53, "Subsection",ExpressionUUID->"6de909d2-90b6-417e-a19d-9d6dfa4c8022"], Cell[31299, 750, 716, 12, 56, "Text",ExpressionUUID->"8e2f6cfd-cbcf-42e5-b2b2-a728bd66343a"], Cell[32018, 764, 4561, 125, 238, "Input",ExpressionUUID->"8b5c64ea-4afc-4e94-a9dc-6f399735ce25"], Cell[36582, 891, 1049, 26, 48, "Input",ExpressionUUID->"8f3e2965-0d98-486d-8bbf-4d44e9eccc4e"], Cell[37634, 919, 977, 23, 58, "Text",ExpressionUUID->"5003f8c4-c8a4-4f46-bae1-01397e471ce4"], Cell[38614, 944, 4118, 118, 200, "Input",ExpressionUUID->"57e356aa-06c6-40af-87f1-47b234437d2e"], Cell[42735, 1064, 661, 11, 56, "Text",ExpressionUUID->"96b05146-be66-40c6-b415-4080e0bcfa3a"], Cell[43399, 1077, 5614, 126, 219, "Input",ExpressionUUID->"782cd676-dc1c-418d-8d82-b86cda2e818f"], Cell[49016, 1205, 604, 10, 56, "Text",ExpressionUUID->"161c82b9-f5c7-4460-a006-112de32c48a2"], Cell[49623, 1217, 1408, 34, 181, "Input",ExpressionUUID->"cdabd1f0-2c9e-46a1-a2a1-6110b11c540b"], Cell[CellGroupData[{ Cell[51056, 1255, 158, 3, 28, "Input",ExpressionUUID->"02fc0e87-56ce-4f2f-99e8-fc2098acd6d8"], Cell[51217, 1260, 2293, 40, 52, "Output",ExpressionUUID->"6318105e-e0fb-4c85-9767-4a66e6840f3b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[53559, 1306, 170, 3, 53, "Subsection",ExpressionUUID->"f8f3e31d-f925-48cf-8614-7bef4b155503"], Cell[53732, 1311, 337, 7, 34, "Text",ExpressionUUID->"ea384e2a-ee66-41e8-9402-bcc0d86ea3ca"], Cell[CellGroupData[{ Cell[54094, 1322, 8611, 232, 485, "Input",ExpressionUUID->"a0150a69-2ed7-4bcc-9842-2d0b131883be"], Cell[62708, 1556, 115920, 1998, 348, "Output",ExpressionUUID->"42ecb21c-3643-40ec-ad59-d4ec4f68feb3"] }, Open ]], Cell[CellGroupData[{ Cell[178665, 3559, 7856, 219, 466, "Input",ExpressionUUID->"af667c1f-bb1c-49c0-8c30-dde31900faaa"], Cell[186524, 3780, 123098, 2116, 348, "Output",ExpressionUUID->"b34063f0-403c-4078-9671-512cce0b6a65"] }, Open ]] }, Open ]] } ] *)