
1 Supplementary text: Lotka-Volterra models

1.1 Methods

The Lotka-Volterra equations are a simple, yet very powerful and popular,
model of population dynamics in an ecosystem. They state that the rate of
change of abundance of each species is determined by the abundance of that
species and each other species, together with some parameters that are unique
to each ecosystem. The Lotka-Volterra system is a subset of a generalised eco-
logical model, in which interactions between species are restricted to pairwise
interactions.1 The mathematical form of the N-dimensional (i.e. for N interact-
ing species) Lotka-Volterra equations can be seen in Equation 1.

dxi

dt
= µixi(t) − xi(t)

N∑
j=1

αijxj(t) (1)

For i = 1, 2, .., N ; where xi(t) is the abundance of species i at time t, µi is the
growth rate of species i in the absence of any other effects, and the interaction
term αij characterises the effect of species j on species i, such that a positive
value means one species activates another, a negative value means one species
inhibits another and αij = 0 indicates there is no interaction of species j on
species i (note that i could have an effect on j unless αji = 0 also).

To try and understand whether the same behaviour as the stability landscape
model can be found using a Lotka-Volterra model, we can either try to under-
stand this problem analytically or numerically. For reasons discussed further in
Section 1.3, an analytic approach is currently unfeasible, and therefore we took
a numerical approach to this problem. We modelled a three species ecosystem
using the 3D Lotka-Volterra equations (equation 1 with N = 3). For a system
like this, we added a perturbation term as done by Stein et al. 2 to give Equation
2.

dxi

dt
= µixi(t) − xi(t)

3∑
j=1

αijxj(t) + εi (H(t − 1.5) − H(t − 2.5)) xi(t) (2)

Where H(t) is the Heaviside step function, such that a perturbation of size εi is
applied to species i from t = 1.5 to t = 2.5, modelling a day of antibiotics given
2 days after the start of the simulation. This timing was somewhat arbitrary,
and the same behaviour in Section 1.2 was exhibited with a different choice of
time for the perturbation.

Firstly, the analytical solution for all steady states was calculated (using Math-
ematica). This was done in the standard way by solving the set of simultaneous
equations given by Equation 3.

µixi − xi

3∑
j=1

αijxj = 0 (3)
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This gives several potential steady states, the one with three non-zero values for
xi, i = 1, 2, 3 being

1
−α11(α22α33 + α23α32) + α12(α21α33 − α23α31) − α13(α21α32 + α22α31)

(xss
1 , xss

2 , xss
3 )

(4)

where

xSS
1 = α12α23µ3 − α12α33µ2 − α13α22µ3 + α13α32µ2 + α22α33µ1 − α23α32µ1

xSS
2 = −α11α23µ3 + α11α33µ2 + α13α21µ3 − α13α31µ2 − α21α33µ1 + α23α31µ1

xSS
3 = α11α22µ3 − α11α32µ2 − α12α21µ3 + α12α31µ2 + α21α32µ1 − α22α31µ1

Then we performed a grid search for parameters in which this created a feasible
system with three-species coexistence (xi > 0 ∀i) . That is to say that the
growth rates were all positive (µi > 0 ∀i) and the diagonal elements of the
interaction matrix all negative (αii < 0 ∀i), meaning that each species has
a carrying capacity/maximum abundance, even in the absence of any other
species. This is consistent with a biological system within a closed ecosystem,
where unlimited abundance is not possible. The ranges used for each parameter
were in line with models fitted to real biological data.2

For each of these parameter sets at the above fixed point, the Jacobian was
calculated to determine whether the fixed point was stable. We are investigating
the effect of perturbations on stable ecosystems, otherwise this behaviour could
be easily found with unstable steady states with coexistence of three species. A
steady state is stable if all eigenvalues of the Jacobian have a negative real part.3

For all parameter sets with a stable steady state of three species coexisting, we
then determined which parameter sets had another feasible steady state (with
fewer than 3 species coexisting) and tested for that fixed points’ stability if
it does exist. If such parameter sets can be found, we should expect that a
perturbation exists that changes the system from having 3 species coexisting to
fewer than 3, i.e. causing a decrease in species diversity.

Once such a parameter set with these properties exists, a perturbation to move
from the three species state to the lower diversity state could be calculated as
being proportional to the difference between the position of the two states, as
in Equation 5.

εi = K(xaltSS
i − xSS

i ) i = 1, 2, 3 (5)

Where K can be varied and the perturbation simulated in order to find the
value that sufficiently moves the system to the alternative stable fixed point. If
one wants to exclude the possibility of the antibiotic activating a certain species
rather than inhibiting or having no effect, enforcing εi < 0 in the above equation
still gives a suitable perturbation (though for a possibly different value of K).
This provides just one possible perturbation that changes the system, others are
certainly possible and can be found by a general grid search on all εi for each
set of model parameters.
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1.2 Results

For one set of growth parameters (in this case µ = (0.9, 1, 1)), searching over
59 = 1, 953, 125 parameter sets (for the elements of the communits matrix αi),
93, 155 systems with a feasible 3 species coexistence were found, with just 74
sets possessing both stability in the three species coexistence and in one other
fixed point (parameters for each of these are shown in Section 1.4). Figure 1
illustrates one of these sets, exhibiting the expected behaviour when perturbed.
The direction and magnitude of potential perturbation vector (i.e. each species’
susceptibility to the antibiotics) required to make such behaviour varied for each
system, with one example discussed previously.
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(a) No perturbation
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(b) Large perturbation

Figure 1: Dynamics of one Lotka-Volterra system. (a) shows that the coexis-
tence of three-species is reached in absence of perturbations. (b) When per-
turbed, only one species survives, with x1 and x3 going to zero.

The gut microbiome is stable when subject to small perturbations4, which are
encountered constantly in human biology, but can have its makeup altered when
subject to particularly large perturbations. Similarly, in Figure 2, a smaller per-
turbation (half the size of that in Figure 1) causes a change in the abundances
of each species in the above system but over time, the system returns to its
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original state. Therefore, the exact antibiotic and how it interacts with the ex-
isting microbiota will effect whether the antibiotic treatment will ’permanently’
change the makeup of the gut microbiome.
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Figure 2: Small perturbation applied to Lotka-Volterra system from Figure 1,
which returns the system to its original state of three coexisting species. This
corresponds to an antibiotic or other perturbation that inhibits species 1 and 3
half a much as in Figure 1

It should also be noted that the ’step’ perturbation in Equation 2 can be substi-
tuted for an ’impulse’ perturbation, as in the stability landscape model, without
a change in the results (other than the necessary value for parameter K in Equa-
tion 5). This suggests the exact manifestation of the perturbation is perhaps not
incredibly relevant, at least for the Lotka-Volterra model. One exception might
be when looking at long term use of antibiotics. Theoretically even smaller per-
turbations could then result in the microbiome never being in equilibrium, with
perturbations as in 1 occurring before the effect of the last one have been for-
gotten by the system. This could also lead to an accumulation in perturbations
that moves the system to the alternative state, but further modelling would be
required to see whether this is the case.

1.3 Discussion

We showed that it is possible in a three species Lotka-Volterra model to exhibit
the same behaviour as that of the two-state stability landscape model. We
searched 59 = 1, 953, 125 randomly chosen parameter sets and identified 93, 155
systems with a stable state (fixed point) where 3 species coexisted. Of these, 74
had an additional fixed point with fewer than 3 species, which the system could
reach if perturbed sufficiently. The observation that 0.079% of three-species
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Lotka-Volterra systems exhibit the behaviour required by the two-state model
suggests that the stability landscape model is unrealistic for small numbers of
species, which is as expected because the stability landscape mode assumes
diversity (the state of the microbiome) is a continuous variable rather than a
clearly discrete one with only certain permitted values. However, in principle
this behaviour is possible for some parameter sets even at low n.

For larger numbers of species, recent work in theoretical ecology gives a strong
justification for the generalisability of this behaviour to higher dimensions. It
has recently been shown that as the number of species n increases, the number
of fixed points which are stable increases independently of population size5, and
the proportion of simulations from random parameters that have multiple fixed
points also increases: with n = 400, this proportion is > 97% [35]. This suggests
that the overwhelming majority of mathematically possible systems at relevant
numbers of species exhibit multible fixed points; we suggest the likelihood is
that the fraction of biologically possible systems exhibiting this behaviour is
even higher. Furthermore, the Lotka-Volterra model undergoes a phase tran-
sition from a system with a unique fixed point (UFP) to one with multiple
attractors (MA); when resource competition is incorporated into the model a
more realistic assumption in the case of the human microbiome all fixed points
become either stable or marginally stable Bunin 6 . The gut microbiome is an
ecosystem of hundreds of species in the presence of resource competition. From
this assumption, we can therefore infer from this theoretical work that: it exists
beyond the UFP phase; its community composition will be history-dependent;
and perturbations will lead to transitions between the multiple possible stable
states. This high level behaviour is then captured by the two-state stability-
landscape model using only the simple measure of diversity.

Further to the long term decrease in diversity compared to the initial state, it
can be seen in the Figure 1 that the perturbation has a partially delayed effect
on species diversity. Depending on the size of the perturbation, the lowest
species diversity may not be seen until a significant time after the perturbation
occurs. This is inline with the behaviour of the stability landscape model by
Shaw et al. 7 and the observation made by Zaura et al. 8 , where their dataset
showed that the lowest diversity was observed one month after the antibiotic
perturbation, rather than immediately after.
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1.4 Table of parameter values

The parameters were taken as follows: µ = (0.9, 1, 1), αij ∈ {−1, −0.5, 0, 0.5, 1} for i ̸=
j, αii ∈ {−2, −1.5, −1, −0.5, 0}. Table 1 shows the 74 sets of parameters
which gave the desired behaviour from those simulated.
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α3 α4 α5 α6 α7 α8 α9
-1. -1. -0.5 -0.5 0. -1. -1.5
-1. -1. -0.5 -0.5 0.5 -1. -2.
-1. -1. -0.5 -0.5 0.5 -1. -1.5
-1. -1. -0.5 -0.5 1. -1. -2.
-1. -1. -0.5 -0.5 1. -1. -1.5
-1. -1. -0.5 0. 0. -1. -2.
-0.5 -1. -0.5 0. 0. -1. -1.
-1. -1. -0.5 0. 0. -1. -1.5
-1. -1. -0.5 0. 0.5 -1. -2.
-0.5 -1. -0.5 0. 0.5 -1. -1.
-1. -1. -0.5 0. 0.5 -1. -1.5
-1. -1. -0.5 0. 1. -1. -2.
-0.5 -1. -0.5 0. 1. -1. -1.
-1. -1. -0.5 0.5 0. -1. -2.
-1. -1. -0.5 0.5 0. -1. -1.5
-1. -1. -0.5 0.5 0.5 -1. -2.
-1. -1. -0.5 0.5 1. -1. -2.
-1. -1. -0.5 1. 0. -1. -2.
-0.5 -1. -0.5 0.5 0. -1. -1.
-1. -1. -0.5 1. 0. -1. -1.5
-1. -1. -0.5 1. 0.5 -1. -2.
-0.5 -1. -0.5 0.5 0.5 -1. -1.
-1. -1. -0.5 0. 0. -1. -2.
-0.5 -1. -0.5 0. 0. -1. -1.
-0.5 -1. -0.5 0. 0.5 -1. -1.5
-1. -1. -0.5 0. 0.5 -1. -2.
-0.5 -1. -0.5 0. 0.5 -1. -1.
-0.5 -1. -0.5 0. 1. -1. -2.
-0.5 -1. -0.5 0. 1. -1. -1.5
-1. -1. -0.5 0. 1. -1. -2.
-0.5 -1. -0.5 0. 1. -1. -1.
-0.5 -1. -0.5 0.5 0. -1. -1.5
-1. -1. -0.5 1. 0. -1. -2.
-0.5 -1. -0.5 0.5 0. -1. -1.
-0.5 -1. -0.5 0.5 0.5 -1. -2.
-0.5 -1. -0.5 0.5 0.5 -1. -1.5
-1. -1. -0.5 1. 0.5 -1. -2.

α3 α4 α5 α6 α7 α8 α9
-0.5 -1. -0.5 0.5 0.5 -1. -1.
-0.5 -1. -0.5 0.5 1. -1. -2.
-0.5 -1. -0.5 0.5 1. -1. -1.5
-0.5 -1. -0.5 1. 0. -1. -2.
-0.5 -1. -0.5 1. 0. -1. -1.5
-0.5 -1. -0.5 1. 0. -1. -1.
-0.5 -1. -0.5 1. 0.5 -1. -2.
-0.5 -1. -0.5 1. 0.5 -1. -1.5
-0.5 -1. -0.5 1. 0.5 -1. -1.
-0.5 -1. -0.5 1. 1. -1. -2.
-0.5 -1. -0.5 1. 1. -1. -1.5
0. -1. -0.5 0.5 0. -1. -0.5
0. -1. -0.5 1. 0. -1. -1.
0. -1. -0.5 0.5 0.5 -1. -1.
0. -1. -0.5 1. 0.5 -1. -2.
0. -1. -0.5 0.5 0.5 -1. -0.5
0. -1. -0.5 1. 0.5 -1. -1.
0. -1. -0.5 0.5 1. -1. -1.5
0. -1. -0.5 0.5 1. -1. -1.
0. -1. -0.5 1. 1. -1. -2.
0. -1. -0.5 0.5 1. -1. -0.5
0. -1. -0.5 1. 1. -1. -1.
0. -1. -0.5 0.5 0. -1. -0.5
0. -1. -0.5 1. 0. -1. -1.
0. -1. -0.5 1. 0. -1. -0.5
0. -1. -0.5 0.5 0.5 -1. -1.
0. -1. -0.5 1. 0.5 -1. -2.
0. -1. -0.5 1. 0.5 -1. -1.5
0. -1. -0.5 0.5 0.5 -1. -0.5
0. -1. -0.5 1. 0.5 -1. -1.
0. -1. -0.5 1. 0.5 -1. -0.5
0. -1. -0.5 0.5 1. -1. -1.
0. -1. -0.5 1. 1. -1. -2.
0. -1. -0.5 1. 1. -1. -1.5
0. -1. -0.5 0.5 1. -1. -0.5
0. -1. -0.5 1. 1. -1. -1.
0.5 -1. -0.5 1. 1. -1. -0.5

Table 1: Table of parameter values for the community matrix αi which exhibited
multiple stable fixed points, with αi = −0.5 i = 1, 2 in all cases excluded
for ease of presentation. All had one point with three species coexisting, and
another with just one species surviving. µ = (0.9, 1, 1) for these simulations.
αij ∈ {−1, −0.5, 0, 0.5, 1} for i ̸= j, αii ∈ {−2, −1.5, −1, −0.5, 0}
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